
1

 TECHNICAL REPORT

SIMILARITY QUERIES - TRANSFORMATION RULES AND PROOFS

YASIN N. SILVA, Arizona State University, ysilva@asu.edu

WALID G. AREF, Purdue University, aref@cs.purdue.edu

PER-AKE LARSON, Microsoft Research, palarson@microsoft.com

SPENCER S. PEARSON, Arizona State University, sspearso@asu.edu

MOHAMED H. ALI, Microsoft Corporation, mali@microsoft.com

School of Mathematical and Natural Sciences

Arizona State University

September 10, 2012

2

A. TRANSFORMATION RULES FOR SIMILARITY-AWARE OPERATORS

Combining/Separating Similarity Selection Predicates

R1.

(
).

R2.

(
).

R3.

(
).

R4.

(
).

Combining/Separating Similarity Join and Similarity Selection

When the selection predicate attribute is the inner attribute in the join predicate:

R5.

 .

R6.

 .

R7.

 .

R8.

 .

R9.

 .

R10.

 .

R11.

 .

R12.

 .

R13.

 .

R14.

 .

R15.

 .

R16.

 .

R17.

 .

R18.

 .

R19.

 .

When the selection predicate attribute is the outer attribute in the join predicate:

R20.

 .

R21.

 .

R22.

 .

R23.

 .

R24.

 .

R25.

 .

R26.

 .

R27.

 .

R28.

 .

R29.

 .

R30.

 .

R31.

 .

Combining/Separating Similarity Join Predicates

When the attributes in the predicates have a single direction (e1→e2, e2→e3):

R32.

 .

R33.

 .

R34.

 .

3

R35.

 .

R36.
 .

R37. .

R38.
 .

R39. .

R40. .

R41.

 .

R42.
 .

R43. .

R44. .
R45. .

R46. .

When the predicates’ attributes do not have a single direction (e1→e2, e2 ←e3):

R47.

 .

R48.

 .

R49.

 .

R50.

 .

R51.

 .

R52. .
R53.

 .

R54. .
R55.

 .

R56. .
R57. .

R58.

 .

R59.

 .

R60. .
R61.

 .
R62. .

R63. .
R64. .

R65. .

Commutativity of Similarity Join Operators

R66. .
R67. .

R68. .

R69. .

Distribution of Selection over Similarity Join

When all the attributes of the selection predicate θ involve only the attributes of one of the

relations being joined:

R70. () .

R71. () .

R72. () .

R73. () .

R74. () .

4

R75. () .

R76. () .

R77. () .

When predicates θ1 and θ2 involve only the attributes of E and F, respectively:

R78. ()
 .

R79. ()

 .

R80. ()

 .

R81. ()

 .

Distribution of Similarity Selection over Join

R82.
()

 .

R83.
()

 .

R84.
()

 .

R85.
()

 .

Distribution of Similarity Selection over Similarity Join

R86.
()

 .

R87.
()

 .

R88.
()

 .

R89.
()

 .

R90.
()

 .

R91.
() .

R92.
()

 .

R93.
()

 .

R94.
()

 .

R95.
()

 .

R96.
()

 .

R97.
()

 .

R98.
()

 .

R99.
()

 .

R100.
()

 .

R101.
()

 .

Associativity of Similarity Join Operators

When the attributes in the predicates have a single direction (e→f, f→g):

R102. () .

R103. () .

R104. () .

R105. () .

When the predicates’ attributes do not have a single direction (e→f, f←g):

R106. () .

R107. () .

5

R108. () .

R109. () .

Applying Selection with a SJ predicate over Cross Product

R110. .
R111. .
R112. .

R113. .

Rules that Take Advantage of Distance Function Properties

Pushing Selection Predicate under Originally Unrelated Ɛ-Join Operand.

R114. () .

Ɛ-Selection Predicate under Originally Unrelated Ɛ-Join Operand.

R115.
()

 .

Associativity Rule that Enables Join on Originally Unrelated Attributes.

R116. () () .

Eager and Lazy Transformations with SJ and SGB

Eager and Lazy Transformations with SGB and Join:

R117. The Eager and Lazy transformations can be extended to the case of SGB and regular join as shown in
Theorem 1 (Section 4.4.1).

Eager and Lazy Transformations with Group-by and SJ:

R118. The Eager and Lazy aggregation transformations can be extended to the case of SJ and group-by as
shown in Theorem 2 (Section 4.4.2).

Eager and Lazy Transformations with SGB and SJ:

R119. The Eager and Lazy Aggregation transformations can be extended to the case of SJ and SGB as
shown in the Theorem 3 (Section 4.4.3).

Pushing Similarity Predicate from Join-Around to Group-by:

R120. The similarity predicate of the Join-Around can be completely pushed down to a grouping operator
as specified in Section 4.4.4.

Pushing Similarity Predicate from Ɛ-Join to Group-by:

R121. The similarity predicate of the Ɛ-Join can be partially pushed down to a grouping operator as
specified in Section 4.4.5.

Distribution of Selection and Similarity Selection over SGB (SGB-U, SGB-A, SGB-D)

R122. .

R123. .

R124. .

Distribution of Similarity Selection over U, ∩ and –

R125.

 .

6

R126.

 .

R127.

 .

R128.

 .

R129.

 .

R130.

 .

R131.

 .

R132.

 .

R133.

 .

R134.

 .

R135.

 .

R136.

 .

Distribution of Projection over Similarity Join

If involves only attributes of , and additionally for k-based operations,

and :

R137. () .

R138. () .

R139. () .

R140. () .

If and are sets of attributes from and , respectively; contains attributes that are

involved in the join predicate but are not in ; contains attributes that are involved in the

join predicate but are not in and additionally for k-based operations,

 ; and :

R141. () .

R142. () .

R143. () .

R144. () .

7

σ

σ

E

S

S

θε,C1(e)

θkNN,C2(e)

σ

E

S
θε,C1(e) ∩

θkNN,C2(e)

≡

σ

σ

E

S

S

θε,C1(e)

θkNN,C2(e)
≡σS

∩

σ
S

E E

θε,C1(e) θkNN,C2(e)

e

ε

ε

tE

A

A

BC1

C2
D

C
kNN

Fig. 44. Combining Ɛ-Selection and kNN-Selection (R2) – Proof

B. ADDITIONAL PROOFS

PROOF SKETCH OF RULE R2. Consider a generic tuple tE of E. We will show that for any possible value of

tE, the results generated by the plans of both sides of the rule are the same. The top part of Fig. 44

gives a graphical representation of Rule R2. Using the conceptual evaluation order of similarity

queries, we can transform the left part of the rule to an equivalent expression that uses the

intersection operation as represented in the middle part of Fig. 44. We will use this second version of

the rule in the remaining part of the proof. The bottom part of Fig. 44 gives the different possible

regions for the value of tE.e. Note that the region marked as kNN, which comprises regions C and D,

represents the region that contains the kNN closest neighbors of C2.

1. When the value of tE.e belongs to A. In the LHS plan, tE is not selected in any of the selection

operators since it does not satisfy any of the Similarity Selection predicates. Thus, no output

is generated by this plan. In the RHS plan, tE is filtered out by the kNN-Selection. No tuple

flows to the Ɛ-Selection. Thus, no output is generated by this plan either.

2. When the value of tE.e belongs to B. In the LHS plan, tE is selected in the Ɛ-Selection but not

in the kNN-Selection. The intersection operator does not produce any output and

consequently no output is generated by this plan. In the RHS plan, tE is filtered out by the

kNN-Selection. No tuple flows to the Ɛ-Selection. Thus, no output is generated by this plan

either.

3. When the value of tE.e belongs to C. In the LHS plan, tE is selected by both Similarity

Selection operators. Consequently, tE belongs to the output of the intersection operator. tE

belongs to the output of the LHS plan. In the RHS plan, tE is selected by the kNN-Selection. tE

is also selected by the Ɛ-Selection. Thus, tE also belongs to the output of the RHS plan.

4. When the value of tE.e belongs to D. In the LHS plan, tE is selected in the kNN-Selection but

not in the Ɛ-Selection. The intersection operator does not produce any output and

consequently no output is generated by this plan. In the RHS plan, tE is selected by the kNN-

Selection but filtered out by the Ɛ-Selection. Thus, no output is generated by this plan either.
 

8

≡

E

θε1(e1,e2)

∩ θε2,C(e2)
σ

S

σ
S

E

θε2,C(e2)σ
S

θε1(e1,e2)

≡

σ
S

E

θε2,C(e2)σ
S

θε1(e1,e2)

σS

∩

σ
S

E E

θε1(e1,e2) θε2,C(e2)

e2

ε2

ε2
C

e1
A

A

B

D

M

tE2

tE1
ε1

ε1

Fig. 45. Combining Ɛ-Join and Ɛ-Selection (R5) – Proof

PROOF SKETCH OF RULE R5. Assume that θƐ1(e1,e2) is defined over relations E1 and E2, and that the

input relation E is the cross product of all the relations involved in the similarity-aware predicates,

i.e., E = E1 x E2. Furthermore, assume that the join attributes are E1.e1 and E2.e2. Consider a generic

tuple tE1 of E1. We will show that for any possible pair (tE1,tE2), where tE2 is a tuple of E2, the results

generated by the plans of both sides of the rule are the same (we consider the first equivalence of

R5). The top part of Fig. 45 gives a graphical representation of Rule R5. Using the conceptual

evaluation order of similarity queries, we can transform the left part of the rule to an equivalent

expression that uses the intersection operation as represented in the middle part of Fig. 45. We will

use this second version of the rule in the remaining part of the proof. The bottom part of Fig. 45 gives

the different possible regions for the value of tE2.e2.

1. When the value of tE2.e2 belongs to A. In the LHS plan, the pair (tE1,tE2) is not selected in any

similarity-aware operator since it does not satisfy any of their predicates. Thus, no output

is generated by this plan. In the RHS plan, (tE1,tE2) is filtered out by the bottom selection since

dist(tE2.e2 ,C)>Ɛ2. No tuple flows to the top operator. Thus, no output is generated by this plan

either.

2. When the value of tE2.e2 belongs to B. In the LHS plan, the pair (tE1,tE2) is selected in the left

Similarity Selection but not in the right one. The intersection operator does not produce any

output and consequently no output is generated by this plan. In the RHS plan, (tE1,tE2) is

filtered out by the bottom selection since dist(tE2.e2 ,C)>Ɛ2. No tuple flows to the top operator.

Thus, no output is generated by this plan either.

3. When the value of tE2.e2 belongs to M. In the LHS plan, the pair (tE1,tE2) is selected in both

similarity-aware operators. Consequently, (tE1,tE2) belongs to the output of the intersection

operator. (tE1,tE2) belongs to the output of the LHS plan. In the RHS plan, (tE1,tE2) is selected

by the bottom selection since dist(tE2.e2,C)≤Ɛ2. (tE1,tE2) is also selected by the top selection since

dist(tE1.e1,tE2.e2)≤Ɛ1. Thus, the pair (tE1,tE2) belongs also to the output of the RHS plan.

When the value of tE2.e2 belongs to D. In the LHS plan, the pair (tE1,tE2) is selected in the

right Similarity Selection but not in the left one. The intersection operator does not produce

any output and consequently no output is generated by this plan. In the RHS plan, (tE1,tE2) is

selected in the bottom selection since dist(tE2.e2 ,C)≤Ɛ2 but it is filtered out by the top

selection. Thus, no output is generated by this plan either. 

9

≡

E

θε1(e1,e2) ∩

θε2(e2,e3)σ
S

σ
S

E

θε2(e2,e3)

σ
S

θε1(e1,e2)

≡

σ
S

E

θε2(e2,e3)

σ
S

θε1(e1,e2)σS

∩

σ
S

E E

θε1(e1,e2) θε2(e2,e3)

e3e2

A

e1

ε1

ε1

ε2

ε2

A

B D

C

C

tE1
tE2

tE3

Fig. 46. Combining/separating two Ɛ-Join predicates (R32) – Proof

PROOF SKETCH OF RULE R32. Assume that θƐ1(e1,e2) is defined over relations E1 and E2, and θƐ2(e2,e3)

over relations E2 and E3. Assume also that the input relation E is the cross product of all the

relations involved in the similarity-aware predicates, i.e., E = E1 x E2 x E3. Furthermore, assume

that the join attributes in θƐ1 are E1.e1 and E2.e2, and in θƐ2 are E2.e2 and E3.e3. Consider a generic

tuple tE1 of E1. We will show that for any possible triplet (tE1,tE2,tE3), where tE2 is a tuple of E2, and

tE3 is a tuple of E3, the results generated by the plans of both sides of the rule are the same (we

consider the equivalence between the first and third components of R32). The top part of Fig. 46

gives a graphical representation of Rule R32. Using the conceptual evaluation order of similarity

queries, we can transform the left part of the rule to an equivalent expression that uses the

intersection operation as represented in the middle part of Fig. 46. We will use this second version of

the rule in the remaining part of the proof. The bottom part of Fig. 46 gives the different possible

regions for the values of tE2.e2 and tE3.e3. Note that the regions for tE3.e3 have been specified based on

a generic tuple tE2 with tE2.e2 in region B.

1. When the value of tE2.e2 belongs to A. In the LHS plan, the triplet (tE1,tE2,tE3) is not selected in

any similarity-aware operator since it does not satisfy any of their predicates. Thus, no output

is generated by this plan. In the RHS plan, (tE1,tE2,tE3) is filtered out by the bottom selection

since dist(tE1.e1,tE2.e2)>Ɛ1. No tuple flows to the top operator. Thus, no output is generated by

this plan either.

2. When the value of tE2.e2 belongs to B and the value of tE3.e3 belongs to C. In the LHS plan, the

triplet (tE1,tE2,tE3) is selected in the left Similarity Selection since dist(tE1.e1,tE2.e2)≤Ɛ1 but not

in the right one since dist(tE2.e2,tE3.e3)>Ɛ2. The intersection operator does not produce any

output and consequently no output is generated by this plan. In the RHS plan, (tE1,tE2,tE3) is

selected in the bottom selection since dist(tE1.e1,tE2.e2)≤Ɛ1 but it is filtered out by the top

selection since dist(tE2.e2,tE3.e3)>Ɛ2. Thus, no output is generated by this plan either.

3. When the value of tE2.e2 belongs to B and the value of tE3.e3 belongs to D. In the LHS plan, the

triplet (tE1,tE2,tE3) is selected in both similarity-aware operators since dist(tE1.e1,tE2.e2)≤Ɛ1 (left)

and dist(tE2.e2,tE3.e3)≤Ɛ2 (right). Consequently, (tE1,tE2,tE3) belongs to the output of the

intersection operator. (tE1,tE2,tE3) belongs to the output of the LHS plan. In the RHS plan,

(tE1,tE2,tE3) is selected by the bottom selection since dist(tE1.e1,tE2.e2)≤Ɛ1. (tE1,tE2,tE3) is also

selected by the top selection since dist(tE2.e2,tE3.e3)≤Ɛ2. Thus, (tE1,tE2,tE3) also belongs to the

output of the RHS plan. 

10

E

S

F

S

G F

S

G

S

E

θkNN1(e,f)

θkNN2(f,g)

θkNN2(f,g)

θkNN1(e,f)

≡

gf

A

e

kNN1

A

B D

C

C

kNN2tE tF

tG

Fig. 47. Associativity of kNN-Join operators - when attributes in predicates have a single direction:

e1→e2, e2→e3 (R103) –Proof

PROOF SKETCH OF RULE R66. In the LHS expression of the equivalence, all the join links satisfy

dist(e1,e2) ≤ Ɛ. Given that the distance function dist is symmetric, dist(e1,e2)=dist(e2,e1). Thus, the

condition dist(e2,e1) ≤ Ɛ in the LHS expression will produce the same set of join links. 

PROOF SKETCH OF RULE R103. Assume that the join attributes in θkNN1 are E.e and F.f and the join

attributes in θkNN2 are F.f and G.g. Consider a generic tuple tE of E. We will show that for any

possible triplet (tE,tF,tG), where tF is a tuple of F and tG is a tuple of G, the results generated by the

plans of both sides of the rule are the same. The top part of Fig. 47 gives a graphical representation

of Rule R103. The bottom part of this figure gives the different possible regions for the values of tF.f

and tG.g. Note that the regions for tG.g have been specified based on a generic tuple tF with tF.f in

region B. The region marked as kNN1 represents the segment that contains the kNN1 closest

neighbors of tE in F. The region marked as kNN2 represents the segment that contains the kNN2

closest neighbors of tF in G. Note that for a given kNN-Join (θkNN1 or θkNN2) and a given outer tuple t,

the join identifies the same set of k nearest neighbors of t in both plans. This is the case since (i)

kNN-Join over R1 and R2 makes use of primary keys in both input relations (R1.pk1, R2.pk2) and

ignores tuples in R2 that have the same primary key, and (ii) the set of different values of R2.pk2 in

the inner input of both plans is the same. Furthermore, note that the set of different values of R2.pk2

in the inner input of both plans corresponds to the set of all different values of R2.pk2 in the base

relation R2.

1. When the value of tF.f belongs to B and the value of tG.g belongs to D. In the LHS plan, the

pair (tE,tF) belongs to the output of the bottom kNN-Join (θkNN1) since tF is one of the kNN1

closest neighbors of tE in F. (tE,tF) flows to the top kNN-Join. The triplet (tE,tF,tG) belongs also

to the output of the top kNN-Join (θkNN2) since tG is one of the kNN2 closest neighbors of tF in

G. Consequently, (tE,tF,tG) belongs to the output of the LHS plan. In the RHS plan, (tF,tG)

belongs to the output of the bottom kNN-Join (θkNN2) since tG is one of the kNN2 closest

neighbors of tF in G. The triplet (tE,tF,tG) belongs also to the output of the top kNN-Join (θkNN1)

since tF is one of the kNN1 closest neighbors of tE in F. Thus, (tE,tF,tG) belongs also to the

output of the RHS plan. Note that in the RHS plan, the bottom join (θkNN2) matches each inner

tuple of F to its closest kNN2 neighbors in G. The output of this join will contain all the values

of F.pk2 (the primary key of F) in the base relation F. Consequently, the set of all different

values of F.pk2 in the inner input of θkNN1 is the same in both plans. Therefore, for a given

inner tuple t, the join θkNN1 will find the same set of kNN1 nearest neighbors of t in both

plans.

2. When the value of tF.f belongs to B and the value of tG.g belongs to C. In the LHS plan, the

pair (tE,tF) belongs to the output of the bottom kNN-Join (θkNN1) since tF is one of the kNN1

11

closest neighbors of tE in F. (tE,tF) flows to the top kNN-Join. However, the triplet (tE,tF,tG)

does not belong to the output of the top kNN-Join (θkNN2) since tG is not one of the kNN2

closest neighbors of tF in G. Consequently, no output is generated by this plan. In the RHS

plan, (tF,tG) does not belongs to the output of the bottom kNN-Join (θkNN2) since tG is not one of

the kNN2 closest neighbors of tF in G. No tuple flows to the top join. Thus, no output is

generated by this plan either.

3. When the value of tF.f belongs to A. In the LHS plan, the pair (tE,tF) does not belongs to the

output of the bottom kNN-Join (θkNN1) since tF is not one of the kNN1 closest neighbors of tE in

F. No tuple flows to the top join. Consequently no output is generated by this plan. In the

RHS plan, (tF,tG) may or may not belong to the output of the bottom kNN-Join (θkNN2).

However, any triplet (tE,tF,tG) does not belong to the output of the top kNN-Join (θkNN1) since tF

is not one of the kNN1 closest neighbors of tE in F. Thus, no output is generated by this plan

either. 

PROOF SKETCH OF RULE R115 (GR15). Note that pushing Ɛ-Selection under the outer input of the Ɛ-Join

has been already studied in Rule R86. We focus here on the validity of pushing the Ɛ-Selection

operation under the inner input of the Ɛ-Join. Assume that the selection predicate θƐ1,C(e) is dist(e,C)

≤ Ɛ1 and the join predicate θƐ2(e,f) is dist(e,f) ≤ Ɛ2.

1. Due to Triangular Inequality, dist(f,C) ≤ dist(f,e) + dist(e,C).

2. Due to Commutativity, we have that dist(f,C) ≤ dist(e,f) + dist(e,C).

3. Using in (2) the fact that dist(e,f) ≤ Ɛ2, dist(f,C) ≤ Ɛ2 + dist(e,C).

4. Using in (3) the fact that dist(e,C) ≤ Ɛ1, dist(f,C) ≤ Ɛ1 + Ɛ2.

The expression in (4) dist(f,C) ≤ Ɛ1 + Ɛ2 represents an Ɛ-Selection predicate that can be applied on

f. This predicate is in fact the predicate being applied on f in the inner input of the RHS part of Rule

R115. 

PROOF SKETCH OF RULE R116 (GR16). Assume that in the LHS part of Rule R116, the join predicate

θƐ1(e,f) is dist(e,f) ≤ Ɛ1, and the join predicate θƐ2(f,g) is dist(f,g) ≤ Ɛ2. The order of attributes in these

expressions is irrelevant because the distance function is Commutative.

1. Due to Triangular Inequality, dist(e,g) ≤ dist(e,f)+dist(f,g).

2. Since dist(e,f) ≤ Ɛ1 and dist(f,g) ≤ Ɛ2, dist(e,g) ≤ Ɛ1+Ɛ2.

The expression in (2) dist(e,g) ≤ Ɛ1+Ɛ2 represents a join predicate that can be applied on e and g.

This predicate is in fact the predicate being applied on e and g in the left join of the RHS part of Rule

R116. Note that the RHS part of the rule requires a second join that applies the two join predicates

of the LHS part because some tuples that do not satisfy these predicates can be present in the output

of the join between e and g. 

PROOF SKETCH OF THEOREM 1. Consider a group Gd generated by g [NGAd, Segd]σ[Cd]rd for some

instance rd of Rd. Due to conditions (iii) and (iv), all the rows of Gd have the same values of GAd and

the joining attributes. Every tuple of Gd joins with the same set of tuples SAu(Gd). Let Su(Gd) be the

subset of SAu(Gd) that has a unique value of GAu. Consider two groups of g [NGAd, Segd]σ[Cd]rd: Rd1

and Rd2. There are two cases to be considered.

Case 1: Gd1[GAd] ~ Gd2[GAd] and Su(Gd1)[GAu] ~ Su(Gd2)[GAu]. In E2, the results of the join

operations represented by the following two expressions are merged into the same similarity group

by the second SGB.

1. ((Fd1[AAd], COUNT)π[NGAd, GAd+, AAd]Gd1) × Su(Gd1).

2. ((Fd1[AAd], COUNT)π[NGAd, GAd+, AAd]Gd2) × Su(Gd2).

12

In E1, each row of Gd1 and Gd2 joins with Su(Gd1) and Su(Gd2) respectively and all the resulting

rows are also merged by the second SGB. Due to condition (i), the aggregation values in the resulting

row of the following expressions in E1 and E2 respectively are the same.

3. Fd[AAd]πA[GAd,GAu,AAd] ((Gd1 × Su(Gd1)) (Gd2 × Su(Gd2))).

4. Fd2[FAAd]πA[GAd,GAu,FAAd](((Fd1[AAd]πA[NGAd, GAd+, AAd]Gd1) × Su(Gd1))

 ((Fd1[AAd]πA[NGAd, GAd+, AAd]Gd2) × Su(Gd2)).

Due to condition (ii), the aggregation values in the resulting row of the following expressions in E1

and E2, respectively, are the same.

5. Fu[AAu]πA[GAd,GAu,AAu] ((Gd1 × Su(Gd1)) (Gd2 × Su(Gd2))).

6. Fua[AAu,CNT]πA[GAd,GAu, AAu, CNT](((COUNT πA[NGAd, GAd+]Gd1) × Su(Gd1))

 ((COUNT πA[NGAd, GAd+]Gd2) × Su(Gd2)).

Case 2: Gd1[GAd] !~ Gd2[GAd] or Su(Gd1)[GAu] !~ Su(Gd2)[GAu]. In E2, the results of the join

operations represented by (1) and (2) are not merged into the same similarity group by the second

SGB. In E1, each row of Gd1 and Gd2 joins with Su(Gd1) and Su(Gd2), respectively, but the resulting

rows are not merged by the second SGB. Due to condition (i), the aggregation values in the resulting

row of the following expressions in E1 and E2, respectively, are the same.

7. Fd[AAd]πA[GAd,GAu,AAd](Gd1 × Su(Gd1)).

8. Fd2[FAAd]πA[GAd,GAu,FAAd]((Fd1[AAd]πA[NGAd, GAd+, AAd]Gd1) × Su(Gd1)).

Due to condition (ii), the aggregation values in the resulting row of the following expressions in E1

and E2, respectively, are the same.

9. Fu[AAu]πA[GAd,GAu,AAu] ((Gd1 × Su(Gd1)).

10. Fua[AAu,CNT]πA[GAd,GAu, AAu, CNT]((COUNT πA[NGAd, GAd+]Gd1) × Su(Gd1)). 

PROOF SKETCH OF THEOREM 2. The validity of this theorem relies on the following properties.

P1. Given Rd' and Ru' instances of Rd and Ru respectively, the result of (Rd' ̃ Ru') is equivalent

to the result of (Rd' Ru') where θ = disjunction of (Rd.C0d=x Ru.C0u=y) for every different

link (x,y) of the result of (Rd' ̃ Ru').

P2. θ, as defined in P1, remains unchanged and valid when Rd' is augmented with tuples that

have already present values of Rd'.C0d, i.e., duplicates, or when such tuples are removed from

Rd'.

The validity of this theorem can be shown by following these steps:

For every Rd’ and Ru’ instances of Rd and Ru, respectively,

1. E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] g [GAd, GAu]σ[Cd Cu] (Rd’ ̃ Ru’),

is equivalent to:

E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] g [GAd, GAu]σ[Cd Cu] (Rd’ Ru’),

where θ is defined as in P1.

2. E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] g [GAd, GAu]σ[Cd Cu] (Rd’ Ru’),

is equivalent to:

13

Table VI. Common distance functions

Distance Function Definition

p-norm Distance

p-norm distance of two vectors (x1, x2, ...,xn) and (y1, y2, ...,yn) is defined as:

1-norm distance =

∑| |

2-norm distance =

(∑| |

)

p-norm distance =

(∑| |

)

infinity-norm distance =

(∑| |

)

Cosine Distance 1
CD1(A,B) = 1 - CS(A,B), where A and B are vectors and CS(A,B) is the Cosine

Similarity. CS(A,B) = (A·B)/(ǁAǁǁBǁ)

Cosine Distance 2 CD2(A,B) = arccos(CS(A,B))

Discrete Metric Function DM(x,y) = 0 if x = y, 1 otherwise, where x and y are numbers.

Longest Common Subsequence LCS(X,Y) = longest subsequence common to strings or time series X and Y.

Edit Distance with Equal Weights

ED(X,Y) = minimum number of operations needed to transform string X into

string Y. Allowed operations: insertion, deletion, and substitution of a single

character.

Edit Distance with Different

Weights

ED(X,Y) = min(w(E)), where E is a sequence of edit operations that transforms

string X into string Y, and w is a weight function that assigns a nonnegative real

number w(x, y) to each elementary edit operation.

Hamming Distance HD(X,Y) = number of positions in which the characters of strings X and Y are

different.

Jaccard Distance

JD(A,B) = 1- JS(A,B), where JS(A,B) = (|A B|/|A B|). A and B are two generic

sets. For string data, JS(A,B) = number of shared tokens/total number of tokens.

For vector data, JS(A,B)=number of matching cells/total number of cells.

E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT] g [GAd, GAu]σ[Cu]

 (((Fd1[AAd], COUNT)πA[NGAd, GAd+, AAd] g [NGAd]σ[Cd]Rd’) Ru’),

because of the eager and lazy aggregation main theorem for regular operators.

3. E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT] g [GAd, GAu]σ[Cu]

 (((Fd1[AAd], COUNT)πA[NGAd, GAd+, AAd] g [NGAd]σ[Cd]Rd’) Ru’),

is equivalent to:

E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT] g [GAd, GAu]σ[Cu]

 (((Fd1[AAd], COUNT)πA[NGAd, GAd+, AAd] g [NGAd]σ[Cd]Rd’) ̃ Ru’),

since the grouping operation before the join merges only tuples that share the same value of

Rd’.C0d, and P2. 

PROOF SKETCH OF THEOREM 3. The validity of this theorem relies on the validity of Theorem 1 and

Theorem 2. 

C. DEFINITION OF COMMON DISTANCE FUNCTIONS

Table VI shows the definition of common distance functions.

