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Abstract

Cloud enabled systems have become a crucial component to efficiently process
and analyze massive amounts of data. One of the key data processing and
analysis operations is the Similarity Join, which retrieves all data pairs whose
distances are smaller than a predefined threshold ε. Even though multiple algo-
rithms and implementation techniques have been proposed for Similarity Joins,
very little work has addressed the study of Similarity Joins for cloud systems.
This paper focuses on the study, design and implementation techniques of cloud-
based Similarity Joins. We present MRSimJoin, a MapReduce based algorithm
to efficiently solve the Similarity Join problem. This algorithm efficiently parti-
tions and distributes the data until the subsets are small enough to be processed
in a single node. The proposed algorithm is general enough to be used with data
that lies in any metric space. The algorithm can also be used with multiple data
types, e.g., numerical data, vector data, text, etc. We present multiple guide-
lines to implement the algorithm in Hadoop, a highly used open-source cloud
system. The extensive experimental evaluation of the implemented operation
shows that it has very good execution time and scalability properties.



1 Introduction

Similarity Join is one of the most useful data processing and analysis opera-
tions. It retrieves all data pairs whose distances are smaller than a predefined
threshold ε. Similarity Joins have been studied and extensively used in multiple
application domains, e.g., record linkage, data cleaning, multimedia applica-
tions, sensor networks, marketing analysis, etc. Multiple application scenarios
need to perform this operation over large amounts of data. Internet companies,
for instance, collect massive amounts of data such as content produced by web
crawlers, service logs, click streams, and so on, and can use similarity queries
to gain valuable understanding of the use of their services, e.g., identify cus-
tomers with similar buying patterns, generate recommendations, perform corre-
lation analysis, etc. Cloud systems and MapReduce [7], its main framework for
distributed processing, constitute an answer to the requirements of processing
massive amounts of data in a highly scalable and distributed fashion. Cloud
systems are composed of large clusters of commodity machines and are often
dynamically scalable, i.e., cluster nodes can be added or removed based on the
workload. The MapReduce framework quickly processes massive datasets by
splitting them into independent chunks that are processed in a highly parallel
fashion.

Multiple Similarity Join algorithms and implementation techniques have
been proposed. They range from approaches for only in-memory or external
memory data to techniques that make use of database operators to answer Sim-
ilarity Joins. Unfortunately, there has not been much work on the study of this
operation on cloud computing systems. This paper focuses on the study, de-
sign and implementation techniques of MapReduce-based Similarity Joins. The
main contributions of our work are:

• We present MRSimJoin, a MapReduce-based algorithm, that efficiently
solves the Similarity Join problem. MRSimJoin extends the previously
proposed single-node QuickJoin algorithm [16] by adapting it to the MapRe-
duce framework and integrating grouping, sorting and parallelization tech-
niques.

• The proposed algorithm is general enough to be used with any dataset that
lies in a metric space. The algorithm can be used with various distance
functions and data types e.g., numerical data, vector data, text, etc.

• We present multiple guidelines to implement the algorithm in Hadoop [1],
a highly used open-source cloud system.

• We thoroughly evaluate the performance and scalability properties of the
implemented operation with synthetic and real-world data. We show that
MRSimJoin performs significantly better than an adaptation of the state-
of-the-art MapReduce Theta-Join algorithm [19] (up to 15 times faster).
MRSimJoin scales very well when important parameters like epsilon, data
size, number of nodes, and number of dimensions increase.
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• Our experimental analysis considers important aspects of the algorithm
that were not covered in the QuickJoin paper. Particularly, we study
the effect of the number of pivots on the execution time and provide an
expression to compute a good value for this parameter.

The remaining part of this paper is organized as follows. Section 2 presents
the related work. Section 3 describes in detail the MRSimJoin algorithm and
the enhancements for the case of Euclidean distance. Section 4 describes the
guidelines to implement MRSimJoin in Hadoop. The performance evaluation
of the implemented Similarity Join operation is studied in Section 5. Section 6
presents the conclusions and future research directions.

2 Related Work

Most of the work on Similarity Join has considered the case of non-distributed
solutions. This previous work introduced the semantics of different types of
Similarity Joins and proposed techniques to implement them primarily as stan-
dalone operations. Several types of Similarity Join have been proposed in the
literature, e.g., distance range join (retrieves all pairs whose distances are smaller
than a predefined threshold ε) [11, 10, 3, 9, 16], k-Distance join (retrieves the k
most-similar pairs) [14], and kNN-join (retrieves, for each tuple in one dataset,
the k nearest-neighbors in another one) [4]. The distance range join is one of the
most studied and useful types of Similarity Joins. This type of join is commonly
referred to simply as Similarity Join and is also the focus of this paper. Among
its most relevant implementation techniques, we find approaches that rely on the
use of pre-built indices, e.g., eD-index [11] and D-index [10]. These techniques
strive to partition the data while clustering together the similar objects. Several
non-index-based techniques have also been proposed to solve the Similarity Join
problem, e.g., EGO [3], GESS [9] and QuickJoin [16]. The Quickjoin algorithm
[16], which has been shown to outperform EGO and GESS, recursively partitions
the data until the subsets are small enough to be efficiently processed using a
nested loop join. The algorithm makes recursive calls to process partitions and
the windows around the partitions’ boundaries. The MRSimJoin approach pre-
sented in this paper extends the single-node QuickJoin algorithm by adapting
it to the distributed MapReduce framework and integrating grouping, sorting
and parallelization techniques (physical partitioning and distribution of data in
a computer cluster). MRSimJoin uses a similar way to logically partition the
data into partitions and windows. MRSimJoin also makes use of the QuickJoin
algorithm to solve the Similarity Join in a single node when the data is small
enough. Also of importance is the work on Similarity Join techniques in the
context of database systems. Some work has focused on the implementation of
Similarity Joins using standard database operators [5, 13]. These techniques are
applicable only to string or set-based data. The general approach pre-processes
the data and query, e.g., decomposes data and query strings into sets of grams
(substrings of a string that are used as its signature), and stores the results of
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this stage on separate relational tables. Then, the result of the Similarity Join
can be obtained using standard SQL statements. More recently, Similarity Joins
have been proposed and studied as first-class database operators [23, 22]. This
work proposes techniques to implement and optimize Similarity Joins inside
database query engines.

The MapReduce framework was introduced in [7]. The Map-Reduce-Merge
variant [26] extends the MapReduce framework with a merge phase after the
reduce stage to facilitate the implementation of operations like join. Map-Join-
Reduce [17] is another MapReduce variant that adds a join stage before the
reduce stage. In this approach, mappers read from input relations, the output
of mappers is distributed to joiners where the actual join task takes place, and
the output of joiners is processed by the reducers.

Most of the previous work on MapReduce-based Joins consider the case of
equi-joins. The two main types of MapReduce-based joins are Map-side joins
and Reduce-side joins. Among the Map-side joins we have Map-Merge [25] and
Broadcast Join [2, 6]. The Map-Merge approach [25] has two steps: in the
first one, input relations are partitioned and sorted, and in the second one,
mappers merge the intermediate results. The Broadcast Join approach [2, 6]
considers the case where one of the relations is small enough to be sent to all
mappers and maintained in memory. The overall execution time is reduced by
avoiding sorting and distributing on both input relations. Repartition join [25]
is the most representative instance of Reduce-side joins. In this approach, the
mappers augment each record with a label that identifies the relations where it
comes from. All the records that have the same join attribute value are sent to
the same reducer. Reducers in turn produce the join pairs.

Recently, a MapReduce-based approach was proposed to implement Theta-
joins [19]. This previous work proposed a randomized algorithm that requires
some basic statistics (input cardinality). The approach proposes a model that
partitions the input relations using a matrix that considers all the combinations
of records that would be required to answer a cross product. The matrix cells
are then assigned to reducers in a way that minimizes job completion time. A
memory-aware variant is also proposed for the common scenario where parti-
tions do not fit in memory. This previous work represents the state-of-the-art
approach to answer arbitrary joins in MapReduce. In this paper, we compare
MRSimJoin with an adaptation of the memory-aware algorithm in [19] to an-
swer Similarity Joins and show that MRSimJoin performs significantly better,
i.e., the execution time of MRSimJoin is up to 15 times faster.

To the best of our knowledge, the only work that specifically addresses the
problem of Similarity Joins in the context of cloud systems is the one presented
in [24]. The work in [24], however, focuses on the study of a different and more
specialized type of Similarity Join (Set-Similarity Join) which constrains its
applicability to set-based data. The main differences between the work in [24]
and the work in this paper are: (1) we consider the case of the most extensively
used type of Similarity Join (distance range join), and (2) our approach can be
used with data that lies in any metric space, i.e., our approach can be used with
a wide variety of data types and distance functions.
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A comparison of the MapReduce framework and parallel databases is pre-
sented in [20]. Multiple parallel join algorithms have been proposed in the
context of parallel databases, e.g., [18, 21, 8]. The work in [18] presents a com-
parison of several hash-based and sort-merge-based parallel join algorithms. A
hash-based algorithm to address the case of data skew is presented in [21]. The
algorithm dynamically allocates partitions to the processing units with the goal
of assigning the same data volume to each unit. Our work bears some basic
resemblance with the partitioning-based parallel join algorithm in [8]. However,
the work in [8] focuses on the simple case of band joins with 1D numerical data.

3 Similarity Joins Using MapReduce

This section presents some preliminary information about MapReduce, describes
in detail the MRSimJoin algorithm to solve the Similarity Join problem in a
parallel manner and presents the modifications to improve the algorithm’s per-
formance for the case of Euclidean distance.

3.1 A Quick Introduction to MapReduce

MapReduce is the the main software framework for distributed processing over
cloud systems [7]. This framework is able to quickly process massive amounts
of data and works by dividing the processing task into two phases: map and
reduce. The framework user is required to provide two functions, i.e., the map
function and the reduce function. These functions have key-value pairs as inputs
and outputs and have the following general form:

map: (k1,v1) → list(k2,v2)

reduce: (k2,list(v2)) → list(k3,v3)

The data types of the key-value pairs are also specified by the framework
user. Note that the input and output types of each function can be different.
However, the input of the reduce function should use the same types as the
output of the map function.

The execution of a MapReduce job works as follows. The framework splits
the input dataset into independent data chunks that are processed by multiple
independent map tasks in a parallel manner. Each map call is given a pair
(k1,v1) and produces a list of (k2,v2) pairs. The output of the map calls is
known as the intermediate output. The intermediate data is transferred to the
reduce nodes by a process known as the shuffle. Each reduce node is assigned
a different subset of the intermediate key space; these subsets are referred as
partitions. The framework guarantees that all the intermediate records with the
same intermediate key (k2) are sent to the same reducer node. At each reduce
node, all the received intermediate records are sorted and grouped. Each formed
group will be processed in a single reduce call. Multiple reduce tasks are also
executed in a parallel fashion. Each reduce call receives a pair (k2,list(v2))
and produces as output a list of (k3,v3) pairs.
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Figure 1: A MRSimJoin round.

The processes of transferring the map outputs to the reduce nodes, sorting
the records at each destination node, and grouping these records are driven by
the partition, sortCompare and groupCompare functions, respectively. These
functions have the following form:

partition: k2 → partitionNumber

sortCompare: (k21,k22) → {-1, 0, 1}
groupCompare: (k21,k22) → {-1, 0, 1}

The default implementation of the partition function receives an intermedi-
ate key (k2) as input and generates a partition number based on a hash value
for k2. The default sortCompare and groupCompare functions directly compare
two intermediate keys (k21, k22) and return −1 (k21 < k22), 0 (k21 = k22), or
+1 (k21 > k22). The result of using the default comparator functions is that
all the intermediate records in a reduce node are sorted by the intermediate key
and a group is formed for each different value of the intermediate key. Custom
partitioner and comparator functions can be provided to replace the default
functions.

The input and output data are usually stored in a distributed file system.
The MapReduce framework takes care of scheduling tasks, monitoring them and
re-executing them in case of failures.

3.2 The MRSimJoin Algorithm

The Similarity Join (SJ) operation between two datasets R and S is defined as
follows:

R ◃▹θε(r,s) S = {⟨r, s⟩|θε(r, s), r ∈ R, s ∈ S}

where θε(r, s) represents the Similarity Join predicate, i.e., dist(r, s) ≤ ε.
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The MRSimJoin algorithm presented in this section identifies all the pairs,
i.e., links, that belong to the result of the Similarity Join operation. Further-
more, the algorithm can be used with any dataset that lies in a metric space. In
general, the input data can be given in one or multiple distributed files. Each in-
put data file contains a sequence of key-value records of the form (id, (id, elem))
where id contains two components, the id of the dataset or relation this record
belongs to (id.relID) and the id of the record in the relation (id.uniqueKey).

The MRSimJoin algorithm iteratively partitions the input data into smaller
partitions until each partition is small enough to be efficiently processed by a
single-node Similarity Join routine. The overall process is divided into a se-
quence of rounds. The initial round partitions the input data while any subse-
quent round partitions the data of a previously generated partition. Each round
corresponds to a MapReduce job. The input and output of each job is read from
or written to the distributed file system. The output of a round includes: (1)
result links for the small partitions that were processed in a single-node, and (2)
intermediate data for the partitions that will require further partitioning. Fig.
1 represents the execution of a single MRSimJoin round. This figure shows that
the partitioning process and the generation of results or intermediate data is
performed in parallel by multiple nodes. The main routine of MRSimJoin exe-
cutes the required rounds until all the input and intermediate data is processed.

Data partitioning is performed using a set of K pivots, which are a subset
of the data records to be partitioned. The process generates two types of parti-
tions: base partitions and window-pair partitions. A base partition contains all
the records that are closer to a given pivot than to any other pivot. A window-
pair partition contains the records in the boundary between two base partitions.
In general, the window-pair records should be a superset of the records whose
distance to the hyperplane that separates the base partitions is at most ε. Un-
fortunately, this hyperplane does not always explicitly exist in a metric space.
Instead, the hyperplane is implicit and known as a generalized hyperplane. Since
the distance of a record t to the generalized hyperplane between two partitions
with pivots P0 and P1 cannot always be computed exactly, a lower bound of the
distance is used [15]:

gen hyperplane dist(t, P0, P1) = (dist(t, P0)− dist(t, P1))/2

This distance can be replaced with an exact distance if this can be computed,
e.g., in Euclidean spaces.

Processing the window-pair partitions guarantees the identification of the
links between records that belong to different base partitions. A round that
further repartitions a base partition or the initial input data is referred to as
a base partition round, a round that repartitions a window-pair partition is
referred to as a window-pair partition round. At the logical level, the data
partitioning in MRSimJoin is similar to the one in the Quickjoin algorithm
[16]. The core difference, however, is that in MRSimJoin the partitioning of the
data, the generation of the result links, and the storage of intermediate results
is performed in a fully distributed and parallel manner.
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Figure 2: Partitioning a base partition.
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Figure 3: Partitioning a window-pair partition.

Fig. 2 represents the repartitioning of a base partition. In this case, the
result of the Similarity Join operation on the dataset T is the union of the links
in P0 and P1, and the links in P0 P1 where one element belongs to window A
and the other one to window B. We refer to this last type of links as window
links. Fig. 3 represents the repartitioning of the window-pair partition P0 P1
of Fig. 2. In this case, the set of window links in P0 P1 is the union of the
window links in Q0, Q1, Q0 Q1{1} and Q0 Q1{2}. Note that windows C and
F do not form a window-pair partition since their window links are a subset of
the links in Q0. Similarly, the window links between E and D are a subset of
the links in Q1.

The remaining part of this section presents the algorithmic details of the
main MRSimJoin routine, and the base partition and window-pair partition
rounds.
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Algorithm 1 MRSimJoin(inDir, outDir, numPiv, eps, memT )

Input: inDir (input directory with the records of datasets R and S), outDir
(output directory), numPiv (number of pivots), eps (epsilon),memT (mem-
ory threshold)

Output: outDir contains all the results of the Similarity Join operation
R ◃▹θε(r,s) S

1: intermDir ← outDir + “/intermediate”
2: roundNum← 0
3: while true do
4: if roundNum = 0 then
5: job inDir ← inDir
6: else
7: job inDir ← GetUnprocessedDir(intermDir)
8: end if
9: if job inDir = null then

10: break
11: end if
12: pivots← GeneratePivots(job inDir, numPiv)
13: if isBaseRound(job inDir) then
14: MR Job(Map base, Reduce base, Partition base, Compare base,

job inDir, outDir, pivots, numPiv, eps, memT , roundNum)
15: else
16: MR Job(Map windowPair, Reduce windowPair,

Partition windowPair, Compare windowPair, job inDir, outDir,
pivots, numPiv, eps, memT , roundNum)

17: end if
18: roundNum++
19: if roundNum > 0 then
20: RenameFromIntermToProcessed(job inDir)
21: end if
22: end while

3.2.1 The Main Algorithm

The main routine of MRSimJoin is presented in Algorithm 1. The routine uses
an intermediate directory (line 1) to store the partitions that will need further
repartitioning. The names of intermediate directories that store base partitions
have the following format:

⟨outDir⟩/intermediate/B ⟨roundNum⟩ ⟨p⟩

The names of intermediate directories storing window-pair partitions have
the following format:

⟨outDir⟩/intermediate/W ⟨roundNum⟩ [⟨uAttr⟩] ⟨p1⟩ ⟨p2⟩
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Figure 4: Example of the MapReduce rounds and partitions generated by MR-
SimJoin.

p, p1 and p2 are pivot indices. uAttr ensures unique directory names. The
type of partition being stored in a directory can be identified from the directory
name (use of B or W).

Each iteration of the while loop (lines 3 to 22) corresponds to one round and
executes a MapReduce job. In each round, the initial input data or a previously
generated partition is repartitioned. If a newly generated partition is small
enough to be processed in a single node, the Similarity Join links are obtained
running a single-node Similarity Join algorithm. In our implementation we use
Quickjoin [16]. Larger partitions are stored as intermediate data for further
processing.

For each round, the main routine sets the values of the job input directory
(lines 4 to 8) and randomly selects numPivots pivots from this directory (line
12). Then the routine executes a base partition MapReduce job (line 14) or
a window-pair partition MapReduce job (line 16) based on the type of the job
input directory. The routine MR Job sets up a MapReduce job that will use the
provided map, reduce, partition and compare functions. The partition function
will be used to replace the default partition function. The compare function
will be used to replace the default sortCompare and groupCompare functions.
MR Job also makes sure that the provided atomic parameters, i.e., outDir,
numPiv, eps and memT , are available at every node that will be used in the
MapReduce job and that the pivots are available at each node that will execute
map tasks.

If a round is processing a previously generated partition, after the MapRe-
duce job finishes, the main routine renames the job input directory to relocate
it under the processed directories (line 20).

Fig. 4 shows an example of the multiple rounds that are executed by the
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Algorithm 2 Map base()

Input: (k1, v1). k1 = id, v1 = (id, elem)
Output: list(k2, v2). k2 = (part, win), v2 = (id, elem, part)
1: p← GetClosestPivotIndx (elem, pivots)
2: output ((p,−1), (id, elem,−1))
3: for i = 0→ numPiv − 1 do
4: if i ̸= p then
5: if (dist(elem, pivots[i])−dist(elem, pivots[p]))/2 ≤ eps then
6: output ((p, i), (id, elem, p))
7: end if
8: end if
9: end for

Base Partitions Window-pair Partition

P0 P1

P0 P1

(id3, (id3,elem3)) (id4, (id4,elem4))

(id6, (id6,elem6))(id5, (id5,elem5))

(id1, (id1,elem1))
(id2, (id2,elem2))

((P0,-1), (id1,elem1))
((P1,-1), (id2,elem2))

((P0,-1), (id3,elem3)) ((P1,-1), (id4,elem4))

((P1,-1), (id6,elem6))((P0,-1), (id5,elem5))

((P0,P1),

(id5,elem5,P0)) ((P1,P0),

(id6,elem6,P1))

P0_P1

T

Figure 5: Example of the Map function for a base round.

main routine. Each node in the tree with name MRN represents a MapReduce
job. This figure also shows the partitions generated by each job. Light gray
partitions are small partitions that are processed running the single-node Sim-
ilarity Join routine. Dark gray partitions are partitions that require additional
repartitioning. A sample sequence of rounds can be: MR1, MR2, MR3, MR4,
MR5 and MR6. The original input data is always processed in the first round.
Since the links of any partition can be obtained independently, the routine will
generate a correct result independently of the order of rounds.

3.2.2 Base Partition Round

A base partition round processes the initial input data or a base partition previ-
ously generated by a base partition round. Each base partition round executes
a MapReduce job initialized by the main routine as described in Section 3.2.1.
The goal of a base partition MapReduce job is to partition its input data and
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Algorithm 3 Partition base()

Input: k2. k2 = (part, win)
Output: k2’s partition number
1: if win = −1 then // base partition
2: partition← (part× C1) mod NUMPARTITIONS
3: else // window-pair partition
4: minV al← min(part, win)
5: maxV al← max(part, win)
6: partition← (minV al × C2 +maxV al × C3) mod NUMPARTITIONS
7: end if

produce: (1) the result links for partitions that are small enough to be pro-
cessed in a single node, and (2) intermediate data for partitions that require
further processing. The main routine sets up each base partition MapReduce
job to use Map base and Reduce base as the map and reduce functions, respec-
tively. Additionally, the default partition function is replaced by Partition base
and the default sortCompare and groupCompare functions are replaced by
Compare base. This section explains in detail each of these functions.

Map base, the map function for the base partition rounds, is presented in
Algorithm 2. The format of the input key-value pairs, i.e., k1, v1, is: k1 =
id, v1 = (id, elem), and the format of the intermediate key-value pairs, i.e.,
k2, v2, is: k2 = (part, win), v2 = (id, elem, part). We use the value -1 when
a given parameter is not applicable or will not be needed in the future. The
MapReduce framework divides the job input data into chunks and creates map
tasks in multiple nodes to process them. Each map task is called multiple times
and each call executes the Map base function for a given record (id, (id, elem))
of the input data. The Map base function identifies the closest pivot p to elem
(line 1). The function then outputs one intermediate key-value pair of the
form ((p,−1), (id, elem,−1)) for the base partition that elem belongs to (line
2) and one key-value pair of the form ((p, i), (id, elem, p)) for each window-pair
partition (corresponding to pivots p and i) that elem belongs to (lines 3 to 9).

Fig. 5 shows an example of the intermediate key-value pairs generated by
Map base. Region T contains all the key-value pairs of the job input data.
Different segments of this region are processed by differentmap tasks on possibly
different nodes. The overall result of the map phase is independent of the
number or distribution of the map tasks. In this example, they will always
generate the key-value pairs shown in partitions P0, P1 and P0 P1. Each input
record generates an intermediate key-value pair corresponding to its associated
base partition (P0 or P1). Additionally, each record in the windows between the
two base partitions, e.g., id5 and id6, generates a key-value pair corresponding
to the window-pair partition P0 P1.

The MapReduce framework partitions the intermediate data generated by
map tasks. This partitioning is performed calling the Partition base function
presented in Algorithm 3. Partition base receives an intermediate key, i.e., k2 =
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(part, win), as input and generates the corresponding partition number. C1−C3
are constant prime numbers and NUMPARTITIONS is the maximum number
of partitions set by the MapReduce framework. The partition number for an
intermediate key that corresponds to a base partition is computed using a hash
function on part (line 2). When the key corresponds to a window-pair partition,
the partition number is computed using a hash function on min(part, win) and
max(part, win) (line 6). This last hash function will generate the same partition
number for all intermediate records of a window-pair partition independently of
the specific window they belong to.

In the scenario of Fig. 5, Partition base will generate the same partition
number, i.e., (P0 × C1) mod NUMPARTITIONS, for all the intermediate keys
that correspond to partition P0. Similarly, the function will generate the same
partition number, i.e., (P0×C2+P1×C3) mod NUMPARTITIONS, for all the
intermediate keys that correspond to partition P0 P1.

After identifying the partition numbers of intermediate records, the shuffle
phase of the MapReduce job sends the intermediate records to their correspond-
ing reduce nodes. The intermediate records received at each reduce node are
sorted and grouped using the Compare base function presented in Algorithm 4.

The main goal of the Compare base function is to group the intermediate
records that belong to the same partition. The function establishes the order
of partitions shown in Fig. 6.a. Base partitions have lower order than window-
pair partitions. Multiple base partitions are ordered based on their pivot indices.
Multiple window-pair partitions are ordered based on the two associated pivot
indices of each partition.

Compare base receives as input two intermediate record keys, i.e., k21, k22,
and returns 0 (when k21 and k22 belong to the same group), −1 (when k21 has
lower order than k22), or +1 (when k21 has higher order than k22). The algo-
rithm considers all the possible combinations of the intermediate keys. When
both keys belong to base partitions, the algorithm orders them based on their
pivot indices (lines 1 to 6). When one key belongs to a base partition and the
other one to a window-pair partition, the algorithm orders them giving the base
key a lower order than the window-pair key (lines 7 to 10). Finally, if both
keys belong to window-pair partitions, the algorithm orders them based on the
pair (minimum pivot index, maximum pivot index) using lexicographical order
(lines 11 to 25). The min and max functions are used to group together all
the intermediate records of a window-pair independently of the specific window
they belong to.

Fig. 6.b shows the order of partitions generated by Compare base for the
scenario with two pivots presented in Fig. 5. Fig. 6.c shows the order of
partitions for the case of a base round with three pivots.

After generating the groups in a reduce node, the MapReduce framework
calls the reduce function Reduce base once for each group. This function is
presented in Algorithm 5. The function receives as input the key-value pair
(k2, v2List). k2 is the intermediate key of one of the records of the group being
processed and v2List is the list of values of all the records of the group.

If the size of the list is small enough to be processed in a single node, the
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Algorithm 4 Compare base()

Input: k21, k22. k21 = (part1, win1), k22 = (part2, win2)
Output: 0 (k21 and k22 belong to the same group), −1 (group number of k21

< group number of k22), or +1 (group number k21 > group number of k22)
1: if (win1 = −1) ∧ (win2 = −1) then // basePart-basePart
2: if (part1 = part2) then
3: return 0
4: else
5: return (part1 < part2)?− 1 : +1
6: end if
7: else if (win1 = −1) ∧ (win2 ̸= −1) then // basePart-winPart
8: return -1
9: else if (win1 ̸= −1) ∧ (win2 = −1) then // winPart-basePart

10: return +1
11: else // (win1 ̸= −1) ∧ (win2 ̸= −1), winPart-winPart
12: min1 ← min(part1, win1)
13: max1 ← max(part1, win1)
14: min2 ← min(part2, win2)
15: max2 ← max(part2, win2)
16: if (min1 = min2)∧(max1 = max2) then // elements belong to the same

window-pair
17: return 0
18: else // elements do not belong to the same window-pair
19: if min1 = min2 then
20: return (max1 < max2)?− 1 : +1
21: else
22: return (min1 < min2)?− 1 : +1
23: end if
24: end if
25: end if

algorithm calls a single-node Similarity Join routine, i.e., InMemorySimJoin, to
get the links in the current partition (lines 1 to 2). Otherwise all the records
of the group are stored in an intermediate directory for further partitioning.
If the current group is a base partition, the algorithm stores its records in a
directory that will be processed in a future base partition round (lines 4 to 7).
Likewise, the records of a window-pair partition are stored in a directory that
will be processed in a future window-pair partition round (lines 8 to 12). In the
latter case, the last part of the directory name includes the indices of the two
pivots associated to the window-pair partition. These values will be used in the
algorithms of the window-pair rounds.

In the scenario represented in Fig. 5, the MapReduce framework calls the
Reduce base function for each partition of Fig. 6.b: P0, P1 and P0 P1.

13



Algorithm 5 Reduce base()

Input: (k2, v2List). k2 = (kPart, kWin), v2List = list(id, elem, part)
Output: SJ matches or intermediate data. Intermediate data = list(k3, v3).

k3 = id, v3 = (id, elem[, part])
1: if sizeInBytes(v2List) ≤ memT then
2: InMemorySimJoin(v2List, outDir, eps)
3: else
4: if kWin = −1 then
5: for each element e of v2List do
6: output (e.id, (e.id, e.elem)) to outDir/ intermedi-

ate/B ⟨roundNum⟩ ⟨kPart⟩
7: end for
8: else
9: for each element e of v2List do

10: output (e.id, (e.id, e.elem, e.part)) to outDir/ intermedi-
ate/W ⟨roundNum⟩ ⟨kPart⟩ ⟨kWin⟩

11: end for
12: end if
13: end if

3.2.3 Window-pair Partition Round

A window-pair partition round processes a window-pair partition generated by
a base round or any partition generated by a window-pair round. Similarly
to base partition rounds, window-pair partition rounds generate result links
and intermediate data. However, the links generated are window links, i.e.,
links between records of different previous partitions. A window-pair round
uses the functions Map windowPair, Reduce windowPair, Partition windowPair
and Compare windowPair in a similar way their counterparts are used in a
base partition round. This section explains these functions highlighting the
differences.

Map windowPair, the map function for the window-pair partition rounds,
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Figure 6: Group formation in a base round.
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Algorithm 6 Map windowPair()

Input: (k1, v1). k1 = id, v1 = (id, elem, prevPart)
Output: list(k2, v2). k2 = (part, win, prevPart), v2 =

(id, elem, part, prevPart)
1: p← GetClosestPivotIndx (elem, pivots)
2: output ((p,−1,−1), (id, elem,−1, prevPart))
3: for i = 0→ numPiv − 1 do
4: if i ̸= p then
5: if (dist(elem, pivots[i])−dist(elem, pivots[p]))/2 ≤ eps then
6: output ((p, i, prevPart), (id, elem, p, prevPart))
7: end if
8: end if
9: end for

Algorithm 7 Partition windowPair()

Input: k2,W1,W2. k2 = (part, win, prevPart), W1 and W2 are the last two
components of the job input directory name job inDir

Output: k2’s partition number
1: if win = −1 then // base partition
2: partition← (part× C4) mod NUMPARTITIONS
3: else // window-pair partition
4: minV al← min(part, win)
5: maxV al← max(part, win)
6: if (part > win∧ prevPart = W1)∨ (part < win∧ prevPart = W2) then
7: partition← (minV al×C5+maxV al×C6) mod NUMPARTITIONS
8: else // (part > win ∧ prevPart = W2) ∨ (part < win ∧ prevPart = W1)
9: partition← (minV al×C7+maxV al×C8) mod NUMPARTITIONS

10: end if
11: end if

is presented in Algorithm 6. In this case, the format of the input key-value
pair, i.e., k1, v1, is: k1 = id, v1 = (id, elem, prevPart), and the format of the
intermediate key-value pairs, i.e., k2, v2, is: k2=(part, win, prevPart), v2=(id,
elem, part, prevPart). The function is similar to Map base. The difference
is in the format of the intermediate records. Map windowPair outputs one
intermediate key-value pair of the form ((p, −1, −1), (id, elem, −1, prevPart))
for the base partition with pivot p that elem belongs to (line 2) and one key-value
pair of the form ((p, i, prevPart), (id, elem, p, prevPart)) for each window-
pair partition (corresponding to pivots p and i) that elem belongs to (lines 3 to
9). Fig. 7 shows an example of the intermediate key-value pairs generated by
Map windowPair.

The MapReduce framework partitions the intermediate data using the Par-
tition windowPair function presented in Algorithm 7. Partition windowPair
receives an intermediate key, i.e., k2 = (part, win, prevPart), as input and gen-
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Algorithm 8 Compare windowPair()

Input: k21, k22,W1,W2. k21 = (part1, win1, prevPart1), k22 = (part2, win2,
prevPart2), W1 and W2 are the last two components of the job input dir.
name job inDir

Output: 0 (k21 and k22 belong to the same group), −1 (group number of k21
< group number of k22), or +1 (group number k21 > group number of k22)

1: if (win1 = −1) ∧ (win2 = −1) then // baseP-baseP
2: if (part1 = part2) then
3: return 0
4: else
5: return (part1 < part2)?− 1 : +1
6: end if
7: else if (win1 = −1) ∧ (win2 ̸= −1) then // baseP-winP
8: return -1
9: else if (win1 ̸= −1) ∧ (win2 = −1) then // winP-baseP

10: return +1
11: else // (win1 ̸= −1) ∧ (win2 ̸= −1), winP-winP
12: min1,max1 ← min(part1, win1),max(part1, win1)
13: min2,max2 ← min(part2, win2),max(part2, win2)
14: if ¬((min1 = min2) ∧ (max1 = max2)) then
15: if min1 = min2 then
16: return (max1 < max2)?− 1 : +1
17: else
18: return (min1 < min2)?− 1 : +1
19: end if
20: end if
21: if (part1 = part2) ∧ (prevPart1 = prevPart2) then // = part, = old

part
22: return 0
23: end if
24: if (part1 = part2) then // = part, ̸= old part.
25: if part1 < win1 then // part2 < win2

26: if (prevPart1 = W1) ∧ (prevPart2 = W2) then
27: return -1
28: else // (prevPart1 = W2) ∧ (prevPart2 = W1)
29: return +1
30: end if
31: else // part1 > win1 ∧ part2 > win2

32: if (prevPart1 = W1) ∧ (prevPart2 = W2) then
33: return +1
34: else // (prevPart1 = W2) ∧ (prevPart2 = W1)
35: return -1
36: end if
37: end if
38: end if
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39: if (prevPart1 = prevPart2) then // ̸= part, = old partition
40: if prevPart1 = win1 then // prevPart2 = win1

41: if part1 < win1 then // part2 > win2

42: return -1
43: else // (part1 > win1) ∧ (part2 < win2)
44: return +1
45: end if
46: else // prevPart1 = win2 ∧ prevPart2 = win2

47: if part1 < win1 then // part2 > win2

48: return +1
49: else // (part1 > win1) ∧ (part2 < win2)
50: return -1
51: end if
52: end if
53: end if
54: return 0 // ̸= partitions, ̸= old partitions
55: end if

erates the corresponding partition number. The generation of the partition
number is similar to the process in Partition base. The difference is that Par-
tition windowPair distinguishes between the two window-pair partitions of any
pair of pivots. The correct identification of the specific window-pair a record
belongs to is obtained using the information of the previous partition of the
record (lines 6 to 10).

In the scenario of Fig. 7, Partition windowPair will generate the same par-
tition number, i.e., (Q0×C4) mod NUMPARTITIONS, for all the intermediate
keys that correspond to partition Q0. Similarly, the function will generate the
same partition number, i.e, (Q0 ×C7 +Q1 ×C8) mod NUMPARTITIONS, for
all the intermediate keys that correspond to partition Q0 Q1{1}. The partition
number of the records in Q0 Q1{1} is generated in line 9 while the partition
number of the records in Q0 Q1{2} is generated in line 7. We use the numbers
1 and 2 at the end of the window-pair partitions’ names to differentiate between
them. We reference this number as the window-pair sequence.

After generating the partition numbers of intermediate records, the records
are send to their corresponding reduce nodes. In a window-pair partition round,
the records received at each reduce node are sorted and grouped using the Com-
pare windowPair function presented in Algorithm 8. This function groups all
the records that belong to the same partition establishing the order of partitions
shown in Fig. 8.a.

Compare windowPair receives as input two intermediate record keys, i.e.,
k21, k22, and returns 0, −1 or +1 depending on the order of the associated
partitions. The algorithm considers all the possible combinations of the inter-
mediate keys. All the cases are processed as in Compare base with the excep-
tion of the case where both keys belong to window-pair partitions. In this case,
Compare windowPair orders them based on the tuple (minimum pivot index,
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Figure 7: Example of the Map function for a window-pair round.
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Algorithm 9 Reduce windowPair()

Input: (k2, v2List),W1,W2. k2 = (kPart, kWin, kPrevPart), v2List =
list(id, elem, part, prevPart), W1 and W2 are the last two components
of the job input directory name job inDir

Output: SJ matches or intermediate data. Intermediate data = list(k3, v3).
k3 = id, v3 = (id, elem, part)

1: if all the elements of v2List have the same value of prevPart then
2: return
3: end if
4: if sizeInBytes(v2List) ≤ memT then
5: InMemorySimJoinWin(v2List, outDir, eps)
6: else
7: for each element e of v2List do
8: output (e.id, (e.id, e.elem, e.prevPart)) to

outDir/intermediate/W ⟨roundNum⟩ ⟨kPart⟩ ⟨W1⟩ ⟨W2⟩
9: end for

10: end if

maximum pivot index, window-pair sequence) using lexicographical order (lines
11 to 55). Several sub-cases are considered. When the keys do not belong to the
windows between the same pair of pivots, they are ordered based on (minimum
pivot index, maximum pivot index) (lines 14 to 20). Otherwise, the algorithm
considers the following cases: (1) when the keys belong to the same partition
and same old partition, they have the same order (lines 21 to 23), (2) when the
keys belong to the same partition but different old partition, they are ordered
by their window-pair sequences (lines 24 to 38), (3) when the keys belong to
different partitions but the same old partition, they are also ordered by their
window-pair sequences (lines 39 to 53), and (4) when the keys belong to different
partitions and different old partitions, they have the same order (line 54).

Fig. 8.b shows the order of partitions generated by Compare windowPair
for the scenario with two pivots presented in Fig. 7. Fig. 8.c shows the order
of partitions for the case of a window-pair round with three pivots.

After generating the groups in a reduce node, the MapReduce framework
calls the reduce function Reduce windowPair once for each group. This function
is presented in Algorithm 9 and receives as input a key-value pair (k2, v2List).
The goal of this function is to generate the window links of the partitions that
are small enough to be processed in a single node and to store the data of larger
partitions for further repartitioning.

If all the records in v2List belong to the same old partitioning, there is no
possibility of generating window links and thus the function terminates imme-
diately (lines 1 to 3). If the size of the list is small enough to be processed
in a single node, the algorithm calls function InMemorySimJoinWin to get the
window links in the current partition (lines 4 to 5). Otherwise, all the records
of the group are stored in an intermediate directory for further partitioning
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Figure 8: Group formation in a window-pair round.

(lines 6 to 10). Both the intermediate records and the directory name propa-
gate the information of the previous partitions. This information will enable
the correct generation of window links in next rounds. Note that, in the case
of Reduce windowPair, all partitions that are stored for further processing are
set to be repartitioned by a future window-pair partition round, i.e., directory
name uses “W ”. This is the case because the links generated in a window-pair
round or in any of its generated partitions should always be window links.

In the scenario represented in Fig. 7, the MapReduce framework calls the
Reduce windowPair function for each partition of Fig. 8.b: Q0, Q1, Q0 Q1{1}
and Q0 Q1{2}.

3.3 Enhancements for Euclidean Distance

Since the MRSimJoin solution presented in section 3.2 is based on the general-
ized hyperplane distance, it could be used with any dataset that lies in a metric
space. The solution, however, could be enhanced in cases where the distance
from a record to the hyperplane between two partitions can be computed ex-
actly [16]. In the case of Euclidean spaces, the exact distance from a record t
to the hyperplane that separates the partitions of two pivots P0 and P1 is given
by:

hDist(t, P0, P1) = (dist(t, P0)
2 − dist(t, P1)

2)/(2× dist(p1, p2))

where dist(a, b) is the Euclidean distance between a and b.
To use this exact distance, the generalized hyperplane distance should be

replaced by hDist in line 5 of Map base and also in line 5 of Map windowPair.

4 Implementation in Hadoop

The presented MRSimJoin algorithms are generic enough to be implemented in
any MapReduce framework. This section presents a few additional guidelines
for its implementation on the popular Hadoop MapReduce framework [1].

20



Distribution of atomic parameters. One of the tasks of the MR Job
function called in the main MRSimJoin routine is to make sure that the provided
atomic parameters, i.e., outDir, numPiv, eps and memT , are available at every
node that will be used in the MapReduce job. In Hadoop, this can be done using
the job configuration jobConf object and its methods set and get.

Distribution of pivots. MR Job also sends the list of pivots to every
node that will execute a map task. In Hadoop this can be done using the
DistributedCache, a facility that allows the efficient distribution of application-
specific, large, read-only files.

Renaming directories. The main MRSimJoin routine renames a directory
to flag it as already processed. This can be done using the rename method
of Hadoop’s FileSystem class. The method will change the directory path in
Hadoop’s distributed file system without physically moving its data.

Single-node Similarity Join . InMemorySimJoin and InMemorySimJoin-
Win represent single-node algorithms to get the links and window links in a
given dataset, respectively. We have implemented these functions using the
Quickjoin algorithm [16].

5 Performance Evaluation

We implemented MRSimJoin using the Hadoop 0.20.2 MapReduce framework.
In this section we evaluate its performance with synthetic and real-world data.

5.1 Test Configuration

We performed the experiments using a Hadoop cluster running on the Amazon
Elastic Compute Cloud (Amazon EC2). Unless otherwise stated, we used a
cluster of 10 nodes (1 master + 9 worker nodes) with the following specifications:
15 GB of memory, 4 virtual cores with 2 EC2 Compute Units each, 1,690 GB of
local instance storage, 64-bit platform. We set the block size of the distributed
systems to 64 MB and the total number of reducers to: 0.95×⟨no. worker
nodes⟩×⟨max reduce tasks per node⟩. We use the following datasets:

• SynthData This is a synthetic vector dataset (up to 16D). The compo-
nents of each vector are randomly generated numbers in the range [0 -
1,000]. The dataset for scale factor 1 (SF1) contains 5 million records (1.3
GB).

• ColorData This dataset contains 9D feature vectors extracted from a
Corel image collection [12]. The vector components are in the range [-
4.8 - 4.4]. The original dataset contains 68,040 records. The SF1 dataset
contains 5 million records (390 MB) and was generated following the same
process to generate datasets for higher SFs.

The datasets for SF greater than 1 were generated in such a way that the
number of links of any SJ operation in SFN are N times the number of links
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Figure 9: Increasing SF - SynthData.
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Figure 10: Increasing Epsilon - SynthData.

of the operation in SF1. Specifically, the datasets for higher SFs were obtained
adding shifted copies of the SF1 dataset such that the separation between the
region of new vectors and the region of previous vectors is greater than the
maximum value of ε used in our tests. Half of the records of each dataset
belong to R and the remaining ones to S. We use the Euclidean distance with
both datasets. The available memory to perform the in-memory SJ algorithm
(QuickJoin) was 32 MB.

We compare the performance of MRSimJoin with the one of MRThetaJoin,
an adaptation of the memory-aware 1-Bucket-Theta algorithm proposed in [19]
that uses the single-node QuickJoin algorithm [16] in the reduce function. We
did not include the execution time of MRThetaJoin when the algorithm took a
relatively long time (more than 3 hours).

5.2 Performance Evaluation with Synthetic Data

Increasing Scale Factor . Fig. 9 compares the way MRSimJoin and MR-
ThetaJoin scale when the data size increases (SF1-SF5). This experiment uses
8D vectors and a value of epsilon of 1.5% of the maximum possible distance. The
core results in this figure is that MRSimJoin performs and scales significantly
better than MRThetaJoin. The execution time of MRThetaJoin grows from
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being 2.4 times the one of MRSimJoin for SF=1 to 11.4 times for SF=3. The
execution time of MRThetaJoin is significantly higher than that of MRSimJoin
because the total size of all the partitions of MRThetaJoin is significantly larger
than that of MRSimJoin.

Increasing Epsilon . Fig. 10 shows how the execution time of MRSimJoin
and MRThetaJoin increase when epsilon increases (0.5%-4.0%). These tests
use 8D vectors and SF1. The performance of MRSimJoin is better than the
one of MRThetaJoin for all the values of epsilon. Specifically, the execution
time of MRThetaJoin is between 1.5 to 3 times the one of MRSimJoin. We
can also observe that, in general, the execution time of both algorithms grows
slowly when epsilon grows. The increase in execution time is due to a higher
number of distance computations in both algorithms and slightly larger sizes of
window-pair partitions in the case of MRSimJoin.

Increasing Number of Dimensions. The execution time of MRSimJoin
and MRThetaJoin for several numbers of dimensions (4D-10D) is presented in
Fig. 11. This experiment uses epsilon of 1.5% and SF=1. The figure shows that
MRSimJoin performs better than MRThetaJoin for all the numbers of dimen-
sions considered. The execution time of MRThetaJoin is 20% higher than that of
MRSimJoin for 4D and 200% higher for 10D. Observe also that, in general, the
execution time of both algorithms decreases when the dimensionality increases.
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This is the case because the dataset gets more sparse when the number of di-
mensions increases (we maintain a constant number of tuples). Consequently,
the number of records in the output decreases significantly in higher dimensions.
The output size is about 46 million for 4D and less than 100 records for 10D.

Increasing Number of Pivots. The execution time and number of rounds
for MRSimJoin, as the number of pivots increases, is presented in Fig. 12. The
figure shows that smaller number of pivots generate higher number of rounds.
We also observe that, in general, the execution time decreases when the number
of rounds decreases. We found that in most of the experiments presented in this
section, the best execution time is achieved using a single round. To compute
the number of pivots (P ) that will generate a single round for relatively smaller
values of epsilon, i.e., smaller than 25%, we can use the fact that the space
needed for the in-memory QuickJoin algorithm is about twice the size of the
input data [16]. Thus, to ensure that the average MRSimJoin base partition
(and window-pair partition) can be solved using the in-memory QuickJoin we
need: P = 2 × k × D/T , where D is the total input size, T is the available
memory for QuickJoin, and k is a factor that compensates the effect of data
skewness on the size of partitions (we used k = 2). Using this expression, the
value of P for this experiment is 166. This value of pivot generates a single
round and an execution time that is only 8% higher than the best execution
time (obtained with P=125).

5.3 Performance Evaluation with Color Data

Increasing Scale Factor . Fig. 13 compares the way MRSimJoin and MR-
ThetaJoin scale when the data size increases (SF1-SF5). The results for Col-
orData are similar to the ones we found for the case of synthetic vector data.
Specifically, the execution time of MRThetaJoin grows from being 1.6 times of
that of MRSimJoin for SF1 to 13.3 times for SF4.

Increasing Epsilon . Fig. 14 shows how the execution times of MRSimJoin
and MRThetaJoin increase when epsilon increases. The results of this test are
also inline with the ones of the test with SynthData. The execution times of
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both algorithms grow slowly and in all cases the execution time of MRSimJoin
is about 60% of that of MRThetaJoin.

Increasing Number of Nodes and Scale Factor . One of the goals of
cloud-based operations is to scale efficiently when the number of nodes and
the data size increase proportionally. Ideally, the execution time should remain
constant. Fig. 15 shows the execution time of MRSimJoin and MRThetaJoin
when the data size and the number of nodes increase from (SF1, 2 nodes) to
(SF5, 10 nodes). MRSimJoin follows the ideal execution time much more closely
than MRThetaJoin. MRSimJoin’s execution time for (SF5, 10) is only 2.8 times
the one for (SF1, 2) while MRThetaJoin’s execution time for (SF5, 10) is 9.8
times the one for (SF1, 2). Moreover, the execution time of MRThetaJoin grows
from being 4.9 times the one of MRSimJoin for (SF1, 2) to 16.9 times for (SF5,
10).

6 Conclusions and Future Work

Cloud-based systems have become a crucial component to efficiently process
and analyze the large amounts of data currently available in many commercial
and scientific organizations. The Similarity Join is recognized as one of the most
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useful data analysis operations and has been used in many application scenarios.
While multiple implementation techniques have been proposed for the Similarity
Join, very little work has addressed the study of Similarity Joins for cloud sys-
tems. This paper focuses on the study, design and implementation techniques
of cloud-based Similarity Joins. We present MRSimJoin, a MapReduce-based
algorithm to efficiently solve the Similarity Join problem. MRSimJoin itera-
tively partitions the data until the partitions are small enough to be efficiently
processed in a single node. Each iteration executes a MapReduce job that pro-
cesses the generated partitions in parallel. The proposed algorithm can be used
with any dataset that lies in a metric space. We implemented MRSimJoin us-
ing the Hadoop MapReduce framework. An extensive performance evaluation
of MRSimJoin with synthetic and real-world data shows that it scales very well
when important parameters like epsilon, data size, number of nodes and num-
ber of dimensions increase. Furthermore, we show that MRSimJoin performs
significantly better than an adaptation of the state-of-the-art MapReduce-based
algorithm to answer arbitrary joins.

Our paths for future work include the study of: (1) other similarity-aware
operators, e.g., kNN Join and kDistance Join, for cloud systems, (2) indexing
techniques that can be exploited to implement Similarity Join operations, and
(3) cloud queries with multiple similarity-based operators.
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