DBSnap++: Creating Data-driven Programs by Snapping Blocks

Yasin N. Silva
Arizona State University
ysilva@asu.edu

Thomas G. Schenk

Arizona State University
tgschenk@asu.edu

ABSTRACT

A key development in Computer Science Education has been the in-
troduction of block-based programming environments where pro-
grams are created by connecting blocks and the focus is on the pro-
gram’s logic instead of its syntax. Most of these environments sup-
port conventional (imperative) programming instructions. More
recently, some systems have been proposed to enable the specifi-
cation of database queries. While these two types of environments
have been independently studied previously, there is significantly
less work on the development and study of integrated environ-
ments that allow the creation of complete data-driven programs
(real-world like programs that integrate conventional instructions
and database queries). This paper introduces DBSnap++, a web-
based environment that enables the specification of dynamic data-
driven programs. DBSnap++ supports the specification of intuitive
database query trees, a new type of list that dynamically gets its
content executing a database query, and programs that generate
different results when the underlying data changes. This paper
presents DBSnap++’s design and implementation details, an array
of programs to demonstrate how it can be effectively used as a
learning tool, and a thorough comparison with previous environ-
ments. DBSnap++ is publicly available and aims to enable learners
to fully understand and utilize the capabilities of data-driven pro-
grams.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; Information systems education;

KEYWORDS

Data-driven programs, databases curricula; query languages

ACM Reference Format:

Yasin N. Silva, Anthony Nieuwenhuyse, Thomas G. Schenk, and Alaura
Symons. 2018. DBSnap++: Creating Data-driven Programs by Snapping
Blocks. In Proceedings of 23rd Annual Conference on Innovation and Technol-
ogy in Computer Science Education (ITiCSE’18). ACM, New York, NY, USA,
6 pages. https://doi.org/10.475/123_4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ITiCSE’18, July 2018, Larnaca, Cyprus

© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06...$15.00

https://doi.org/10.475/123_4

Anthony Nieuwenhuyse
Arizona State University
avanniel@asu.edu

Alaura Symons
Arizona State University
asymonsl@asu.edu

1 INTRODUCTION

A key challenge of learning programming languages is the need

to create a set of instructions that is not only logically correct but

also free of syntactical mistakes. The fact that even minor syntac-
tical errors, like a missing semicolon, prevent the execution of log-
ically correct programs is a source of frustration for many students.
Block-based programming environments have effectively addressed
this and other limitations of traditional approaches to learn com-
puter programming. In these environments, instructions are repre-
sented by visual blocks and programs are built by snapping blocks

together. The shape of a block provides additional guidance on

how the block can be connected with others. Block-based environ-
ments have become popular tools and are transforming the way

programming is taught, particularly to younger learners. Most of
the previously proposed environments support conventional (im-
perative) programming instructions such as conditional and itera-
tive constructs, e.g., Mindstorm [4], Scratch [5], Blockly [6], Snap!

[9], and App Inventor [13]. Recently, some block-based systems

have been proposed to enable the specification of database queries,

e.g., DBSnap [10, 11] and Bags [2]. While these two types of envi-
ronments have been independently studied, there is significantly

less work on the development and study of environments that en-
able the integration of conventional and data-driven instructions.
This paper introduces DBSnap++, a block-based environment to

build data-driven programs that fully integrate conventional pro-
gramming instructions with data-aware actions and blocks, e.g.,

database queries, lists that are dynamically linked to queries, and

data manipulation actions such as data insertion and visualization.
This paper presents the design and implementation details of DB-
Snap++ as well as sample programs that show how DBSnap++ is

used to create data-driven programs like the ones needed in real-
world scenarios. The key contributions of the paper are:

e The introduction of DBSnap++, a web-based and dynamic
block-based environment that enables building programs
that integrate conventional instructions and database queries.

o A detailed description of DBSnap++’s design and implemen-
tation guidelines. Our goal is to enable other researchers to
extend or customize DBSnap++.

o The presentation of multiple data-driven programs that pro-
duce different results as the underlying data changes.

e A comparison with previously proposed block-based tools
for conventional programming and database querying.

e The public availability of DBSnap++ [12] to be used by any
instructor or student. DBSnap++ aims to have a transforma-
tional effect on data-driven programming learning.

ITiCSE’18, July 2018, Larnaca, Cyprus

nan%20withy O ~ ¢4

& {F untitled = Query Result (5 rows)
MKTSEGMENT
AUTOMOBILE
BUILDING 20

FURNITURE 22

{ Control 7}
Sensing ~

bie
[= -

{ Variables HOUSEHOLD 21
Datasets a Seripts. Costumes Sounds DB Snap MACHINERY 16

t
Altr OF Value.

Project

® ;‘

COUNT(CUSTKEY) B
21 |

Y. Silva et al.

http://localhost:63342/snap%20with? ,O - 0 \, Snap! Build Your Own BI

& i untitied

plre : jSprie |

Sensing - =

Seripts Costumes

in front of B
em G of B

savequery. || Node Result (100 rows)
e Save Query Result] CUSTKEY NAME

ADDRESS
‘Customer#000000001 IVhzlApeRb ot.c E
i

all but first of B

| length of B
| < B contains [

Group Group by: (I

LU L function(Attr)

J0000002 XSTi4,NCwDY
‘Customer#000000003 MGIkdTD2WBHmM
‘Customer#000000004 XxVSJsLAGIN
‘Customer#000000005 KvpyuHCplrB84WgAi
‘Customer#000000006 sKZz0CsnMD7mp4XdOY
Customer#000000007 TcGe5gaZNgVeaPxUSkRn
‘Customer#000000008 10B8106B0AymmC, nPrRY1 | | replace item of B with

add 0¥ to B
[delete @I of B
| inzert GIF 2t €K of B

| Rename Rel: (ZXTD
| LU Croer At}

C)0000002 XKIAFT|UsC:
‘Customer#000000010 6LrEaVEKREPLVCgI2ArL d |
‘Customer#000000011 PKWS 3H|XA1WTUZ|‘KQG33[‘
Customers000000012 SPWKuhzT4Zr1Q i
‘Customer?000000013 nsXQu0oV)D7PMESIUC,
‘Customer#000000014 KXkietMIL2JQEA
Customer#000000015 YtWoaXoOLdwdo7bOv. B |

iqefum |

User Interface Components: 1) standard block groups, 2) data-aware block groups, 3) block palette, 4) relational algebra
panel, 5) query area, 6) query result panel, 7) node result panel, 8) DBLists, 9) script panel, 10) script result panel.

Figure 1: DBSnap++’s user interface.

The rest of the paper is organized as follows. Sections 2 and 3
present DBSnap++’s design and implementation details. Section 4
presents sample DBSnap++ data-driven programs. Section 5 presents
a comparison of DBSnap++ with alternative tools. Section 6 presents
a discussion of various facets of integrating DBSnap++ into the
computing curricula and Section 7 concludes the paper.

2 DBSnap++'S DESIGN

The main visual components of DBSnap++, as shown in Fig. 1, are:
conventional and data-aware blocks (items 1, 2 and 3), the query
specification area (items 4 and 5), query result panels (items 6 and
7), DBLists (item 8), and the scripting area (items 9 and 10). DB-
Snap++ was designed integrating and extending Snap! [9] and DB-
Snap [10] components. While Snap! supports only conventional
blocks and DBSnap only database query blocks, DBSnap++ sup-
ports both of them. Furthermore, DBSnap++ introduces new blocks
and program creation sequences to enable the specification of dy-
namic data-driven programs. DBSnap++ includes also multiple fea-
tures not available in Snap! or DBSnap such as the support of graph
generation, database views, saving and loading queries from disk,
data insertion and modification, and more flexible data grids. Queries
in DBSnap++ are specified by building the tree representation of
the relational algebra expression. Queries are built intuitively by
connecting operator and dataset blocks in the query area. As the
user builds the query, the query result and relational algebra pan-
els are dynamically updated with the current query result and re-
lational algebra expression, respectively. After a database query is
specified, the user can create a DBList associated with the query.
The DBList is a new type of block introduced in DBSnap++ that

looks like a list but whose data is dynamically obtained by execut-
ing the associated query. DBLists can be combined with other con-
ventional blocks in the script panel to create data-driven programs.
DBLists, in fact, can be used anywhere where regular (static) lists
are used. Additional details of each component are presented next.

2.1 Conventional and Data-aware Block
Palettes

DBSnap++ enables the use of conventional and data-aware blocks.
Conventional blocks are available under standard block groups
like Control, Motion, Operators and Variables. Data-aware blocks
are available under the Datasets and Queries groups. The Datasets
block palette shows the available datasets (relations or tables). Each
dataset is represented by a dataset block. This palette includes by
default a small university database composed of several datasets,
e.g., Students, Courses, Professors, etc. This database enables the
creation of multiple queries of varying complexity with relatively
small results that can be easily inspected. The Datasets block palette
can also be customised by importing datasets from CSV-like files.
This feature is particularly useful to prepare lessons, assignments
and projets using specialized datasets. Like in DBSnap [10], a DB-
Snap++ dataset block has a central text area that shows its name,
a left circular handle to connect it with a parent block or node,
and a distinguishing orange color. As shown in the left screen-
shot of Fig. 1, dataset blocks are always leaf nodes. The Queries
block palette shows the query operators available in DBSnap++.
DBSnap++ supports many relational algebra operators including

DBSnap++: Creating Data-driven Programs by Snapping Blocks

core operators (e.g., Selection, Projection and Rename), join oper-
ators (e.g., Theta-join and Natural-join), set operators (e.g., Cross
Product, Union, Difference and Intersection), and highly useful ex-
tensions like the Aggregation/Grouping operator. Each operator
type has a distinctive color. The structure of a DBSnap++ queries
is very similar to the intuitive structure of query trees commonly
used in database books. The shapes of dataset and query operator
blocks facilitate the manipulation of blocks and the construction of
queries. The shape of a query operator block has three main visual
components: (1) top-left: a circular handle to connect the operator
with its parent block, (2) top-right: a text area to specify required
parameters, and (3) bottom: connection links to link this opera-
tor with its operand(s). The shape of operators facilitates detecting
incomplete operators (with missing operands or parameters) and
prevents the addition of more operands than needed.

2.2 Query Specification Area and Query Result
Panels

Database query trees are constructed in DBSnap++’s query area.
The use of trees to represent queries is a very useful analogy to
learn about database queries (relational algebra and structured query
language or SQL). A query tree clearly shows the datasets used in
the query (leaf nodes) and the way these datasets are processed
or combined by intermediate operator nodes. In fact, the query
processing engine of many database systems transforms queries
into query plan trees before optimizing and executing them. DB-
Snap++’s user interface includes a relational algebra panel that
shows the corresponding relational algebra expression. The expres-
sion is dynamically updated after any change in the query.

As the user builds a query, the query results are dynamically
shown in the query result panel. This panel is automatically up-
dated after any changes in the query. This feature allows the user to
quickly explore the effects of adding, customizing, or re-arranging
operators. DBSnap++’s user interface also enables the exploration
of individual query nodes. To do this, the user only needs to click
on any intermediate query node and the node results will be loaded
in the node result panel. Furthermore, when the user clicks on a
dataset node, the node result panel becomes editable and the user
can add, remove or modify the records of the dataset. Both results
panels support also the visualization of their current content using
various charts, e.g., area, bar, histogram, line and pie charts.

2.3 DBLists and Data-driven Programs

A key feature of DBSnap++ is the integration of database queries
and conventional programming instructions in a single program.
To achieve this, DBSnap++ introduces a new type of block named
DBList (database connected list). A DBList block, shown in item
8 of Fig. 1, is a block that looks similar to a two-dimensional list
block (list of lists) and has a distinctive orange color different than
the color of regular lists. A DBList block is connected to a data-
base query and dynamically retrieves its content by executing the
query. This connection is dynamic, i.e., the DBList content will be
updated anytime the associated query is modified or whenever the
underlying data is updated. DBLists can be creating using the "Cre-
ate DBList" context menu option of a query tree. This action will
create a DBList block under the Variables block group (which also

ITiICSE’18, July 2018, Larnaca, Cyprus

Snap_pp.html DBSnap++ Query and Query Result Panel
Script Canvas Node Result Panel
$
GULjs — Objects.js
3 3
DBBlocks.js Blocks.js Widgets.js
Datasetand | Query DBList Block
Operator | Handler Datasets DBSnap
BIocAks e Queries DBList
Query to Relational ‘I Other Snap Blocks Other Other
Algebra Translation Variables Operators Buttons Tabs
Query Evaluation Motion (ZLooks™
. . ‘
Morphic.js Morph WorldMorph

Figure 2: DBSnap++ architecture.

contains the standard list block). The way the DBList content is
populated is by adding an internal list for every record of the query
result. Since all the records have the same attributes, all the inter-
nal lists will have the same number of elements. DBSnap++ enables
the modification of the query associated with a DBList even after
the query tree has been deleted from the query area. This can be
done by selecting the context menu option to edit the query of a
DBList. This tool will open a new query specification area, load the
current query, and process any query changes.

After a DBList block has been created, it can be used in any loca-
tion where a regular list block could be used. As it is also the case
in Snap!, regular scripts, which in the case of DBSnap++ can now
include DBLists, are created using the script and script result pan-
els. Moreover, DBSnap++ supports the use of multiple instances
of a DBList and is aware of the connection between each instance
and the corresponding query. When the query associated with a
DBList is updated, the changes are propagated to all its instances,
i.e., the content and visual representation of all the instances are
properly updated.

3 IMPLEMENTING DBSnap++

DBSnap++ was implemented as a web application that uses stan-
dard internet browser features (HTML5 and JavaScript). The use of
these technologies enables running DBSnap++ under many inter-
net browsers and hardware devices, e.g., desktop computers, lap-
tops and tablets. Fig. 2 shows the main components of DBSnap++’s
architecture: an HTML web page (Snap_pp.html) and six core Java-
Script libraries (GULjs, Objects.js, DBBlocks.js, Blocks.js, Widgets.js
and Morphic.js). DBSnap++ was built integrating and extending
modules from Snap! (Snap.html, GULjs, Objects.js, Blocks.js, Wid-
gets.js) [9] and DBSnap (DBSnap.html, GULjs, DBBlocks.js) [10].
Snap_pp.html has three container areas: the DBSnap++ Query
and Script Canvas (composed of the block palettes, and the query
and scripting areas), and the query and node result panels. Snap_
pp-html interacts with GULjs to set and adjust the position of the
HTML containers, support the manipulation of blocks, and dis-
play the results of queries and scripts. GULjs defines a global con-
tainer structure that stores general properties. Objects.js defines
smaller containers that can hold blocks and graphical objects. In
DBSnap++, GULjs and Objects.js were extended to enable the use

ITiCSE’18, July 2018, Larnaca, Cyprus

Group by:
LY e count(grade) as gradecount

[CI0]
Aggr: CID="URE585'"

go to x: @ y:
set RegStudents | to
(DBListL
ApH4g4| 8/ crnooz| 6) Diwies! 4§ Dviaos| 10/) Foeet| 7)) Fswoes)| &
Laces7| 7/} MoP180| 8/ MET177) 9/)l Mkoa13| 6|) NGUes2| 6 | OvBs42| 6
PvRo74| o) alToze| 8] aowess| 8 | uRe242| 3| uresas| 10/ usoe| 1

xLnass| 38 ZFv4ss| 7

Figure 4: Program that generates a bar graph.

of query blocks and DBLists. GULjs and Objects.js interact with
DBBlocks.js, Blocks.js and Widgets.js to support the operation of
query and conventional blocks. DBBlocks.js controls the visual prop-
erties and behavior of que query operator and dataset blocks. The
Query Handler module of DBBlocks.js keeps track of the inter-
nal structure of a query and interacts with the Query Evaluation
and Query to Relational Algebra Translation modules to gener-
ate the query result and relational algebra expression, respectively.
Blocks.js contains the specification of conventional scripting blocks
and was extended with the addition of DBLists, special blocks that
look similar to lists but are dynamically linked to database queries.
Widgets.js is a library that specifies the actions associated with
buttons and tabs. This module was extended to properly support
mouse events on the tabs and buttons used to create and edit queries
and DBLists. Particularly, this module propagates the changes made
on the query of a DBList to all the linked DBList instances. Mor-
phic.js, an open-source library developed by Jens Monig, provides
basic classes such as Morph and WorldMorph which specify the
core behavior of blocks and define a basic canvas where blocks
can be manipulated, respectively.

4 DATA-DRIVEN PROGRAMS

DBSnap++ enables users to create data-driven programs in a wide
range of application scenarios. These programs are similar to real-

Y. Silva et al.

set Delvery | to - - -
/ DBList1

1) 33.48047 -112.238543)) 2| 33.553427| -112.210815/} 3| 33.506032/ -112.160008

Figure 6: Program that represents data using sounds.

word programs that retrieve data using database queries and fur-
ther process, analyze or visualize it. Since DBSnap++ programs do
not have to rely on static data, they are able to produce different
results as the underlying data or queries change. A key property of
DBSnap++ programs is that they integrate imperative instructions
and queries. This feature differentiates DBSnap++ from tools that
only support queries (e.g., Bags [2] and DBSnap [10]) or impera-
tive programs (e.g., Scratch [5] and Snap! [9]). This section presents
several sample DBSnap++ programs. Due to space constrains, each
program contains only the core components to showcase a useful
application. These programs can be easily extended to incorporate
additional features.

4.1 Generating Bar Diagrams

DBSnap++ can be used to create visual representations of query
results. This example uses a query to count the number of students
registered in each university course and displays this information
using a bar chart. The program uses the Course_Student table of
DBSnap++’s University database, which contains two attributes:
CID (course ID) and SID (student ID). The query, shown in the
left image of Fig. 3, includes a grouping operator to generate an
aggregated record per course. The program, shown in Fig. 4, cleans
the stage, resets the pointer, and uses a DBList block linked to the
previously described query. After this, the program includes two
nested loops to create the bar chart. The outer loop prints a bar for
each course, and the inner loop prints the individual line segments
of each bar. Fig. 4 also shows a sample of the output.

DBSnap++: Creating Data-driven Programs by Snapping Blocks

ITiICSE’18, July 2018, Larnaca, Cyprus

Feature DBSnap++ SQLSnap DataSnap Bags iDFQL RALT
. . HTMLS, HTMLS, HTMLS, HTMLS, |Borland C++ | Java Swing
Implementation technologies
JavaScript JavaScript JavaScript JavaScript
Allows importing or connecting to custom data °) ° ° ° °
Build-in datasets ° ° °
Can work without external data source ° °
Data graphs ° °
Data manipulation (insert, update, delete) °
Hosted Service ° °
Open source code ° ° °
Publicly available ° ° ° ° °
Querying Capabilities: Aggregations ° ° ° ° ° °
Querying Capabilities: Grouping ° ° ° ° °
Querying Capabilities: Joins ° ° ° ° °
Querying Capabilities: Projection ° ° ° ° °
Querying Capabilities: Selection ° ° ° ° °
Querying Capabilities: Set Operations ° ° ° °
Querying Capabilities: Views °
Shows query results as query is built ° °
Supports data-aware programs ° ° °
Tools to explore intermediate query results ° °
Uses tree-based query representation °
Web application ° ° ° °

Figure 7: Comparison of block-based learning tools for database querying and programming.

4.2 Using Maps and Geographic Coordinates

DBSnap++ can also be used to process and represent geographical
data. In this example, DBSnap++’s import features are used to load
a dataset with the list of a delivery schedule and a map of the corre-
sponding delivery area. This example uses table DeliverySchedule
with attributes: Date, ClientID, Latitude, Longitude, and OrderID.
The query has a projection operator that retrieves the latitude and
longitude coordinates. The program, shown in the left section of
Fig. 5, (1) has an equation to scale the coordinates based on the size
of the map window (480x360) using the top left corner as a starting
point, and (2) moves to each point (x, y) without lifting the pen to
draw the path of the delivery schedule. The output of the program
is presented in the right section of Fig. 5.

4.3 The Sound of Data

DBSnap++ can also be used to represent data for the visually im-
paired using sounds instead of visual artifacts. This example uses
different notes to represent different data values. The query for
this example also uses the Course_Student table of DBSnap++’s
University database. As shown in the right image of Fig. 3, the
query has a select block to retrieve the records of a given course,
and a grouping operator to compute the number of students that
received each grade. The program, shown in Fig. 6, specifies a DB-
List block linked to the previously described query and includes
two nested loops to create the sounds. Each cycle of the outer loop
plays the beeps associated with a given letter grade (one beep per
student receiving that grade). The note to be used in the beeps is
increased at the end of each cycle. This ensures that each grade has
a unique identifying sound. Each cycle of the inner loop produces
a beep sound at the current note.

5 RELATED LEARNING TOOLS

This section presents and compares several block-based tools that
have been previously proposed for database querying and program-
ming. Fig. 7 summarizes the features of all the compared tools. The
remaining part of this section describes the core properties of each
alternative tool and compares it with DBSnap++.

SQLSnap. SQLSnap [8] is a Snap! [9] extension that allows the
user to build SQL queries to be executed on a MySQL database. A
key difference between SQLSnap and DBSnap++ is that SQLSnap
does not use the tree-based query representation. SQLSnap’s query
block closely mirrors the potentially complex text version of SQL
queries. SQLSnap works with a connection to an external MySQL
database or can read data from a text file, although this is limited to
one text file at a time. While SQLSnap is a web-based application,
it must be installed on an appropriate server (e.g. LAMP, XAMPP)
with MySQL and PHP installed in order to interact with a database.
DBSnap++ does not need installation, has datasets preloaded, and
multiple additional datasets can be easily uploaded from text files.

DataSnap. DataSnap [3] is a Snap! [9] extension that uses a REST-
ful API to import real-time data (cloud-based and CSV files). This
data can then be processed within Snap!. DataSnap integrates also
some blocks to visualize data on maps. DataSnap supports a SQL-
like language but has limited querying capabilities, e.g., does not
support joins, grouping and set operators. Furthermore, DataSnap’s
queries closely follow the text version of SQL queries and do not
use the query tree representation. Even though the manuscript pre-
senting this tool [3] states that DataSnap is open source, we could
not find the source code in the web.

ITiICSE’18, July 2018, Larnaca, Cyprus

Bags. Bags [2] is a Snap! modification that supports the spec-
ification of relational algebra queries by manipulating and con-
necting blocks. Like DBSnap++, Bags allows the visualization of
the query results and includes several built-in datasets. Two key
differences between Bags and DBSnap++, however, are related to
query representation and the type of supported programs. In Bags,
queries are represented using blocks that look like the standard
Snap! blocks. DBSnap++ uses customized block shapes and rep-
resents queries using an intuitive tree structure. Also, while DB-
Snap++ supports specifying complete data-driven programs, Bags
only supports the construction of queries which cannot be inte-
grated with conventional programming blocks. Bags allows the
user to explore the results of individual query blocks but does not
automatically update the query results as the user constructs the
query. DBSnap++ updates the node and query results in real-time.

iDFQL. The iDFQL (Interactive Data Flow Language) tool [1] is
a graphical system that allows the creation of relational algebra
queries. Queries in this tool take the form of flow diagrams com-
posed of specialized blocks and links. iDFQL requires a connec-
tion with an external database. A fundamental difference between
iDFQL and DBSnap++ is that, unlike DBSnap++, iDFQL does not
support conventional programming blocks and consequently does
not support the creation of data-driven programs that use the spec-
ified queries. Moreover, connecting blocks in iDFQL is not guided
by the shape of the blocks. Instead, connection links need to be
added separately. DBSnap++ blocks have connection handlers and
connection links that intuitively guide the query construction pro-
cess. Similarly, specifying operator predicates in iDFQL requires
the addition of separate blocks while in DBSnap++ they are inte-
gral components of the operator blocks. iDFQL has compatibility
issues with Windows 7 and later and is not actively maintained.

RALT. The RALT (Relational Algebra Learning Tool) application
[7] allows the creation of relational algebra queries but, unlike DB-
Snap++, does not allow the construction of data-driven programs
using these queries. While RALT and DBSnap++ use trees to rep-
resent queries, RALT uses an extended tree structure that requires
the addition of intermediate nodes to (1) visualize the results of
intermediate query operators and (2) specify operator predicates.
The resulting query trees can quickly grow and fill the limited
query construction area. Furthermore, unlike DBSnap++, RALT re-
quires an external database connection and does not generate the
associated relation algebra expression of the constructed query.

6 DISCUSSION

While DBSnap++ can be used as a learning tool to teach impera-
tive programming and database querying separately, it is particu-
larly useful for teaching data-driven programming (the creation of
programs that process data retrieved from databases). This subject
can be covered as part of programming or database courses. An
important related learning objective in this area is that students
are able to create programs that effectively retrieve data from a
database using a query language and programmatically process
the query results. Here, DBSnap++ can be used as an integrated
environment that enables students to build programs that combine
database queries of varying complexity and conventional program-
ming instructions to process their results. The query results can be

Y. Silva et al.

used for example to (1) specify program units with data-dependent
actions, (2) create visualizations, and (3) further analyze the re-
trieved data. Examples of these applications are provided in Sec. 4.
Moreover, DBSnap++ can be used to show how data changes over
time and how these changes affect the behavior of the programs
students build. The robust set of DBSnap++’s querying features
makes it also an effective tool to teach database querying in data-
base courses. Some of these features, such as the support of data
insertion, modification and deletion, graph generation, and data-
base views, are not currently available in DBSnap. In this context,
students can use DBSnap++ to interactively explore each query op-
erator, build queries that combine multiple operators, and learn the
relationships between query trees and their relational algebra ex-
pressions. Since DBSnap++ can be used with custom datasets and
is a publicly hosted web application [12], instructors can use it in
a wide range of class activities and hardware devices.

7 CONCLUSIONS

Having a clear understanding of database query languages and
being able to build programs that use the query results for var-
ious processing and visualization tasks are key requirements of
many computing job positions. This paper introduces DBSnap++,
a block-based tool aimed at facilitating the learning of data-driven
programming that integrates database queries and conventional
programming instructions. To the best of our knowledge, DBSnap++
is the only tool that enables building data-driven programs where
queries are specified using an intuitive tree-based structure simi-
lar to the one used by many textbooks and educators. DBSnap++
is also an interactive tool that automatically shows any effects of
data or query modifications in the program’s output. This paper
presents the design and implementation details of DBSnap++, shows
several programs enabled by the tool, and presents a detailed com-
parison with other tools.

REFERENCES

[1] AnaP. Appel, Elaine Q. Silva, Caetano Traina, and Agma J. M. Traina. 2004. iD-
FQL: A Query-based Tool to Help the Teaching Process of the Relational Algebra.
In WCETE.

[2] Jason Gorman, Sebastian Gsell, and Chris Mayfield. 2014. Learning Relational
Algebra by Snapping Blocks. In ACM SIGCSE.

[3] Jonathon D. Hellmann. 2015. DataSnap: Enabling Domain Experts and Introduc-
tory Programmers to Process Big Data in a Block-Based Programming Language.
Master’s thesis. Virginia Tech, Virginia, USA.

[4] SeungH.Kim and Jae W. Jeon. 2007. Programming LEGO mindstorms NXT with
visual programming. In ICCAS.

[5] John H. Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie
Rusk. 2008. Programming by Choice: Urban Youth Learning Programming with
Scratch. In ACM SIGCSE.

[6] Assaf Marron, Gera Weiss, and Guy Wiener. 2012. A Decentralized Approach for
Programming Interactive Applications with JavaScript and Blockly. In AGERE!

[7] Pritam Mitra. 2009. Relational Algebra Learning Tool. Technical Report. Dept. of
Computing, Imperial College.

[8] Eckart Modrow. 2014. SQLsnap! http://snapextensions.uni-goettingen.de.
(2014).

[9] Chris North and Ben Shneiderman. 2000. Snap-together Visualization: Can

Users Construct and Operate Coordinated Visualizations? Int. . Hum.-Comput.

Stud. 53, 5 (2000), 715-739.

Yasin N. Silva and Jaime Chon. 2015. DBSnap: Learning Database Queries by

Snapping Blocks. In ACM SIGCSE.

Yasin N. Silva and Jaime Chon. 2015. Querying databases by snapping blocks. In

IEEE ICDE.

[12] Yasin N. Silva, Anthony Nieuwenhuyse, Thomas Schenk, and Alaura Symons.

2018. DBSnap++. http://www.public.asu.edu/~ynsilva/dbsnapplus. (2018).

David Wolber. 2011. App Inventor and Real-world Motivation. In ACM SIGCSE.

=
=

—_
jon

[13

