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A. TRANSFORMATION RULES FOR SIMILARITY-AWARE OPERATORS  

Combining/Separating Similarity Selection Predicates  
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Combining/Separating Similarity Join and Similarity Selection  

When the selection predicate attribute is the inner attribute in the join predicate: 
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When the selection predicate attribute is the outer attribute in the join predicate: 
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Combining/Separating Similarity Join Predicates 

When the attributes in the predicates have a single direction (e1→e2, e2→e3): 
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When the predicates’ attributes do not have a single direction (e1→e2, e2 ←e3): 
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Commutativity of Similarity Join Operators 
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R67.                        . 

R68.                          . 

R69.                      . 

Distribution of Selection over Similarity Join 

When all the attributes of the selection predicate θ involve only the attributes of one of the 

relations being joined: 
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R75.      (           )                      . 

R76.      (          )                     . 
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When predicates θ1 and θ2 involve only the attributes of E and F, respectively: 
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Distribution of Similarity Selection over Join 
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Distribution of Similarity Selection over Similarity Join 
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Associativity of Similarity Join Operators 

When the attributes in the predicates have a single direction (e→f, f→g): 

R102. (           )                                   .  

R103. (             )                                         . 

R104. (            )                                      . 
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When the predicates’ attributes do not have a single direction (e→f, f←g): 
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R108.            (            )                           .  

R109.           (           )                         . 

Applying Selection with a SJ predicate over Cross Product 

R110.                         . 
R111.                             . 
R112.                           . 

R113.                         . 

Rules that Take Advantage of Distance Function Properties 

Pushing Selection Predicate under Originally Unrelated Ɛ-Join Operand.  

R114.      (          )                                . 

Ɛ-Selection Predicate under Originally Unrelated Ɛ-Join Operand.  

R115.          
(           )            

                            
    . 

Associativity Rule that Enables Join on Originally Unrelated Attributes.  

R116. (           )            (              )                    . 

Eager and Lazy Transformations with SJ and SGB 

Eager and Lazy Transformations with SGB and Join: 

R117. The Eager and Lazy transformations can be extended to the case of SGB and regular join as shown in 
Theorem 1 (Section 4.4.1). 

Eager and Lazy Transformations with Group-by and SJ: 

R118. The Eager and Lazy aggregation transformations can be extended to the case of SJ and group-by as 
shown in Theorem 2 (Section 4.4.2). 

Eager and Lazy Transformations with SGB and SJ: 

R119. The Eager and Lazy Aggregation transformations can be extended to the case of SJ and SGB as 
shown in the Theorem 3 (Section 4.4.3). 

Pushing Similarity Predicate from Join-Around to Group-by: 

R120. The similarity predicate of the Join-Around can be completely pushed down to a grouping operator 
as specified in Section 4.4.4. 

Pushing Similarity Predicate from Ɛ-Join to Group-by: 

R121. The similarity predicate of the Ɛ-Join can be partially pushed down to a grouping operator as 
specified in Section 4.4.5. 

Distribution of Selection and Similarity Selection over SGB (SGB-U, SGB-A, SGB-D) 

R122.                                          . 

R123.                                                . 

R124.                                                    . 

Distribution of Similarity Selection over U, ∩ and – 
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Distribution of Projection over Similarity Join 

If    involves only attributes of       , and additionally for k-based operations,              

and             : 
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R139.        (           )                            . 

R140.        (          )                           . 

If    and    are sets of attributes from   and  , respectively;    contains attributes that are 

involved in the join predicate but are not in       ;    contains attributes that are involved in the 

join predicate but are not in         and additionally for k-based operations,               

     ; and                    : 

R141.        (          )                                           . 
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R144.        (          )                                           . 
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Fig. 44. Combining Ɛ-Selection and kNN-Selection (R2) – Proof 

 

B. ADDITIONAL PROOFS 

PROOF SKETCH OF RULE R2. Consider a generic tuple tE of E. We will show that for any possible value of 

tE, the results generated by the plans of both sides of the rule are the same. The top part of Fig. 44 

gives a graphical representation of Rule R2. Using the conceptual evaluation order of similarity 

queries, we can transform the left part of the rule to an equivalent expression that uses the 

intersection operation as represented in the middle part of Fig. 44. We will use this second version of 

the rule in the remaining part of the proof. The bottom part of Fig. 44 gives the different possible 

regions for the value of tE.e. Note that the region marked as kNN, which comprises regions C and D, 

represents the region that contains the kNN closest neighbors of C2. 

1. When the value of tE.e belongs to A. In the LHS plan, tE is not selected in any of the selection 

operators since it does not satisfy any of the Similarity Selection predicates. Thus, no output 

is generated by this plan. In the RHS plan, tE is filtered out by the kNN-Selection. No tuple 

flows to the Ɛ-Selection. Thus, no output is generated by this plan either. 

2. When the value of tE.e belongs to B. In the LHS plan, tE is selected in the Ɛ-Selection but not 

in the kNN-Selection. The intersection operator does not produce any output and 

consequently no output is generated by this plan. In the RHS plan, tE is filtered out by the 

kNN-Selection. No tuple flows to the Ɛ-Selection. Thus, no output is generated by this plan 

either. 

3. When the value of tE.e belongs to C. In the LHS plan, tE is selected by both Similarity 

Selection operators. Consequently, tE belongs to the output of the intersection operator. tE 

belongs to the output of the LHS plan. In the RHS plan, tE is selected by the kNN-Selection. tE 

is also selected by the Ɛ-Selection. Thus, tE also belongs to the output of the RHS plan. 

4. When the value of tE.e belongs to D. In the LHS plan, tE is selected in the kNN-Selection but 

not in the Ɛ-Selection. The intersection operator does not produce any output and 

consequently no output is generated by this plan. In the RHS plan, tE is selected by the kNN-

Selection but filtered out by the Ɛ-Selection. Thus, no output is generated by this plan either.                                        
                                                                                                                                                          



8 

 

≡

E

θε1(e1,e2) 

∩ θε2,C(e2)
σ

S

σ
S

E

θε2,C(e2)σ
S

θε1(e1,e2)

≡

σ
S

E

θε2,C(e2)σ
S

θε1(e1,e2)

σS

∩

σ
S

E E

θε1(e1,e2) θε2,C(e2)

e2

ε2

ε2
C

e1
A

A

B

D

M

tE2

tE1
ε1

ε1

 

Fig. 45. Combining Ɛ-Join and Ɛ-Selection (R5) – Proof 

 

PROOF SKETCH OF RULE R5. Assume that θƐ1(e1,e2) is defined over relations E1 and E2, and that the 

input relation E is the cross product of all the relations involved in the similarity-aware predicates, 

i.e., E = E1 x E2. Furthermore, assume that the join attributes are E1.e1 and E2.e2. Consider a generic 

tuple tE1 of E1. We will show that for any possible pair (tE1,tE2), where tE2 is a tuple of E2, the results 

generated by the plans of both sides of the rule are the same (we consider the first equivalence of 

R5). The top part of Fig. 45 gives a graphical representation of Rule R5. Using the conceptual 

evaluation order of similarity queries, we can transform the left part of the rule to an equivalent 

expression that uses the intersection operation as represented in the middle part of Fig. 45. We will 

use this second version of the rule in the remaining part of the proof. The bottom part of Fig. 45 gives 

the different possible regions for the value of tE2.e2. 

1. When the value of tE2.e2 belongs to A. In the LHS plan, the pair (tE1,tE2) is not selected  in  any  

similarity-aware operator  since  it  does  not  satisfy any  of  their predicates. Thus, no output 

is generated by this plan. In the RHS plan, (tE1,tE2) is filtered out by the bottom selection since 

dist(tE2.e2 ,C)>Ɛ2. No tuple flows to the top operator. Thus, no output is generated by this plan 

either. 

2. When the value of tE2.e2 belongs to B. In the LHS plan, the pair (tE1,tE2) is selected in the left 

Similarity Selection but not in the right one. The intersection operator does not produce any 

output and consequently no output is generated by this plan. In the RHS plan, (tE1,tE2) is 

filtered out by the bottom selection since dist(tE2.e2 ,C)>Ɛ2. No tuple flows to the top operator. 

Thus, no output is generated by this plan either.  

3. When the value of tE2.e2 belongs to M. In the LHS plan, the pair (tE1,tE2) is selected in both 

similarity-aware operators. Consequently, (tE1,tE2) belongs to the output of the intersection 

operator. (tE1,tE2) belongs to the output of the LHS plan. In the RHS plan, (tE1,tE2) is selected 

by the bottom selection since dist(tE2.e2,C)≤Ɛ2. (tE1,tE2) is also selected by the top selection since 

dist(tE1.e1,tE2.e2)≤Ɛ1. Thus, the pair (tE1,tE2) belongs also to the output of the RHS plan. 

When the value of tE2.e2 belongs to D. In the LHS plan, the pair (tE1,tE2) is selected    in  the  

right Similarity Selection but not in the left one. The  intersection  operator  does  not produce 

any output and consequently no output is generated by this plan. In the RHS plan, (tE1,tE2) is 

selected in the bottom selection since dist(tE2.e2 ,C)≤Ɛ2 but it is filtered out by the top 

selection. Thus, no output is generated by this plan either.                                                         
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Fig. 46. Combining/separating two Ɛ-Join predicates (R32) – Proof 

 

PROOF SKETCH OF RULE R32. Assume that θƐ1(e1,e2) is defined over relations E1 and E2, and θƐ2(e2,e3) 

over relations E2 and E3. Assume also that the input relation E is the cross product of all the 

relations involved in the similarity-aware predicates, i.e., E = E1 x E2 x E3. Furthermore, assume 

that the join attributes in θƐ1 are E1.e1 and E2.e2, and in θƐ2 are E2.e2 and E3.e3. Consider a generic 

tuple tE1 of E1.  We will show that for any possible triplet (tE1,tE2,tE3), where tE2 is a tuple of E2, and 

tE3 is a tuple of E3, the results generated by the plans of both sides of the rule are the same (we 

consider the equivalence between the first and third components of R32). The top part of Fig. 46 

gives a graphical representation of Rule R32. Using the conceptual evaluation order of similarity 

queries, we can transform the left part of the rule to an equivalent expression that uses the 

intersection operation as represented in the middle part of Fig. 46. We will use this second version of 

the rule in the remaining part of the proof. The bottom part of Fig. 46 gives the different possible 

regions for the values of tE2.e2 and tE3.e3. Note that the regions for tE3.e3 have been specified based on 

a generic tuple tE2 with tE2.e2 in region B. 

1. When the value of tE2.e2 belongs to A. In the LHS plan, the triplet (tE1,tE2,tE3) is not selected in 

any similarity-aware operator since it does not satisfy any of their predicates. Thus, no output 

is generated by this plan. In the RHS plan, (tE1,tE2,tE3) is filtered out by the bottom selection 

since dist(tE1.e1,tE2.e2)>Ɛ1. No tuple flows to the top operator. Thus, no output is generated by 

this plan either. 

2. When the value of tE2.e2 belongs to B and the value of tE3.e3 belongs to C. In the LHS plan, the 

triplet (tE1,tE2,tE3) is selected in the left Similarity Selection since dist(tE1.e1,tE2.e2)≤Ɛ1 but not 

in the right one since dist(tE2.e2,tE3.e3)>Ɛ2. The intersection operator does not produce any 

output and consequently no output is generated by this plan. In the RHS plan, (tE1,tE2,tE3) is 

selected in the bottom  selection  since  dist(tE1.e1,tE2.e2)≤Ɛ1  but  it  is  filtered  out  by  the top 

selection since dist(tE2.e2,tE3.e3)>Ɛ2. Thus, no output is generated by this plan either. 

3. When the value of tE2.e2 belongs to B and the value of tE3.e3 belongs to D. In the LHS plan, the 

triplet (tE1,tE2,tE3) is selected in both similarity-aware operators since dist(tE1.e1,tE2.e2)≤Ɛ1 (left) 

and  dist(tE2.e2,tE3.e3)≤Ɛ2 (right). Consequently, (tE1,tE2,tE3) belongs to the output of the 

intersection operator. (tE1,tE2,tE3) belongs to the output of the LHS plan. In the RHS plan, 

(tE1,tE2,tE3) is selected by the bottom selection since dist(tE1.e1,tE2.e2)≤Ɛ1. (tE1,tE2,tE3) is also 

selected by the top selection since dist(tE2.e2,tE3.e3)≤Ɛ2. Thus, (tE1,tE2,tE3) also belongs to the 

output of the RHS plan.                                                                                                                   
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Fig. 47. Associativity of kNN-Join operators - when attributes in predicates have a single direction: 

e1→e2, e2→e3 (R103) –Proof 

 

PROOF SKETCH OF RULE R66. In the LHS expression of the equivalence, all the join links satisfy 

dist(e1,e2) ≤ Ɛ. Given that the distance function dist is symmetric, dist(e1,e2)=dist(e2,e1). Thus, the 

condition dist(e2,e1) ≤ Ɛ in the LHS expression will produce the same set of join links.                            

PROOF SKETCH OF RULE R103. Assume that the join attributes in θkNN1 are E.e and F.f and the join 

attributes in   θkNN2 are F.f and G.g. Consider a generic tuple tE of E. We will show that for any 

possible triplet (tE,tF,tG), where tF is a tuple of F and tG is a tuple of G, the results generated by the 

plans of both sides of the rule are the same. The top part of Fig. 47 gives a graphical representation 

of Rule R103. The bottom part of this figure gives the different possible regions for the values of tF.f 

and tG.g. Note that the regions for tG.g have been specified based on a generic tuple tF with tF.f in 

region B. The region marked as kNN1 represents the segment that contains the kNN1 closest 

neighbors of tE in F. The region marked as kNN2 represents the segment that contains the kNN2 

closest neighbors of tF in G. Note that for a given kNN-Join (θkNN1 or θkNN2) and a given outer tuple t, 

the join identifies the same set of k nearest neighbors of t in both plans. This is the case since (i) 

kNN-Join over R1 and R2 makes use of primary keys in both input relations (R1.pk1, R2.pk2) and 

ignores tuples in R2 that have the same primary key, and (ii) the set of different values of R2.pk2 in 

the inner input of both plans is the same. Furthermore, note that the set of different values of R2.pk2 

in the inner input of both plans corresponds to the set of all different values of R2.pk2 in the base 

relation R2. 

1. When the value of tF.f belongs to B and the value of tG.g belongs to D. In the LHS plan, the 

pair (tE,tF) belongs to the output of the bottom kNN-Join (θkNN1) since tF is one of the kNN1 

closest neighbors of tE in F. (tE,tF) flows to the top kNN-Join. The triplet (tE,tF,tG) belongs also 

to the output of the top kNN-Join (θkNN2) since tG is one of the kNN2 closest neighbors of tF in 

G. Consequently, (tE,tF,tG) belongs to the output of the LHS plan. In the RHS plan, (tF,tG) 

belongs to the output of the bottom kNN-Join (θkNN2) since tG is one of the kNN2 closest 

neighbors of tF in G. The triplet (tE,tF,tG) belongs also to the output of the top kNN-Join (θkNN1) 

since tF is one of the kNN1 closest neighbors of tE in F. Thus, (tE,tF,tG) belongs also to the 

output of the RHS plan. Note that in the RHS plan, the bottom join (θkNN2) matches each inner 

tuple of F to its closest kNN2 neighbors in G. The output of this join will contain all the values 

of F.pk2 (the primary key of F) in the base relation F. Consequently, the set of all different 

values of F.pk2 in the inner input of θkNN1 is the same in both plans. Therefore, for a given 

inner tuple t, the join θkNN1 will find the same set of kNN1 nearest neighbors of t in both 

plans. 

2. When the value of tF.f belongs to B and the value of tG.g belongs to C. In the LHS plan, the 

pair (tE,tF) belongs to the output of the bottom kNN-Join (θkNN1) since tF is one of the kNN1 
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closest neighbors of tE in F. (tE,tF) flows to the top kNN-Join. However, the triplet (tE,tF,tG) 

does not belong to the output of the top kNN-Join (θkNN2) since tG is not one of the kNN2 

closest neighbors of tF in G. Consequently, no output is generated by this plan. In the RHS 

plan, (tF,tG) does not belongs to the output of the bottom kNN-Join (θkNN2) since tG is not one of 

the kNN2 closest neighbors of tF in G. No tuple flows to the top join. Thus, no output is 

generated by this plan either. 

3. When the value of tF.f belongs to A. In the LHS plan, the pair (tE,tF) does not belongs to the 

output of the bottom kNN-Join (θkNN1) since tF is not one of the kNN1 closest neighbors of tE in 

F. No tuple flows to the top join. Consequently no output is generated by this plan. In the 

RHS plan, (tF,tG) may or may not belong to the output of the bottom kNN-Join (θkNN2). 

However, any triplet (tE,tF,tG) does not belong to the output of the top kNN-Join (θkNN1) since tF 

is not one of the kNN1 closest neighbors of tE in F. Thus, no output is generated by this plan 

either.                                                                                                                                               

 

PROOF SKETCH OF RULE R115 (GR15). Note that pushing Ɛ-Selection under the outer input of the Ɛ-Join 

has been already studied in Rule R86. We focus here on the validity of pushing the Ɛ-Selection 

operation under the inner input of the Ɛ-Join. Assume that the selection predicate θƐ1,C(e) is dist(e,C) 

≤ Ɛ1 and the join predicate θƐ2(e,f) is dist(e,f) ≤ Ɛ2. 

1. Due to Triangular Inequality, dist(f,C) ≤ dist(f,e) + dist(e,C). 

2. Due to Commutativity, we have that dist(f,C) ≤ dist(e,f) + dist(e,C).  

3. Using in (2) the fact that dist(e,f) ≤ Ɛ2,  dist(f,C) ≤ Ɛ2 + dist(e,C). 

4. Using in (3) the fact that dist(e,C) ≤ Ɛ1, dist(f,C) ≤ Ɛ1 + Ɛ2. 

 

The expression in (4) dist(f,C) ≤ Ɛ1 + Ɛ2 represents an Ɛ-Selection predicate that can be applied on 

f. This predicate is in fact the predicate being applied on f in the inner input of the RHS part of Rule 

R115.                                                                                                                                                            

PROOF SKETCH OF RULE R116 (GR16). Assume that in the LHS part of Rule R116, the join predicate 

θƐ1(e,f) is dist(e,f) ≤ Ɛ1, and the join predicate θƐ2(f,g) is dist(f,g) ≤ Ɛ2. The order of attributes in these 

expressions is irrelevant because the distance function is Commutative. 

1. Due to Triangular Inequality, dist(e,g) ≤ dist(e,f)+dist(f,g). 

2. Since dist(e,f) ≤ Ɛ1 and dist(f,g) ≤ Ɛ2, dist(e,g) ≤ Ɛ1+Ɛ2.  

 

The expression in (2) dist(e,g) ≤ Ɛ1+Ɛ2 represents a join predicate that can be applied on e  and g. 

This predicate is in fact the predicate being applied on e and g in the left join of the RHS part of Rule 

R116. Note that the RHS part of the rule requires a second join that applies the two join predicates 

of the LHS part because some tuples that do not satisfy these predicates can be present in the output 

of the join between e and g.                                                                                                                         

PROOF SKETCH OF THEOREM 1. Consider a group Gd generated by g [NGAd, Segd]σ[Cd]rd for some 

instance rd of Rd. Due to conditions (iii) and (iv), all the rows of Gd have the same values of GAd and 

the joining attributes. Every tuple of Gd joins with the same set of tuples SAu(Gd). Let Su(Gd) be the 

subset of SAu(Gd) that has a unique value of GAu. Consider two groups of g [NGAd, Segd]σ[Cd]rd: Rd1 

and Rd2. There are two cases to be considered. 

Case 1: Gd1[GAd] ~ Gd2[GAd] and Su(Gd1)[GAu] ~ Su(Gd2)[GAu]. In E2, the results of the join 

operations represented by the following two expressions are merged into the same similarity group 

by the second SGB. 

1. ((Fd1[AAd], COUNT)π[NGAd, GAd+, AAd]Gd1) × Su(Gd1).  

2. ((Fd1[AAd], COUNT)π[NGAd, GAd+, AAd]Gd2) × Su(Gd2). 
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In E1, each row of Gd1 and Gd2 joins with Su(Gd1) and Su(Gd2) respectively and all the resulting 

rows are also merged by the second SGB. Due to condition (i), the aggregation values in the resulting 

row of the following expressions in E1 and E2 respectively are the same. 

3. Fd[AAd]πA[GAd,GAu,AAd] ((Gd1 × Su(Gd1))    (Gd2 × Su(Gd2))).    

4. Fd2[FAAd]πA[GAd,GAu,FAAd](((Fd1[AAd]πA[NGAd, GAd+, AAd]Gd1) × Su(Gd1)) 

   ((Fd1[AAd]πA[NGAd, GAd+, AAd]Gd2) × Su(Gd2)). 

Due to condition (ii), the aggregation values in the resulting row of the following expressions in E1 

and E2, respectively, are the same. 

5. Fu[AAu]πA[GAd,GAu,AAu] ((Gd1 × Su(Gd1))    (Gd2 × Su(Gd2))).    

6. Fua[AAu,CNT]πA[GAd,GAu, AAu, CNT](((COUNT πA[NGAd, GAd+]Gd1) × Su(Gd1)) 

   ((COUNT πA[NGAd, GAd+]Gd2) × Su(Gd2)). 

Case 2: Gd1[GAd] !~ Gd2[GAd] or Su(Gd1)[GAu] !~ Su(Gd2)[GAu]. In E2, the results of the join 

operations represented by (1) and (2) are not merged into the same similarity group by the second 

SGB. In E1, each row of Gd1 and Gd2 joins with Su(Gd1) and Su(Gd2), respectively,  but the resulting 

rows are not merged by the second SGB. Due to condition (i), the aggregation values in the resulting 

row of the following expressions in E1 and E2, respectively, are the same. 

7. Fd[AAd]πA[GAd,GAu,AAd](Gd1 × Su(Gd1)).    

8. Fd2[FAAd]πA[GAd,GAu,FAAd]((Fd1[AAd]πA[NGAd, GAd+, AAd]Gd1) × Su(Gd1)). 

 

Due to condition (ii), the aggregation values in the resulting row of the following expressions in E1 

and E2, respectively, are the same. 

9. Fu[AAu]πA[GAd,GAu,AAu] ((Gd1 × Su(Gd1)). 

10. Fua[AAu,CNT]πA[GAd,GAu, AAu, CNT]((COUNT πA[NGAd, GAd+]Gd1) × Su(Gd1)).                       
 

 

PROOF SKETCH OF THEOREM 2. The validity of this theorem relies on the following properties. 

P1. Given Rd' and Ru' instances of Rd and Ru respectively, the result of (Rd'  ̃   Ru') is equivalent 

to the result of (Rd'    Ru') where θ = disjunction of (Rd.C0d=x   Ru.C0u=y) for every different 

link (x,y) of the result of (Rd'   ̃   Ru'). 

P2. θ, as defined in P1, remains unchanged and valid when Rd' is augmented with tuples that 

have already present values of Rd'.C0d, i.e., duplicates, or when such tuples are removed from 

Rd'. 

 

The validity of this theorem can be shown by following these steps:  

For every Rd’ and Ru’ instances of Rd and Ru, respectively, 

1. E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] g [GAd, GAu]σ[Cd   Cu] (Rd’   ̃   Ru’), 

is equivalent to:  

E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] g [GAd, GAu]σ[Cd   Cu] (Rd’     Ru’), 

where θ is defined as in P1. 

2. E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] g [GAd, GAu]σ[Cd   Cu] (Rd’    Ru’), 

is equivalent to: 
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Table VI. Common distance functions 

Distance Function Definition 

p-norm Distance 

p-norm distance of two vectors (x1, x2, ...,xn) and (y1, y2, ...,yn) is defined as: 

1-norm distance =  

∑|     |

 

   

 

2-norm distance =  

(∑|     |
 

 

   

)

   

 

p-norm distance = 

(∑|     |
 

 

   

)

   

 

infinity-norm distance =  

   
   

(∑|     |
 

 

   

)

   

 

Cosine Distance 1 
CD1(A,B) = 1 - CS(A,B), where A and B are vectors and CS(A,B) is the Cosine 

Similarity. CS(A,B) = (A·B)/(ǁAǁǁBǁ) 

Cosine Distance 2 CD2(A,B) = arccos(CS(A,B)) 

Discrete Metric Function DM(x,y) = 0 if x = y, 1 otherwise, where x and y are numbers. 

Longest Common Subsequence LCS(X,Y) = longest subsequence common to strings or time series X and Y. 

Edit Distance with Equal Weights 

ED(X,Y) = minimum number of operations needed to transform string X into 

string Y. Allowed operations: insertion, deletion, and substitution of a single 

character. 

Edit Distance with Different 

Weights 

ED(X,Y) = min(w(E)), where E is a sequence of edit operations that transforms 

string X into string Y, and w is a weight function that assigns a nonnegative real 

number w(x, y) to each elementary edit operation. 

Hamming Distance HD(X,Y) = number of positions in which the characters of strings X and Y are 

different. 

Jaccard Distance 

JD(A,B) = 1- JS(A,B), where JS(A,B) = (|A B|/|A B|). A and B are two generic 

sets. For string data, JS(A,B) = number of shared tokens/total number of tokens. 

For vector data, JS(A,B)=number of matching cells/total number of cells. 

 

 

E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 

 πA[GAd, GAu, AAu, FAAd, CNT] g [GAd, GAu]σ[Cu]  

 (((Fd1[AAd], COUNT)πA[NGAd, GAd+, AAd] g [NGAd]σ[Cd]Rd’)    Ru’), 

because of the eager and lazy aggregation main theorem for regular operators. 

3. E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 

 πA[GAd, GAu, AAu, FAAd, CNT] g [GAd, GAu]σ[Cu]  

 (((Fd1[AAd], COUNT)πA[NGAd, GAd+, AAd] g [NGAd]σ[Cd]Rd’)    Ru’), 

is equivalent to: 

E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 

  πA[GAd, GAu, AAu, FAAd, CNT] g [GAd, GAu]σ[Cu]  

  (((Fd1[AAd], COUNT)πA[NGAd, GAd+, AAd] g [NGAd]σ[Cd]Rd’)  ̃   Ru’), 

since the grouping operation before the join merges only tuples that share the same value of 

Rd’.C0d, and P2.                                                                                                                                

PROOF SKETCH OF THEOREM 3. The validity of this theorem relies on the validity of Theorem 1 and 

Theorem 2.                                                                                                                                                   

C. DEFINITION OF COMMON DISTANCE FUNCTIONS 

Table VI shows the definition of common distance functions. 


