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ABSTRACT
Social media is a vital means for information-sharing due to its
easy access, low cost, and fast dissemination characteristics. How-
ever, increases in social media usage have corresponded with a rise
in the prevalence of cyberbullying. Most existing cyberbullying
detection methods are supervised and, thus, have two key draw-
backs: (1) The data labeling process is often labor-intensive and
time-consuming; (2) Current labeling guidelines may not be gener-
alized to future instances because of different language usage and
evolving social networks. To address these limitations, this work
introduces a principled approach for unsupervised cyberbullying
detection. The proposed model consists of two main components:
(1) A representation learning network that encodes the social media
session by exploiting multi-modal features, e.g., text, network, and
time. (2) A multi-task learning network that simultaneously fits
the time intervals and estimates the bullying likelihood based on
a Gaussian Mixture Model. The proposed model jointly optimizes
the parameters of both components to overcome the shortcomings
of decoupled training. Our core contribution is an unsupervised
cyberbullying detection model that not only experimentally outper-
forms the state-of-the-art unsupervised models, but also achieves
competitive performance compared to supervised models.
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1 INTRODUCTION
Cyberbullying, defined as “aggressively intentional acts carried
out by a group or an individual using electronic forms of contact,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3411934

@XXX		lilmouse with	echo!!!	
Youuuuuu!!!.

@XXX	I	hope	u	get	shot.

@XXX	The	way	your	b**ch	looks	like	a	
f**king	horse.	Walking	around	with	a	
bunch	of	broke	down	hoes.	

… …
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Social	Media	Session

Go	boy	proud	of	you!	@XXX!$

Figure 1: Illustration of an Instagram session. Bullying com-
ments are repetitively posted bymultiple users. Cyberbully-
ing words are highlighted. What we seek in this work is to
predict whether a given social media session is bullying.

repeatedly or over time against victims who cannot easily defend
themselves” [39], have been rising at an alarming rate. Previous re-
search has found that nearly 43% of teens in the United States have
been victims of cyberbullying [27]. In light of this, efforts aimed
at automatically detecting cyberbullying – which seeks to predict
whether or not interactions within a social media session constitute
cyberbullying – have a profound societal impact. However, detect-
ing cyberbullying on social media can be especially challenging
given that a social media session often consists of multi-modal
information, for instance, an initial post, a sequence of comments,
images/videos, and other social content such as the number of
likes and shares. Fig. 1 presents an Instagram cyberbullying session
where multiple bullying comments were posted.

Existing work on cyberbullying detection is mainly based on
supervised methods that require a large-scale annotated dataset
for training. Although these approaches have yielded promising
results, they suffer from two major limitations: (1) Obtaining a
large number of high-quality annotations for cyberbullying is time-
consuming, labor-intensive, and error-prone because it requires
circumspect examinations of multiple information sources such as
images, videos, and numerous comments [18]; (2) Current guide-
lines for labeling a session as cyberbullying may not be effective in
the future due to the dynamic aspects of language usage and social
networks. We, therefore, study alternative mechanisms for unsuper-
vised cyberbullying detection, which draws inferences from datasets
consisting of input social media data without labeled responses.

Despite potential benefits, unsupervised cyberbullying detection
also encounters several challenges: (1) Because cyberbullying typi-
cally consists of repetitive acts (as shown in Fig. 1), the temporal
characterization of users’ commenting behaviors adds nuanced un-
derstandings to the text-basedmethods that consider each comment
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as a distinct event over time [41]. Such temporal dynamics have
been shown to be particularly useful to distinguish cyberbullying
from non-bullying instances [6, 17, 41]. Hence, a key challenge is
how to simultaneously model temporal characterization and cy-
berbullying detection such that the two tasks mutually improve
each other. (2) Social media sessions inherently present a hierarchi-
cal structure where words form a comment and comments form a
session. Previous studies [6, 47] have revealed that modeling the
hierarchical structure is useful for learning high-quality representa-
tions. Additionally, because meanings of words and comments are
largely context-dependent, the sequential structure of words and
comments need to be properly modeled for identifying relevant
ones (e.g., the highlighted words in Fig. 1); (3) A straightforward
approach for unsupervised cyberbullying detection is to use the
off-the-shelf clustering algorithms (e.g., k-means). The effectiveness
of this approach largely relies on the quality of input data, how-
ever, social media data is typically notorious for its noise, sparsity,
and high-dimensionality. Applying dimensionality reduction to the
input data still presents the drawback of decoupled training, i.e.,
representation learning and clustering are separate.

To address these challenges, we propose a principled unsuper-
vised learning framework–Unsupervised Cyberbullying Detection
via Time-Informed Gaussian Mixture Model (UCD). A central fea-
ture of UCD is that it incorporates the temporal properties of social
media data, enabling the identification of cyberbullying instances
to consider the full history of a social media session. UCD con-
sists of two main components–the representation learning network,
which learns compact multi-modal session representations and the
multi-task learning network, which models the temporal dynamics
within a session while also detecting whether a session is a bullying
instance. In particular, the representation learning network mod-
els social media sessions using a Hierarchical Attention Network
(HAN) [47] and employs a Graph Auto-Encoder (GAE) [23] to learn
representations for all users. The multi-task learning network then
takes the multi-modal representations (e.g., text, user, and social net-
work) as input to estimate the sample bullying-energy/likelihood
using time-informed Gaussian Mixture Models (GMM). The two
UCD components are jointly optimized to mutually boost their
learning effectiveness. The main contributions of this paper are:

• We address the problem of unsupervised cyberbullying detection
in social media platforms, which seeks to automatically identify
bullying instances without labeled data.
• We propose a principled framework for unsupervised cyberbully-
ing detection, which includes two components that jointly learn
low-dimensional representations and predict bullying instances.
• We conduct extensive experiments on two real-world social me-
dia datasets, from Instagram and Vine. The results show that
UCD outperforms state-of-the-art supervised models and can
achieve competitive performance with supervised models. 1

2 RELATEDWORK
We review related work on automatic cyberbullying detection mod-
els and clustering algorithms based on deep neural networks.

1Code available at https://github.com/GitHubLuCheng/UCD

2.1 Cyberbullying Detection
To date, cyberbullying has received a fair amount of empirical at-
tention within psychology and related social science fields. It has
only more recently become a focus of computer science research,
where much of the work has been aimed at developing models
that automatically identify bullying behavior. For instance, existing
work on automatic cyberbullying detection has examined mining
patterns from text [6, 9, 13, 28, 35, 45], social network features
[3, 20, 26], and other media sources such as images and videos
[8, 18, 19, 31, 32] using manually labeled data. Xu et al. [45], for
example, explored several natural language processing (NLP) tech-
niques to identify bullying traces and define the structure of a
bullying episode and the associated roles (e.g., victims and bullies)
on Twitter. Dinakar et al. [13] concatenated TF-IDF features, POS
tags of frequent bigrams, and profane words as content features
to detect cyberbullying behaviors on a manually-labeled corpus of
YouTube comments. Dani et al. [9] sought to incorporate sentiment
into the content features–by capturing the sentiment consistency
of bullying and non-bullying posts–to facilitate cyberbullying de-
tection. From a causality perspective, Cheng et al. [5] sought to
discover the potential confounders among text in cyberbullying
detection such that the resulting classifiers can robustly transfer
between different domains. Although many researchers define cy-
berbullying as a harmful behavior that is repeated over time, rela-
tively little work has examined temporal aspects of cyberbullying.
Among the few studies that have, Soni and Singh [41] modeled the
temporal dynamics of commenting behavior as point processes and
identified several temporal features that distinguish cyberbullying
from non-bullying social media sessions. Cheng et al. [6] employed
a hierarchical attention network to capture the sequence-aware
structure of words and comments in a social media session and
integrated time interval prediction into the detection model.

Crucially, most existing work on cyberbullying detection has
focused on supervised learning models that require large labeled
datasets. To reduce this dependency on human-coded data, Raisi
and Huang [34] proposed a weakly-supervised model that starts
with a small seed vocabulary of bullying indicators and then ex-
tracts bullying roles and additional bullying vocabulary indicators
based on an unlabeled corpus of social media interactions. Another
work [33] has studied cyberbullying detection with an ensemble
of two learners that co-train one another; one learner examines
the language content in the messages while the other considers
the social structure. To our knowledge, the only work using an
unsupervised model for cyberbullying detection inputs several NLP
and social features into the Growing Hierarchical SOM using the
SOMToolbox framework (GHSOM) [10].

2.2 Deep Clustering
Clustering methods based on deep neural networks have shown
promising results in real-world applications (e.g., anomaly detection
[50]) due to their high representational power. Standard clustering-
friendly representations are learned with a two-phase training
procedure. In the first phase, the auto-encoder is trained with the
mean squared error reconstruction loss. In the second phase, the
auto-encoder is further fine-tuned with a combined loss function
consisting of the reconstruction loss and a clustering-specific loss.
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For example, Song et al. [40] applied an auto-encoder in the clus-
tering tasks and introduced a new objective function that includes
the reconstruction error and the distance between data and their
corresponding cluster centers in the latent space. Similarly, the
Deep Embedded Clustering model in [44] projected the data from
an original space to a lower-dimensional feature space and then
jointly optimized a clustering objective using stochastic gradient
descent via backpropagation. Relevant to the present work, mul-
tiple studies have employed unsupervised anomaly detection [2].
For instance, Zong et.al [50] jointly optimized the parameters of a
deep auto-encoder and a mixture model, simultaneously, with the
two components mutually improving each other’s performance.

In contrast to most existing cyberbullying detection models, the
UCD focuses on the unsupervised approach where labeled data is
not available during training. To achieve good performance, we
exploit multi-modal data and relevant information such as the tem-
poral patterns of comments and the hierarchical structure of social
media sessions. Our evaluation results show that the integration of
this additional information can significantly improve the effective-
ness of unsupervised cyberbullying detection.

3 UCD: THE PROPOSED FRAMEWORK
The framework overview in Fig. 2 shows that our model consists
of two major components: (1) a representation learning network
that leverages HAN and GAE to obtain multi-modal representa-
tions, and (2) a multi-task learning network that jointly optimizes
a GMM-based energy estimation task to detect cyberbullying in-
stances and a temporal prediction task to further refine the session
representations with temporal characterizations.

3.1 Representation Learning Network
Social media sessions usually consist of multi-modal information,
such as text (e.g., comments) and social content (e.g., friendship
networks, number of likes and shares). The representation learn-
ing network aims to transform these sparse and high-dimensional
features into a low-dimensional session representation.
HAN for Text. The majority of prior literature on cyberbullying
detection considered the comments in a social media session as
independent events and directly extracted textual features from
a chunk of combined comments. Notwithstanding its simplicity,
this method largely overlooks the hierarchical structure of a social
media session and the long-term dependencies among the sequen-
tially posted comments. Previous studies have evidenced that i)
modeling document structure can significantly improve the qual-
ity of document representations [47]; and ii) capturing long-term
dependencies is particularly useful for sequential data modeling
[11]. In addition, words and comments in a post are not equally
relevant to cyberbullying detection, i.e., some words/comments
are more important than others. For example, “You’re a f**king
loser!” and “Yeah, I’m a loser.” both include the word loser, the for-
mer is, however, more likely to represent an instance of bullying.
Therefore, we also integrate attention mechanisms to distinguish
important words and comments. Following [6], we employ a hierar-
chical attention network to generate the textual representation for
a social media session. The HAN approach is a particularly good
fit in cyberbullying detection as it models the two main levels of

social media sessions (sequences of words and comments) and at
each level, the model captures the long-term dependencies and
integrates mechanisms to differentiate the importance of specific
words and comments based on their context.

The hierarchical structure of the textual content can be charac-
terized as follows: a social media session consists of a sequence of
comments and each comment includes a sequence of words. Given
a session with C comments where each comment i has Li words
{wit |t = 1, 2, ...,Li }, we use the bi-directional Gated Recurrent
Units (GRUs) [1] to model both the word sequence in a comment
and the comment sequence in a session:

−→s it =
−−−→
GRU (Wewit ), ∀t ∈ [1,Li ], i ∈ [1,C]

←−s it =
←−−−
GRU (Wewit ), ∀t ∈ [Li , 1], i ∈ [1,C]

(1)

where each wordwit is first mapped to a latent space with parame-
terWe . The resulting annotation for wordwit is a concatenation
of the forward and backward hidden states, sit = [−→s it ,←−s it ]. To
differentiate the word importance, we adopt the attention mecha-
nism [1, 47] to automatically detect words that are more relevant
and then aggregate the representation of weighted words to form a
comment vector ci :

αit =
exp(hTituw )∑
t exp(hTituw )

; ci =
∑
t
αit sit , (2)

where hit is the output of a fully connected layer of sit and uw
denotes a word-level context vector [47]. αit denotes a normalized
weight describing the importance of wordwit . Similarly, the final
textual representation v of a social media session can be computed
using the encoded comment vectors (i.e., replacing wit of Eq.1
with ci ). Further, we include a dense layer to project the social
content, i.e., number of likes and shares, into a latent space. We
later concatenate the resulting vector p with v to form the multi-
modal representation of a social media session o = [v,p].
GAE for Attributed Social Networks. Self-selection bias (group-
ing with similar others) and peer influence are closely connected
with bullying behaviors in offline environments [7, 14, 37, 43]. Re-
search in human communication [15] reveals a similar observation
that online social network positioning is a comparably strong pre-
dictor for cyberbullying detection. Hence, it is important to consider
the social network structure and peer influence from similar users
for improving the performance of cyberbullying detection.

The representation learning network learns user representation
by exploiting information from social networks where nodes de-
note social media users with corresponding profile information
being the node attributes, and edges denote the follower/followee
relationships. Here, we employ GAE to embed users’ attributes as
low-dimensional vectors such that users with structural proxim-
ity in the social network are close. As one of the most powerful
node embedding approaches, GAE has been applied to several chal-
lenging learning tasks such as link prediction [16, 23] and node
clustering [36]. GAE can naturally incorporate node features and
learn more interpretable user representations [23]. The key of GAE
is the encoding-decoding scheme, i.e., GAE encodes nodes into
low-dimensional vectors which are then decoded to reconstruct the
original network structure. Suppose we are given a social network
G = (V, E) with U = |V| users. The adjacency matrix of this
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Figure 2: Overview of the proposed framework. UCD consists of two components: (1) The representation learning network (the
blue dashed rectangles) constructs multi-modal representations of social media sessions (the green solid rectangles in themid-
dle); (2) The multi-task learning network (the green dashed rectangles) that simultaneously estimates the energy/likelihood
of input samples and predicts time intervals between comments. In particular, the representation learning network combines
user (session owner) representation (UR) in Graph Auto-Encoder (top part) and social representation (SR) in Hierarchical At-
tention Network (HAN, bottom left) to form the session representation. The constructed session representation is the input of
the sample bullying-energy estimation task. Meanwhile, the comment representations (CR) in HAN are fed into the time in-
terval prediction task (bottom part). The overall loss comes from three sources: graph reconstruction error, energy estimation
loss, and time interval prediction error. Best viewed in colors.

graph is A ∈ RU×U . The User-Feature matrix is X ∈ RU×D with D
being the feature dimension. GAE then uses a graph convolutional
network (GCN) [22] encoder and an inner product decoder to learn
a latent matrix Z by minimizing the following reconstruction error:

д =
1
2
∥A − Â∥22 ,

with Â =σ (ZZT ),Z = GCN(X ,A)
(3)

where σ (·) is the logistic sigmoid function.
The final representation of a session is the concatenation of

user (owner) representation and representation output from HAN,
i.e., ss = [z,o], where z is a row vector of Z . This multi-modal
representation is then fed into the multi-task learning network.

3.2 Multi-Task Learning Network
Given the multi-modal representations of input sessions, the multi-
task learning network simultaneously (1) estimates the sample
bullying-energy/likelihood; and (2) models the temporal characteri-
zation of a sequence of comments in a social media session. These
two tasks can mutually enhance each other’s performance in the
training stage. To this end, the multi-task learning network enables
the proposed framework to jointly learn session representations
and discover cyberbullying instances.

3.2.1 Bullying-energy estimation. The first task of the multi-task
learning network is to estimate the sample energy (likelihood) and
classify samples with high energy (low likelihood) as bullying in-
stances. A primary benefit of energy-based models is the flexibility
to specify the energy expression [48]. Here, we construct a GMM-
based density estimator to infer the underlying probability density
function. GMM, a widely used unsupervised learning method, seeks
to fit a multi-modal distribution with multiple unimodal Gaussian
distributions which are the most commonly used distributions for
modeling real-world unimodal data. Previous work [48, 50] has fur-
ther shown that GMM is more effective than simple models for data
with complex structures. Given the complexity and multi-modal na-
ture of social media data, we leverage GMM to accomplish density
estimation tasks over the multi-modal representations.

Let the number of mixture components be K and the latent
representation of a social media session be ss , we first generate
the mixture membership predictions for ss . We then estimate the
parameters of GMM using the predicted membership to obtain
the likelihood estimation of ss . Specifically, we first feed ss into a
multi-layer network (MLN) [42] parameterized by θm . The output
is denoted as pMLN :

pMLN = MLN(ss;θm ) (4)



The probability of ss belonging to each component can be estimated
as follows:

m̂ = softmax(pMLN ) (5)

where m̂ is a K-dimensional vector. Given a batch of N social media
session representations {ss1, ss2, ..., ssN }, together with the cor-
responding predicted memberships, we can further estimate the
parameters in GMM as follows:

ϕ̂k =
N∑
i=1

m̂ik
N

; µ̂k =

∑N
i=1 m̂ikssi∑N
i=1 m̂ik

(6)

Σ̂k =

∑N
i=1 m̂ik (ssi − µ̂k )(ssi − µ̂k )T∑N

i=1 m̂ik
(7)

where ϕ̂k , µ̂k and Σ̂k denote the mixture probability, mean, and
covariance of component k ∈ {1, 2, ...,K} in GMM, respectively.
m̂ik denotes the probability of ssi in the k-th component of GMM.
To build the probability density function, we leverage the energy-
based model [24] which relies on a specific parameterization of the
energy (negative log likelihood). The energy level of a session is
defined as:

E(ssi ;θm ) = − log
( K∑
k=1

ϕ̂k
exp

(
− 1

2 (ssi − µ̂k )T Σ̂−1k (ssi − µ̂k )
)√

|2π Σ̂k |

)
(8)

where | · | is the determinant of a matrix. The model then classifies a
session as cyberbullying if its energy is above a predefined threshold
τ ∈ (0,1) in the testing phase. In practice, τ is typically set to a
comparatively large value, i.e., a cyberbullying session is in general
associated with high energy (hence low likelihood). This is because
bullying samples are less frequently observed in real-world datasets,
as suggested by the statistics in Table 1 as well as in previous
literature [7, 12].

3.2.2 Temporal characterization. Cyberbullying is commonly de-
fined as a repeated act of aggression that develops over time [6,
12, 41]. However, most of the existing computational models con-
sider each comment in a social media session as an isolated event.
Therefore, they largely overlook the temporal dynamics of users’
commenting behavior. Here, we seek to predict the time intervals
between comments for obtaining additional feedback from the tem-
poral characterization. This feature enables the model to exploit the
commonalities and differences across bullying-energy estimation
and temporal-dynamics prediction for improving the final cyber-
bullying detection performance.

We first obtain the output ein of the comment encoder for com-
ment i in session n from the HAN module and then conduct a time
interval prediction task as follows.

ℓ =

C∑
i=1

1
2
∥ f (ein ;θℓ) − ∆ti ∥2, (9)

where f represents a regression model, θℓ denotes the associated
parameters, and ∆ti = ti − ti−1 is the time interval between com-
ment i−1 and i . We set t0 to be 0. Let d denote the dimensions of the
latent representation of social media sessions, θh the parameters of

HAN and θд the parameters of GAE, the final objective function of
UCD can be constructed as:

J =
N∑
n=1

C∑
i=1

1
2
∥ f (ein ;θℓ) − ∆ti ∥2 +

λ1
N

N∑
i=1

E(ssi ;θm )

+
λ2
2
∥A − Â∥22 + λ3P(Σ̂); with P(Σ̂) =

K∑
k=1

d∑
j=1

1
Σ̂k j j

(10)

P(Σ̂) accounts for the singularity issue in GMM, λ1, λ2, and λ3 are
the hyperparameters that control the balance among time interval
prediction error, energy estimation loss, graph reconstruction error
and regularization for GMM. Specifically, the objective function
consists of four components (ordered as presented in Eq. 10):
• The first component is the loss function that characterizes the
prediction error of time interval prediction.
• The second component E(ssi ;θm ) models the likelihood (sample
energy) that session i is observed. Here, minimizing the energy
level of an input sessionwill maximize the likelihood of observing
the session.
• The third component is the reconstruction error of GAE in the
representation learning network. A lower error indicates that the
learned user representations better preserve the structure of the
original attributed social network.
• Due to the singularity issue in GMM, we penalize small values
on the diagonal entries of the covariance matrices Σ̂.
The proposed model jointly optimizes the representation learn-

ing network and the multi-task learning network to learn high-
quality representations for cyberbullying detection. We train the
model by minimizing Eq. 10 using the Adam optimization algorithm
[21], where the error backpropagates through the representation
learning network, the bullying-energy estimation task, and the
time-interval prediction task.

4 EVALUATION
In this section, we present both quantitative and qualitative analyses
to evaluate the proposed UCD framework. Specifically, we answer
the following research questions:
(1) Effectiveness: a. How effective is UCD compared to existing
unsupervised learning approaches and supervised classification
models? b. How does each module, i.e., HAN, GAE, and temporal
modeling, affects the cyberbullying detection performance of UCD?
(2) Robustness: How robust is UCDwhen varyingmodel parameters?

4.1 Datasets
Our experiments use two public datasets crawled from Instagram2

and Vine3 (now in archive status). The datasets were introduced
and released in [18] and [31], respectively. The basic statistics of
these datasets are presented in Fig. 1.
Instagram: Instagram is a popular social media platform. It is also
the platform on which the highest prevalence of cyberbullying
has been reported [29]. Using a snowball sampling method, the
authors in [18] identified 41K Instagram users, 61% of whom had
public profiles. For each public user, the collected data includes the

2https://www.instagram.com/
3https://vine.co/



Table 1: Basic statistics for Instagram and Vine datasets.

Datasets #Sessions #Bully #Non-bully #Comments
Instagram 2,218 678 1,540 155,260

Vine 970 304 666 78,250

media objects the user had posted, the last 150 comments, the list
of user followers/followees, and the list of users who have com-
mented/liked the media objects. Data labeling (whether the session
constituted cyberbullying or not) was conducted on CrowdFlower4
– a crowdsourcing website – using a procedure whereby each ses-
sion was labeled by five different contributors. A session is labeled
as cyberbullying if three or more contributors had labeled this ses-
sion as cyberbullying. Overall, the Instagram dataset includes 2,218
labeled social media sessions.
Vine: The Vine dataset [31] is used for analyzing cyberbullying
in the context of a video-based online platform. It was crawled
using a snowball sampling method in which a random user u is
first selected as a seed and then the crawling continues with the
users that u follows. Each session includes videos, captions, and
associated comments (note that social network information was not
available for this dataset). All sessions in the dataset have at least
15 comments. Similar to the labeling process used for the Instagram
data, a total of 970 Vine sessions were labeled (as cyberbullying vs.
non-bullying) using CrowdFlower.

We use the following information gathered from a media session:

• Attributed social network: A social network where each node
represents a user and has attributes such as the number of total
followers and followees. The edges denote the following and
followed-by relationships.
• Text: The bag-of-words representation of the captions and com-
ments. Each column indicates a term from the corpus and the
entry is the corresponding frequency count.
• Time: The posting timestamps of a media object and its associ-
ated comments. We extract the time difference between any two
consecutive comments.
• Social content: The number of likes and shares of a post receives.

4.2 Experimental setup
To answer the first research question, we compare UCD with mul-
tiple unsupervised learning models:

• k-means. k-means is one of the most common clustering algo-
rithms. It iteratively assigns each data point to one of k groups
with the smallest distance.
• HAE [25]. HAE is an LSTM model that hierarchically builds
embeddings for social media sessions from comments and words.
We also used k-means to cluster the learned representations.
• DCN [46]. DCN is a deep learning-based clustering algorithm
that regulates auto-encoder performance by using k-means.
• DAGMM [50]. DAGMM jointly optimizes a deep auto-encoder
that learns low-dimensional representations and a GMM that
estimates the density function of the latent representations.

4http://www.figure-eight.com/

• XBully [8]. XBully learns multi-modal representations of social
media sessions and then feeds them into a subsequent classifica-
tion model. We replaced the classification model with k-means.
• GHSOM [10]. To our knowledge, Growing Hierarchical Self-
Organizing Map (GHSOM) is the only existing model for unsu-
pervised cyberbullying detection. It extracts sentiment, syntactic,
and semantic features from text and social network. The features
are then fed into the GHSOM tool5 for clustering.
To provide a comprehensive analysis of UCD, we also include

the following supervised methods:
• Naïve Bayes (NB). NB is a probabilistic classifier based on Bayes’
theorem with strong independence assumptions between the
features. It is one of the most popular (baseline) methods for text
classification.
• Random Forest (RF). RF consists of several individual decision
trees that operate as an ensemble. Each individual tree generates
a class prediction and the class with the most votes becomes the
model’s prediction.
• Logistic Regression (LR). LR is a statistical model that uses a
logistic function to model a binary dependent variable. It is a
common baseline algorithm for binary classification.

For baselines using k-means, we set the number of clusters to 2, and
label the cluster with fewer elements as bullying and the other one
as non-bullying. This assumption is supported by the statistics in
Table 1 and also generally evident in other real-world cyberbullying
datasets [49]. Note that our proposed method UCD does not require
this assumption as it optimizes Eq. 10 for clustering bullying and
non-bullying instances. We implemented the following variants of
UCD to examine the impact of each UCD component.
• UCDXtext. UCD without HAN. We do not report this variant
for Vine given that its social network information is not available.
• UCDXtime. UCD without time interval prediction.
• UCDXgraph. UCD without GAE.
Following previous literature [7, 41], we use four common evalu-
ation metrics – Precision, Recall, F1, and AUROC (Area Under the
Receiver Operating Characteristic Curve). Note that we are more in-
terested in detecting a cyberbullying instance, therefore, we report
Precision, Recall and F1 corresponding to the bullying (positive)
class. While the overall performance can be effectively measured
by F1 and AUROC scores, multiple application scenarios of cyber-
bullying detection could particularly benefit from the identification
of as many positive cases as possible, i.e., high Recall.
Parameter Setting. Based on Eq. 10, the UCD framework has five
hyperparameters: (1) λ1, for balancing the sample bullying-energy
loss; (2) λ2, for controlling the weight of the reconstruction error
of GAE; (3) λ3, for controlling the weight of diagonal entries in the
covariance matrices; (4) K ,6 the number of mixtures in the GMM;
and (5) τ ∈ (0, 1), a pre-defined energy threshold. We set the pa-
rameters based on sensitivity analysis, which is detailed in Section
4.5. Specifically, we set λ1 = 1e − 4, λ3 = 1e − 9 and K = 5 for both
datasets. The energy threshold τ is set to 65% for Instagram and
70% for Vine. Therefore, Instagram and Vine test sessions with the

5http://www.ifs.tuwien.ac.at/ andi/ghsom/
6This is different from the k in k -means, which decides the bullying and non-bullying
clusters. K in GMM denotes the number of memberships and relates to computing the
sample energy. We use the energy threshold to detect bullying instances.



Table 2: Performance evaluation with Instagram data.

Unsupervised Learning Models
Metrics Precision Recall F1 AUROC
k-means 0.79±0.02 0.29±0.04 0.43±0.05 0.63±0.02
XBully 0.32±0.02 0.47±0.03 0.38±0.02 0.51±0.02
HAE 0.53±0.02 0.27±0.03 0.35±0.03 0.53±0.01
DCN 0.87±0.02 0.23±0.02 0.36±0.02 0.61±0.01

DAGMM 0.56±0.18 0.56±0.18 0.56±0.18 0.56±0.03
GHSOM 0.35±0.12 0.38±0.06 0.36±0.08 0.54±0.11
UCDXtext 0.33±0.01 0.34±0.01 0.33±0.01 0.53±0.02
UCDXtime 0.47±0.02 0.48±0.01 0.48±0.01 0.63±0.01
UCDXgraph 0.56±0.02 0.57±0.01 0.57±0.02 0.69±0.01

UCD 0.59±0.02 0.66±0.02 0.63±0.02 0.73±0.01
Supervised Learning Models

Metrics Precision Recall F1 AUROC
NB 0.40±0.03 0.69±0.03 0.51±0.03 0.62±0.02
RF 0.78±0.03 0.53±0.03 0.63±0.03 0.73±0.01
LR 0.79±0.03 0.55±0.03 0.64±0.03 0.74±0.03

Table 3: Performance evaluation with Vine data.

Unsupervised Learning Models
Metrics Precision Recall F1 AUROC
k-means 0.03±0.08 0.00±0.00 0.00±0.01 0.50±0.00
XBully 0.48±0.08 0.27±0.03 0.34±0.04 0.57±0.02
HAE 0.18±0.04 0.34±0.08 0.23±0.04 0.57±0.03
DCN 0.29±0.20 0.32±0.39 0.22±0.19 0.50±0.03

DAGMM 0.36±0.09 0.31±0.08 0.33±0.08 0.54±0.00
GHSOM 0.32±0.09 0.38±0.10 0.34±0.08 0.50±0.07

UCDXtime 0.33±0.02 0.39±0.03 0.36±0.02 0.56±0.01
UCDXgraph 0.43±0.02 0.40±0.03 0.41±0.02 0.58±0.01

Supervised Learning Models
Metrics Precision Recall F1 AUROC
NB 0.49±0.05 0.72±0.05 0.58±0.04 0.70±0.04
RF 0.67±0.05 0.42±0.05 0.51±0.04 0.66±0.02
LR 0.62± 0.05 0.57±0.05 0.59±0.04 0.71±0.03

35% and the 30% highest energy values will be classified as bullying
cases and the rest as non-bullying cases respectively. For Instagram,
we additionally set λ2 = 0.01. For the baseline methods, we con-
duct similar sensitivity analysis on the key parameters reported
in original papers. For both datasets, we use 80% of the data for
training and the rest for testing. Each experiment is run 10 times,
mean and standard deviations are reported.

4.3 Quantitative Results
For the Instagram dataset, we compare UCD and its variants with all
baselines. Due to the lack of social network information in the Vine
dataset, UCD and UCDXtext are not available for Vine. The best
results for unsupervised and supervised models are highlighted
in Table 2 and 3 with bold text. The results we present for RF are
different from those reported in [32]. We believe this is the case
because the original work: 1) considered additional features such as
the percentage of negative comments, emotions exhibited in videos,
and latent semantic features (10 topics based on the comments using
LDA), and 2) performed oversampling (SMOTE [4]) to balance the

Vine dataset. We use the original Vine dataset to better reflect real-
world scenarios.

We observe that (1) UCD achieves the best performance in Re-
call, F1, AUROC, and competitive Precision compared to the un-
supervised baselines for both datasets. For the Instagram dataset,
UCD shows 15.9%, 19.7%, and 35.2% of improvement on AUROC
compared to the results using raw features (i.e., k-means), repre-
sentation learning (i.e., DCN), and the unsupervised cyberbullying
detection model GHSOM, respectively. AUROC considers all possi-
ble thresholds for classification and is a more appropriate metric
when datasets are imbalanced; (2) Imbalanced datasets affect the
trade-off between Recall and Precision. While achieving superior
Precision, baseline models DCN and k-means show poor Recall. We
infer that these models fail to identify most of the cyberbullying
instances, which is undesired in many cyberbullying applications;
and (3) UCD achieves competitive Recall, F1 and AUC scores com-
pared to supervised methods using Instagram dataset. For instance,
LR improves F1 by 1.6% over UCD whereas NB is outperformed
by UCD regarding these three metrics. The Precision of UCD is
comparatively low implying that its energy threshold favors identi-
fying cyberbullying instances, therefore, UCD miss-classifies more
non-bullying instances than baselines. In the Vine dataset, the super-
vised methods show larger advantages over UCDXgraph, reflecting
the importance of integrating social network information and us-
ing larger datasets in order to maximize the performance of UCD.
Of particular interest is that UCD also achieves more balanced
Precision-Recall compared to supervised models.

We make the following observations when comparing UCD with
its own variants: (1) UCD achieves better performance in all metrics,
especially against UCDXtext and UCDXtime, leading us to conclude
that each submodule (HAN, GAE, and temporal analysis) has a
positive influence on UCD’s performance; (2) The performance of
UCDXtext drops significantly compared to other variants, highlight-
ing the importance of textual features in cyberbullying detection;
(3) UCDXgraph outperforms UCDXtime, indicating that temporal
analysis can provide more relevant information for cyberbullying
detection than social network properties and thus highlighting the
importance of modeling temporal patterns; and (4) the proposed
framework performs better on Instagram data than on Vine data.
This is in part due to the smaller sample size and lack of social
network information in the Vine dataset.

In summary, UCD outperforms unsupervised baselines in terms
of identifying cyberbullying instances and the overall performance.
Compared to supervised models, it shows competitive performance
when the sample size is comparatively large and the social network
information is available. UCD and baselines cannot achieve bal-
anced performance in detecting both bullying and non-bullying
instances. Future work is encouraged to investigate such methods.

4.4 Qualitative Analysis
We further investigate the qualities of the learned multi-modal rep-
resentations using t-SNE visualizations in Fig. 3. Taking Instagram
as an example, we make the following observations:

• As shown in Fig. 3(h), UCD better separates the bullying and
non-bullying samples in the latent space. The results of most of
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Figure 3: t-SNE visualizations of the low dimensional representations using the Instagram dataset. The red dots denote
instances of the bullying class and the blue points instances of the non-bullying class. Best viewed in colors.

the other models, particularly XBully, HAE, DCN, and UCDXtext,
yield more overlapped clusters.
• From the results of DAGMM and UCD, we observe that mod-
els with GMM can learn discriminative representations, which
is evident by the greater separation between bullying and non-
bullying clusters). The overall performance of UCD is better than
DAGMM, indicating that UCD benefits from the joint optimiza-
tion of cyberbullying detection and time interval prediction.
• Both UCD and DAGMM outperform DCN. With a pre-trained
auto-encoder, DCN can get easily stuck in a local optimum for
achieving lower reconstruction error and could be suboptimal for
the subsequent density estimation tasks [50]. A joint optimization
of representation learning, bullying-energy estimation, and time
interval prediction can help avoid these local optimal cases and
achieve better learning performance.
• In contrast to other baseline methods, such as XBully and DCN,
HAE in Fig. 3(b) generates large regions that are primarily popu-
lated by either bullying or non-bullying samples. This confirms
that modeling the hierarchical structure of a session has an im-
portant impact in cyberbullying detection.
• UCDXtime produces two main bullying clusters (two red clus-
ters), UCDXgraph generates similar results to UCD, and UCDX-
text fails to learn discriminative representations, evidenced by
the overlap between the bullying and non-bullying clusters.

4.5 Parameter Analysis
The UCDmodel has five core parameters (λ1, λ2, λ3,K , τ ) for balanc-
ing the weights of bullying-energy estimation loss, reconstruction

error, regularization of the covariance matrices, the number of mix-
tures in GMM, and the energy threshold, respectively. Here, we
further divide the training data into training (80%) and validation
(20%) sets. To investigate the effects of the first four parameters, we
run experiments on the Instagram dataset varying one parameter
at a time and evaluate how it affects the overall performance. We
show the sensitivity analysis w.r.t. AUROC and F1 scores in Fig.
4. We observe that large λ1 that overemphasizes the energy esti-
mation loss can lead to poor performance regarding both F1 and
AUROC scores. The trend of varying K is similar to that of λ1, i.e.,
the performance drops when the number of components in GMM
becomes too large. The best performance is obtained when λ1 is set
to 1e−4 and K is set to 5. In contrast, the performance of varying λ2
displays an ascending trend in a certain range as shown in Fig. 4(b).
The UCD model with a slightly large λ2 controlling the importance
of GAE is more likely to obtain better results. Unsurprisingly, when
the covariance matrices in GMM are given too much penalization,
i.e., a large λ3, the F1 and AUROC scores decrease significantly, as
shown in Fig. 4(c). The last parameter τ represents the threshold
for identifying bullying instances. Given that UCD largely relies
on τ for cyberbullying detection, we use both Instagram and Vine
datasets to examine its influence. The results are presented in Fig. 5.
It shows that UCD is more robust to τ for Vine, whereas its perfor-
mance slightly decreases for Instagram as τ increases. In practice,
λ3 should be set to a small value, and a proper value for parameter
τ should be experimentally identified. In general, UCD is robust to
most of the model parameters, and consequently can be tuned for
various real-world applications.
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Figure 4: Parameter study w.r.t the AUROC and F1 scores.
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Figure 5: Effects of τ on AUROC and F1 scores.

4.6 Case Study
In this subsection, we present two Instagram sessions, one detected
as bullying and one detected as non-bullying by UCD. We visualize
each with the hierarchical attention information to validate UCD’s
capability of selecting informative comments and words in a ses-
sion. The results can be seen in Fig. 6. Every line in each sub-figure
is a comment. Shades of blue denote comment weights and shades
of red denote word weights. Because both sessions have many com-
ments, only a portion of the content is shown here. Fig. 6(a) shows
that UCD can select the words that are more strongly associated
with bullying, such as f*ckin, b*tch, disgusted and hell. In Fig. 6(b),
we observe that UCD can also deal with complex cross-comment
context. For example, although the session might appear to be a
bullying session when looking only at the second comment from
the bottom, UCD assigns the session to the non-bullying cluster
because it also considers the context of that comment.

5 DISCUSSION
In this section, we elaborate on the reasons behind the performance
of UCD, its research impact, and practical considerations. UCD
benefits from the following design mechanisms:

(a) Predicted as bullying session.

(b) Predicted as non-bullying session.

Figure 6: Case study using the Instagram dataset.

• Multi-modal features. UCD actively leverages multi-modal data
including text, user information, social network information, and
social content. UCD also benefits from deep learning mechanisms
specifically designed for each modality, e.g., HAN models the
sequence of comments and the hierarchy of a session. Previous
work [8] reported the benefits of using multi-modal data to con-
tribute complementary application domain insights and enable
better learning performance.
• Complementary temporal analysis. In addition to multi-modal
representation learning, UCD simultaneously estimates sample
energy of being a bullying instance and predicts the time-interval
between comments to refine the session representations. Tempo-
ral modeling adds nuance to the representation learning network
that otherwise would not consider comment evolution [6, 41].
• Joint optimization. A key property that differentiates UCD from
others is it jointly optimizes the parameters for representation
learning, temporal modeling, and bullying-energy estimation.
This approach prevents the drawbacks of decoupled training.
As one of the first attempts to detect cyberbullying in an unsu-

pervised manner, UCD explores the use of deep learning algorithms
and shows they can achieve relatively high performance levels. The
development of UCD has relevant research and practical impact.
UCD addresses two key limitations of supervised models–that (1)
given data labeling is often time-consuming and labor-intensive,
UCD becomes an effective alternative when labeled data is either un-
available or insufficient for training a good supervised classifier; and
(2) the current guidelines for labeling cyberbullying cannot be gen-
eralized to future instances due to the dynamic nature of language
and social networks. This study warrants further research efforts in
unsupervised cyberbullying detection. Regarding the practical use
of UCD, it could be easily integrated into third-party anti-bullying
apps, such as Bark7 and BullyBlocker [38], or as a component of
automated mediation tools [30].

6 CONCLUSIONS AND FUTUREWORK
Existing efforts towards detecting cyberbullying have focused pri-
marily on supervised methods that require large amounts of time
and labor to annotate datasets, and use annotations that may not
be valid in the future due to the dynamic aspects of language and
social network. To address these limitations, we propose an unsu-
pervised cyberbullying detection framework (UCD) that consists
7https://www.bark.us



of two major components: a representation learning network that
encodes multi-modal session representations and amulti-task learn-
ing network that simultaneously estimates sample bullying-energy
and models evolving dynamics of comments. The joint parameter
optimization in UCD enables its components tomore effectively con-
tribute to better overall performance levels. Extensive experimental
results on two real-world datasets corroborate UCD’s effectiveness.

The present findings elucidate multiple paths for future work,
including a more detailed analysis of the temporal characteristics
of cyberbullying behavior in social media and the study of user-
session networks (where user and session are the nodes) to directly
explore the connection between users and their associated posts.
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