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Abstract

A time series is a sequence of data points in successive temporal order. Time

series data is produced in many applications scenarios and the techniques for

its analysis have generated substantial interest. Time series join is a primi-

tive operation that retrieves all pairs of correlated subsequences from two given

time series. As the Pearson correlation coefficient, a measure of the correlation

between two variables, has multiple beneficial mathematical properties, for ex-

ample the fact that it is invariant with respect to scale and offset, it is used

to measure the correlation between two time series. Considering the need to

analyze big time series data, we focus on the study of scalable and distributed

techniques to process massive datasets. Specifically, we propose a parallel ap-

proach to perform time series joins using Spark, a popular analytics engine for

large-scale data processing. Our solution builds on (1) a fast method to compute

the Fast Fourier Transform (FFT) on the times series to calculate the correla-

tion between two time series, (2) a loss-less partition method to divide the time

series into multiple subsequences and enable a parallel and correct computation

of the join result, and (3) optimization techniques to avoid redundant compu-

tations. We performed extensive tests and showed that the proposed approach

is efficient and scalable across different datasets and test configurations.
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1. Introduction

A time series is a sequence of data items or observations that are ordered in

time. Time series datasets are produced in a variety of applications, including

financial data analysis [1], medical and health monitoring [2, 3], and industrial

automation applications [4]. In the financial domain, time series can keep track

of stock prices, currency rates or commodity prices over time. Using this data,

organizations can detect outliers, find patterns and forecast future variations. In

the medical field, time series are generated by various monitoring systems, such

as ECG and EEG devices. These time series could be used to better diagnose

patients by comparing a patient’s time series with the ones in a database of

known patterns. Moreover, the rapid expansion of IoT (Internet of Things)

technologies that produce large amounts of time series data creates the need for

efficient mechanisms to process and analyze large time series.

Time series join is a primitive and useful operation in time series data analy-

sis. This operation aims to identify all pairs of correlated subsequences from two

given time series. The operation requires a measure to compute the similarity or

correlation between two subsequences. The Pearson correlation coefficient is a

commonly used similarity measure for time series due to its multiple beneficial

mathematical properties, such as the fact that it is invariant with respect to

scale and offset. The Pearson coefficient can reveal the true similarity between

two sequences using Z-normalization, and represent a fair correlation compar-

ison using length normalization. The correlated subsequences generated using

the Pearson coefficient can provide more useful information than other similarity

measures, such as ED (Euclidean Distance), DTW (Dynamic Time Warping)[5],

and LCSS (Longest Common Subsequence) [6]. Particularly, the generated cor-

related subsequences are robust enough to perform additional analysis tasks

such as data classification, clustering, forecasting, pattern discovery, and outlier

detection. In this paper, we adopt the use of the Person correlation coefficient

as the similarity measure.

While time series datasets can vary in size, this paper focuses on the study of
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highly scalable mechanisms to process very large time series data. These mech-

anisms are of particular interest considering that many industrial applications

generate very large time series and the fact that performing time series anal-

ysis on these datasets using a single computer is often inefficient. Specifically,

we study time series joins on Apache Spark, a primarily in-memory big data

processing framework. Spark uses the RDD (Resilient Distributed Datasets)

as its primary data structure and supports a rich set of data operations. Un-

like Hadoop, that writes intermediate results into the distributed file system

(HDFS), Spark keeps intermediate results in memory and makes it easy to

share data among parallel jobs.

Joining two time series based on correlation can be computationally expen-

sive. The naive algorithm takes O(n4), where n is the length of the time series.

The previously proposed Jocor approach requires O(n2 log n)[7]. In this paper,

we propose a parallel algorithm that can find out the correlated segments faster

than non-parallel join approaches with the time complexity of O(n2 log n). In

order to achieve this goal, we devise a parallel FFT algorithm to compute the

shifted cross products between two time series. Furthermore, we propose a loss-

less partition method for time series segmentation and shifted-cross-product ma-

trix partitioning to eliminate data redundancy and unnecessary computations.

Our proposed parallel algorithm can efficiently perform joins on very long time

series, or many short time series. Also, the proposed parallel algorithm can be

easily extended to other similarity functions by changing the similarity measures

when computing the similarities of all possible subsequences.

The main contributions of this paper are:

1. We devised a parallel FFT algorithm to enable the efficient computation

of Pearson correlation coefficients.

2. We designed new partitioning methods for time series segmentation and

shifted-cross-product matrix decomposition.

3. We implemented the proposed parallel time series join algorithm on Spark.

In order to improve the efficiency further, we designed and implemented
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mechanisms for removing redundant data.

4. We conducted extensive experiments on public real data sets to verify the

efficiency and scalability of the proposed algorithms.

The remaining part of the paper is organized as follows. Related Work is

discussed in Section 2. In Section 3, we present the problem definition and back-

ground concepts. Section 4 discusses the details of the parallel FFT algorithm.

Section 5 presents the methods for time series segmentation and shifted-cross-

product matrix partitioning. Section 6 presents the proposed parallel time series

join algorithm. The experimental results are shown in Section 7 and our con-

clusion in Section 8.

2. Related Works

Time series join is a basic operation in time series data analysis. It can

provide useful information for time series classification, clustering, forecasting,

motif discovery and outlier detection[8]. Most of the related work focuses on the

subsequence search problem. There is little work focusing on the join problem

due to its high computational complexity. The existing work can be organized

into several categories.

One such category is composed of methods that use ED (Euclidean Distance)[9],

DTW (Dynamic Time Warping)[5], and LCSS (Longest Common Subsequence)

[6] as the similarity measures. These methods operate on raw data using nor-

malization techniques [10, 11] and consequently are vulnerable to variations of

scale and offset. The algorithms using ED require that the two time series be of

equal length. These methods could produce large errors when processing time

series with different phases. The algorithms based on DTW can lead to unin-

tuitive alignments, where a single point on one time series maps onto a large

subsection of another time series. Also, this approach is sensitive to noise and

computationally expensive[12].

Another category of related work is composed of methods that apply Jac-

card similarity [13] as the similarity measure. This approach transforms the
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time series into a set and applies the Jaccard metric to calculate the similarity

between two sequences. Since the Jaccard metric has been proposed to compute

similarities of finite sets, this approach is not efficient with very long time series.

Many of the contributions in this area aim to retrieve similar subsequences

with length constraints. Some techniques focus on finding the longest correlated

sequences between a query and a long time series. In[14], the authors propose an

approach that uses an index and an α-skip method to find the longest segment

with a correlation (with respect to the query) above a given threshold.

In recent years, several algorithms, such as Jocor[7] and LCS-Jocor[15], have

addressed the problem of time series join. The time complexity of Jocor is

O(n2 log n), where n is the length of the time series. LCS-Jocor transforms

the time series into a string using PAA and SAX[16], finds the longest common

substrings (LCS), and computes the correlations of corresponding subsequences.

In[17], the authors introduce Matrix Profile, a data structure for time series data

analysis and related work exploiting this data structure [18]. The Matrix Profile

contains, in fact, the pre-computed similarities of all possible subsequences in the

time series. Based on Matrix Profile, all similar sub time series can be retrieved.

The computational complexity of computing the Matrix Profile is O(n2logn).

The authors also extended their work by using a GPU to accelerate the time

series join, and the time complexity of computing Matrix Profile is reduced

to O(n2). [19, 20]. In [21], the authors proposed a new algorithm SCRIMP++

running on single machine and accelerated by GPU. While, SCRIMP++ applied

the ED as the similarity measure and cannot support range queries.

Recently, distributed and parallel platforms have been widely used for large

scale data analysis. Some of works are focusing on performing join operations

using distributed and parallel platforms. The works in [22, 23, 24, 25] have

explored the efficient way to perform set similarity joins. The parallel theta

join using MapReduce that to join two data sets on attributes like in relational

databases is explored in [26, 27]. The similarity joins on high dimensional data

using Spark is studied based on data representation and vertical partition tech-

niques [28]. However, our approaches aims to find correlated segments from
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Table 1: Symbols And Definition

Symbol Definition
T Time Series T
|T | The length of time series T
n1 The length of time series Tr
n2 The length of time series Ts
L The length of correlated subsequence
Lmin The smallest length of correlated subsequence
l The length of the subsequence in each segment

C(T
′
r , T

′
s) Correlation coefficient between subsequences T

′
r and T

′
s

W(m/2)nk Butterfly coefficient of FFT
X(k) The result of FFT
I The index of a data point in the time series
k The segment index during time series segmentation
Z The Shift-Cross-Product Matrix of two time series

two time series. In [29], it introduced predictive analytics approaches based on

time series and neural network using MapReduce framework. These methods

are mainly applicable to precision agriculture. The work in [30] proposed differ-

ent methods for predicting big time series combined Spark’s MLlib library for

machine learning. These methods are different from our methods, so we do not

go into details.

FFT algorithm is widely used in many industries for data tranformation.

Also, there are many related works on parallel FFT, such as BLAS [31]. In

BLAS, the parallel FFT is implemented by MPI. In this work, we proposed a

implementation for parallel FFT algorithm that is different from that in BLAS.

In this work, the parallel FFT algorithm is implemented on Spark cluster by

utilizing the relationships of butterfly coefficient with the data index. The but-

terfly coefficient for each element is computed paralleled only based on the data

index in the original data sequence. We will discuss the details in Section 4.

In summary, existing algorithms for time series joins have high time complex-

ity and most produce inaccurate results. In this paper, we propose an efficient

parallel time series join method on Spark. Our approach achieves better perfor-

mance by relying on a parallel FFT algorithm and effectively integrating data

partitioning techniques.
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Figure 1: Butterfly Operation
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Figure 3: Parallel FFT

3. Problem Definition and Background

In this section, we present the problem definition and introduce the required

background concepts. Table 1 describes the symbols used in this paper.

Definition 1. (Time Series) A Time Series T is a sequence of data points in
temporal order. T = [(t1, d1), (t2, d2), ..., (tn, dn)], where d is the data item at
time t, and n is the length of the time series.

Definition 2. (Subsequence) A Subsequence T [j : j+m] = [dj , dj+1, ..., dj+m−1]
is a set of continuous points in T starting at position j with length m. In this
paper, we just consider the data values of the time series.

Definition 3. (Pearson Correlation Coefficient) The Pearson correlation co-
efficient is a measure of the correlation between two variables. It measures the
degree of correlation between two time series. Given two time series Tr and Ts,
the Pearson correlation coefficient is computed using Formula 1.

C(Tr, Ts) =
(E[(Tr − E(Tr))(Ts − E(Ts))])

(σTrσTs)
(1)

The Pearson correlation coefficient is not a metric and it range is [-1, 1].

When the coefficient value is closer to 1, the two time series are more positively

correlated. When the coefficient is closer to -1, the two time series are more

negatively correlated. The positive correlation can better reflect the similarity

between two time series. In this paper, unless explicitly stated, we only consider
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positively correlated subsequences. Observe that the correlation coefficient can

be computed using Formula 2, where uTr , µTs and σTr , σTs are the mean and

Standard deviation of Tr and Ts respectively, and the
∑
TrTs can be calculated

from the dot product between the subsequences of the two sequences.

C(Tr, Ts) =
(
∑
TrTs −mµTrµTs)

(mσTrσTs)
(2)

In order to guarantee scale and offset invariance, we normalize the time

series using Z-Normalization before computing the correlation coefficient. The

Z-Normalization is computed using Formula 3.

Norm(T ) =
(T − µT )

σT
(3)

Definition 4. (Time Series Join) Given two time series Tr and Ts with the
same resolution, a correlation coefficient threshold θ and the minimum length
Lmin, T ′r and T ′s are subsequences of Tr and Ts, respectively, the Time Series Join
on Tr and Ts aims to retrieve all possible subsequence pairs that satisfy C(T ′r, T

′
s)

≥ θ , |T ′r| ≥ Lmin and |T ′s| ≥ Lmin.

Definition 5. (Shift-Cross-Product Matrix) Given two time series Tr and Ts,
the Shift-Cross-Product Matrix Z stores the cross products of arbitrary subse-
quences in Tr and Ts. The size of Z is n2 ∗ 2n1, where n2 is the length of
Ts and n1 is the length of Tr. The purpose is to reuses the computation when
compute the correlation between two time series, use a matrix caching the shift
cross product between two time series[7].

Definition 6. (Fast Fourier Transform) FFT is an efficient algorithm to com-
pute the DFT (Discrete Fourier Transform) of a sequence, and the earliest radix-
2 FFT was introduced in [32]. FFT is used to compute the cross products of
arbitrary subsequences of two time series. By doing this, the computational
time complexity of

∑
TrTs in Formula 2 can be reduced to O(n2). FFT can be

computed as follows:

X(k) =

m/2∑
n=1

x(2n)Wnk
m/2 +W k

m

m/2∑
n=1

x(2n+ 1)Wnk
m/2 (4)

X(k +
m

2
) =

m/2∑
n=1

x(2n)Wnk
m/2 −W

k
m

m/2∑
n=1

x(2n+ 1)Wnk
m/2 (5)

Where Wnk
m/2 = exp(−i∗ 2π∗(nk)

m/2
) (i denotes the complex unit). x(2n) is an

element in the original sequence and X(k) is the element after transformation.

The range of k is k = 0, 1, ...,m/2. In this paper, we devise a parallel FFT

algorithm to improve the efficiency of cross product computation.
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4. Parallel FFT

FFT algorithm can reduce the computational time complexity of DFT from

O(n2) to O(n log n). In this paper, the use of the Pearson correlation coefficient

as the similarity measure, creates the need to compute the cross products of

subsequences. In order to perform this task efficiently, we devised a parallel

FFT algorithm.

4.1. Traditional FFT Algorithm

The basic idea of FFT is to divide a sequence into two equal parts iteratively.

The odd part x1(n) contains the data items with odd index and the even part

x2(n) the items with even index. x1(n) and x2(n) are computed using equations

4 and 5 [33], respectively. Formulas 4 and 5 are known as the butterfly operation.

The Wnk
m/2 component in both equations is known as the butterfly coefficient.

Figure 1 shows the butterfly operation between two elements. The traditional

FFT algorithm processes the sequence by generating each possible pair of odd

and even parts iteratively using formulas 4 and 5, as shown in Figure 2.

The algorithmic steps of FFT are given in Figure 2. Using the time series

T = [3,5,9,11,14,1,7,10] as an example, the algorithm first divides the sequence

into the odd and even parts iteratively. This steps enables the generation of a

new ordered sequence T ′ = [3,14,9,7,5,1,11,10]. Finally, the butterfly operation

is performed on T ′ and this generates a new sequence, as shown in Figure 4.

4.2. Parallel FFT Algorithm

In the FFT algorithm, we can observe that the butterfly coefficient for each

element is related to its original index in the time series. Considering this, for

each Ith element dI , we can generate a binary code B(I) by iterative computing

I = I
2i , where i is the number of the iterative computation (which is determined

by the length of the time series). In the ith iterative computation, the ith bit

in B(I) is set to 0 when I is even, and 1 otherwise. This produces a binary

code B(I) for each element. In fact, this binary code contains the position of

the element in each iterative computation using the traditional FFT. Using this
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Figure 4: An example of traditional FFT
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information, we can compute the butterfly coefficient for each element indepen-

dently. For each element dI and its butterfly coefficient, the generic computing

formulas can be reduced to Formula 6 and Formula 7. In Formula 6, j represents

the bit positions set to 1 in the binary code B(I).

W (n) =
∏

W k
2j ∗ (−1)t, k ∈ [0, 2j−1) t =

0 n=k

1 n=k+2j−1

(6)

X(n) =

n−1∑
i=0

x(i) ∗W (n) (7)

In the above generic formulas, the only parameter is the element’s index I.

Based on these formulas, the transformed value of each element can be computed

independently. Thus, we can parallelize the FFT computation by removing the

iterative computations in the traditional FFT approach.
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The parallel FFT algorithm has four steps. First, it gets the original index

I of each element. Second, it transforms the value of index I into binary code

B(I) and gets all the bit positions that are set to 1 in B(I). Third, it computes

the butterfly coefficient using Formula 6 based on the value of bit positions

obtained in the previous step. Finally, it computes the transformed value of

each element using Formula 7. As the process for each element is independent,

all the steps are implemented in a parallel manner. The steps of parallel FFT

are shown in Figure 3.

Using the sample time series T = [3,5,9,11,14,1,7,10], according to Figure 3,

we get the original indices for each element in T as [0,1,2,3,4,5,6,7] and their

binary codes. Specifically, for element 11 with index I=3, the binary code B(3)

is ’110’. Its butterfly coefficient is W (n) =
∏

(exp(−i( 2π

2j
)∗k) ∗(−1)t), and the

range of k and n are [0, 2j−1) and [0, k+2j/2], respectively. From B(3) =

’110’, we can identify that the 3rd and 2nd bits are set to ’1’. So, j ∈ {3, 2}

and W (n) = (exp(−i( 2π
22

)∗k) ∗(−1)t) ∗ (exp(−i( 2π
23

)∗k) ∗(−1)t). In Figure 5, we use

the abbreviation W (n) = W k1
4 ∗W k2

8 for simplicity. All the elements can be

transformed in a similar way. Finally, all the transformed results are aggregated

to obtain the new sequence. Figure 5 shows the details of this example.

Parallel FFT vastly improves the efficiency of computing the shifted-cross-

product of arbitrary subsequences of two time series in Formula 2. The pseudo

code of the parallel FFT algorithm is given in Algorithm 1. This approach

replaces the iterative computations in traditional FFT by the simultaneously

computation of the butterfly coefficient for each element. The approach then

aggregates all transformed elements using a linear scan.

5. Time Series Segmentation and Matrix Decomposition

In this section, we describe key techniques that enable a parallel implemen-

tation of the time series join. An initial challenge is to partition a time series

into multiple segments and properly use the capabilities of Spark’s RDDs.
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Algorithm 1: map− FFT (T )

Input : T : the normalized time series
Output: X: the transformed time series

1 foreach dI ∈ T do
2 dI ← getComplex(dI);
3 B(I)← getBinaryCode(I);
4 for n = 0→ |T | do

5 W (n)←
∏
W k

2j ∗ (−1)t;
6 Xn ←

∑
xi ∗W (n);

5.1. Time Series Segmentation

As previously stated, RDDs are the main data structure in Spark. The sys-

tem provides a high level of fault tolerance in the presence of nodes failures. In

Spark, intermediate results are stored in memory reducing the disk I/O over-

head. The data of an RDD is divided into different partitions and distributed

across different nodes. Considering Spark’s properties, we divide the two joined

time series into a number of equal sized segments. The length and number of

generated segments for each time series do not need to be the same.

In order to guarantee the accuracy of the result, we require that adjacent

segments should have an overlap of at least Lmin elements. The index range of

elements in a segment can be calculated by Formulas 8 and 9. Imin and Imax

are the minimum and maximum indices of one segment. If the length of the

time series n ≤ Imax, the index range in the last segment is [Imin, n]. kmax,

the number of segments generated for one time series, can be computed using

formula 10. Figure 6 visually represents the segmentation of a time series.

In Spark, we use the map, partitionBy and groupByKey operators to imple-

ment the data partitioning process as shown in Algorithm 2. All the key/value

pairs are stored as RDD elements. As presented in Algorithm 2, the first step

transforms the time series elements into 〈key, value〉 pairs using the map oper-

ator (Lines 1-2). Here, the value is the time series element and the key is its

index. And assign partition number k for each 〈key, value〉 according to Formu-

las 8 and 9, and transform it to 〈k, 〈key, value〉〉 (Lines 3-5). Then, partitionBy

operator is used to partition time series according to k (Line 6). Finally, the
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Figure 6: Time series segmentation

Algorithm 2: Segmentation(Tr, kmax, l, Lmin)

Input : Tr : the normalized time series
kmax : the number of partitions
l : the length in each partition
Lmin : the minimum length of correlated segments

1 foreach Tr(I) ∈ Tr do
2 Tr(I)← < key, Tr(I) >;

3 for k = 0→ kmax do
4 if key ≥ k ∗ (l − Lmin)&&key ≤ (k + 1) ∗ l − k ∗ Lmin then
5 midresult← 〈k, 〈key, Tr(I)〉〉;

6 result← midresult.partitionBy(kmax);
7 result← result.gorupByKey();

groupByKey operator is used to aggregate the new key/value pairs and keep

the elements ordered (as in the original time series) by their k (Line 7). Each

time series is processed in a similar way. After this, we aggregate the subse-

quences using the join operator. This last step generates records of the form

〈(k1, k2), (Iterable[T ′r], Iterable[T ′s])〉, where k1 and k2 are the indices of two

subsequences.

Imin ≥ k ∗ (l − Lmin) (8)

Imax ≤ (k + 1) ∗ l − k ∗ Lmin (9)

13



Z is a two dimensional array, which is n2 * 2n1 (n1 and n2 are length of Tr and Ts, respectively )

……

n2-l2+Lmin Column
n2+l1-Lmin Column

n2+l1-len2 Column

n2+ ( k2-k1+1 ) * Lmin

+k1*l1- ( k2+1 ) * l2
Column

n2 + (k2- k1- 1 ) *Lmin + ( k1+ 1 ) *
l1-k2* l2 Column

n2+2 * ( l1-Lmin ) Column

      

 1 

 1.1  

 1.2  

 1.3  

 1.4  

 1.5  

 1.6  

 1.7  

 1.8  

   len  ……  0  …….          n1           n2  …… 
time  

Ts 
Tr 

key2=0 

key1=0 key2=1 

key1=k1 

key2=k2 

Tr and Ts are two time series and assume |Tr| > |Ts|. Tr and Ts are divided into k subsequences.

Figure 7: Decomposition of the product matrix

kmax =
n− Lmin

l − Lmin
+ 1 (10)

5.2. Shift Cross Product Matrix Decomposition

The Shift Cross Product Matrix is generated by computing the shift cross

products of arbitrary subsequences of two time series. The matrix Z is used to

store the shift cross products of two subsequences that could have any starting

positions and lengths. We can observe that when computing the Pearson cor-

relation coefficient of two subsequences using Formula 2, only a small fraction

of the matrix is used. To address this, we partition the matrix into multi-

ple blocks to enable effective access to the matrix parts that are used during

the coefficient computation. Figure 7 shows an example of matrix decompo-

sition. For any two subsequences that start at indices i and j with length

len in both time series, the corresponding part in the shift-cross-product is lo-

cated in the range of Z[i][n2 − i + j] − Z[i + len][n2 − i + j], where n2 is the

length of the smaller time series. According to this formula, we can get the

corresponding block from Z for each segment pair. Without losing generality,
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Figure 8: Data Flow in the Parallel Time Series Join

we assume that the indices of two segments are k1 and k2, and their lengths

are l1 and l2, respectively. Then, their corresponding shift-cross-product Z is

located between columns n2 + (k2 − k1 + 1)Lmin + k1 ∗ l1 − (k2 + 1) ∗ l2 and

n2 +(k2−k1−1)Lmin+(k1 +1)∗ l1−k2∗ l2. There are three special cases. First,

when the segment is the last subsequence in the longer time series, their corre-

sponding block in Z is between columns n2 +(k2−k1)Lmin+k1∗ l1−(k2 +1)∗ l2
and n2+(k2−1)Lmin+n1−k2∗l2. Second, if one of the segment is the last subse-

quence in the shorter time series, their corresponding block is between columns

(1−k1)Lmin +k1 ∗ l1 and n2 +(k2−k1)Lmin +(k1 +1)∗ l1−k2 ∗ l2. Third, if two

segments are the last subsequences in two time series, the corresponding block

is between columns (1− k1)Lmin + k1 ∗ l1 and n2 + n1 + (k2 − 1)Lmin − k2 ∗ l2.

Figure 7 shows these three cases.

6. Parallel Time Series Join

In this section, we present the implementation details of the parallel time

series join in Spark. Our approach builds on the proposed parallel FFT and data

partition techniques with time complexity O(n2 log n), where n is the length of

15



Algorithm 3: map− Product(Tr, Ts)
Input : Tr, Ts: the normalized time series
Output: z: the dot product matrix

1 N← Tr.length, m← Ts.length;
2 for i = 0→ m do
3 Ts ← Ts.takeRight(m− i);
4 for j = 0→ 2*N do
5 Tr ← Array[Tr, 0];
6 Ts ← Array[Ts, 0];

7 TR ← FFT (Tr), TS ← FFT (Ts);
8 Z ← TR ∗ TS ;
9 z ← iFFT (Z);

time series. The data flow under our algorithm is represented in Figure 8. In

this figure, Tr and Ts are the two time series with lengths N and M (N ≥M),

respectively, T i
r and T j

s are the ith and jth segments in the time series, and Cij

is the correlation coefficient of the subsequences. The Parallel Time Series Join

algorithm has the following main steps.

1. Preprocessing. The time series is normalized (Z-Normalization) in order

to eliminate the effects of scale and offset.

2. Cross product computation. The cross product of arbitrary subsequences

in the time series is computed using the parallel FFT algorithm.

3. Data partitioning. Each time series is split into multiple segments.

4. Parallel processing of the segment pairs to identify correlated subsequences

with Cij > α.

5. Aggregation of the previous step’s results.

Computing the cross product of arbitrary subsequences. This step,

described in Algorithm 3, was inspired by [7] and uses a parallel FFT algorithm

to reduce its complexity. The algorithm gets first all subsequences from Ts and

then extends all sequences to have twice the length of the longer time series

(Lines 2-6). Next, it transforms each time series using parallel FFT (Line 7).

Finally, it computes the cross products using the transformed time series and

produces the shift cross matrix Z (Line 8).

16



Algorithm 4: map− comCorrelation(list, Lmin,Z)

Input : list : 〈(Iterable[T ′r], Iterable[T ′s])〉
Lmin : the minimum length of correlated segments
Z : two dimensional array computed using Algorithm 3

Output: result: the correlated segments and their correlation coefficients
1 n← list. 1.length, m← list. 2.length;
2 for i = 0→ m do
3 for j = 0→ n do
4 maxLength← min(m− i+ 1, n− j + 1);
5 len← Lmin;
6 while len < maxLength do
7 SumT ′rT

′
s ← Z(i)(m− i+ j)−Z(i+ len)(m− i+ j);

8 mean← getMean(list. 1, list. 2);
9 stdv ← getStdv(list. 1, list. 2);

10 C ← SumT ′rT
′
s−len∗mean

len∗stdv ;
11 if C > α then
12 f ← ( len

1+len
+ len

(1+len)2
∗maxV 2)−1;

13 stepSize← (log 1−α
1−C )÷ (log f − 1

len
);

14 len← len+ stepSize+ 1;

15 result← (i, j, len, C);

Computing correlation coefficients. This step generates all possible time

series segments (using the time series segmentation approach from Section 5.1)

and identifies the highly correlated subsequence pairs (one from each time series)

using Algorithm 4. Algorithm 4 first gets the number of subsequences in each

partition(Line 1). Then, it calculates the length range of segment pairs (Lines

4-5) and uses equation 2 and the two-dimensional array produced by Algorithm

3 to compute the correlation coefficients for every length at location of the

two subsequences (Lines 7-10). Finally, it records the location, length and

correlation value for subsequence pairs where Cij > α (Lines 11-15).

Optimization. When computing the Pearson correlation coefficients, we use

the shift cross matrix Z produced by Algorithm 3. We observed, however, that

for each segments pair only a small block in the Shift Cross Product Matrix Z

is needed. Considering this, we partition the matrix Z into blocks such that

for a given segment pair we can access only the relevant matrix blocks and

avoid data and computational redundancy. The method for shift cross matrix
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partitioning was introduced in section 5.2. Regarding the join algorithm, only

a minor change in Algorithm 4 is needed: parameter Z should be changed to

the corresponding Z block associated with the segments pair.

7. Experimental Evaluation

In order to verify the efficiency and scalability of the proposed methods,

we conducted extensive experiments on three public datasets. We varied ex-

perimental parameters such as time series length, number of computing nodes

and minimum length of subsequences (Lmin). We evaluated the initial method

(PTSJ) and the optimized approach (B-PTSJ) integrating data partitioning

techniques. The tests used two time series with different lengths.

7.1. Experimental Settings and Datasets

Our experiments were conducted on Spark-2.1.0 using the Scala program-

ming language. The cluster had one master node and 8 worker nodes. The

configuration of each node was: Linux CentOS 6.2, 4 cores, 6 GB of memory

and 500 GB of disk space. The datasets were originally stored in HDFS and

the final results were stored back in HDFS. The three datasets used in the ex-

periments are public datasets site1 that contain many small time series. We

created two long time series using these short time series. The dataset values

and statistics are shown in Figure 9 and Table 2, respectively.

Light Curve: It contains the light curve time series of 8000 stars [34]. Each

has 1000 observations associated with a given star.

Blood Pressure: It contains 100 blood pressure sequences collected using

the salt sensitivity test [35]. Each time series has 2000 observations.

Random Walk: This data set was synthesized from Random Walk dataset.

It contains 4 time series, each has 8000 observations.

1https://files.secureserver.net/0fzoieonFsQcsM
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Figure 9: Dataset Values

Table 2: Dataset Statistics

Data Set Length Number Mean Std

Light Curve 1000 1000 -2.25e-06 0.99
Blood Pressure 2000 100 113.35 6.79
Random Walk 8000 4 1.40 0.14

7.2. Effect of time series length

In this experiment, we changed the length of the time series from 1000 to

16000 by concatenating multiple time series from the same dataset. We set the

minimum subsequence length Lmin=100, the segment length L = 300 and the

correlation threshold α = 0.9. To compare the speed of our methods and the

non-parallel approach Jocor proposed in[7]. Figure 10 shows that the execution

time of Jocor, PTSJ and B-PTSJ increase when the length increases. PTSJ and

B-PTSJ are more efficient than Jocor on Light Curve when the length exceeds

8000 and on Blood Pressure datasets, our B-PTSJ method is more efficient than

Jocor when the length exceeds 8000. The Jocor can’t compute the correlation

when the length exceeds 2000 on Random Walk dataset. For methods PTSJ and

B-PTSJ, when the length is 1000, the time of storing, transferring and scanning

the Shift Cross Matrix Z is smaller than the cost of Z decomposition. As the

length increases, the cost of processing the entire Z matrix also increases and

this favors the optimized B-PTSJ approach.

7.3. Effect of the minimum subsequence length (Lmin)

In this test, we performed joins on two time series with different lengths

(8192 and 2048). The segment length is 300 and the correlation α=0.9. Lmin
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Figure 11: The effect on min-length Lmin

varies from 100 to 150. Figure 11 shows that the efficiency of the two methods

improves as Lmin increases. Based on the algorithmic descriptions presented

in previous sections, we can observe that varying Lmin will affect the produced

segmentation. As Lmin increases, the number of segments and concurrency

also increase. Thus, the proposed methods are more efficient with larger Lmin

values. And form Figure 11 we can see that due to the data characteristics, the

three data sets have some different in our proposed methods.

7.4. Effect of the segment length

We tested the effect of segment length in this experiment, and we vary the

subsegment length of two time series experimented on our proposed methods.

We tested on two time series with length are 8192 and 2048, respectively. In this

experiment, we set the correlation α=0.9, Lmin=100, and collect the results by

varying the segment length from 300 to 900 with the interval 200. The results

are shown in Figure 12. We can observed from Figure 12, as we increase the

length of segment in each partition, the execution time is a linearly increase on

three different datasets. It’s due to that the two time series are partitioned into

multiple segments when computing parallel FFT and performing join operations.

If the length of segments is larger, the number of segments is smaller and the
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Figure 12: The effect on segment length
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Figure 13: The influence of threshold α

concurrency is lower. So, when increasing the length of segment, the concurrency

is lower and the execution time increased. It’s to be noted that there is a

restriction when partitioning the time series. Each segment cannot less than the

Lmin and the adjacent segments should have an overlap with the length of Lmin.

So, the segments length cannot be decreased arbitrarily and the concurrency can

be improved to some extent.

7.5. Effect of the correlation threshold (α)

In this experiment, we varied the correlation threshold from 0.8 to 0.95. The

length of the time series are 8192 and 2048, the segment length is 300, and Lmin

= 100. Figure 13 shows that the variation of α does not have a significant effect

on the execution time. This is the case since α does not influence the core steps

of our solution including parallel FFT and partitioning.
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Figure 15: The interesting join results

7.6. Increasing the number of computing nodes

In this experiment, we join two time series with lengths 8192 and 2048,

the segment length is 300, Lmin = 100 and α=0.9. We vary the number of

computing nodes in the cluster from 3 to 8. Figure 14 shows that the execution

time of the proposed methods decrease linearly as the number of nodes increases.

B-PTSJ outperforms PTSJ in all the tests.

To certify if our methods actually find out effective join results on real life

datasets, In Figure 15, we give the interesting join segments on three datasets,

and they have a correlation coefficient of 0.95, 0.98 and 0.91, respectively. For

Blood Pressure dataset (Figure 15 (b)), if we observed a correlated segment, it

can be used to predict of cardiac tamponade, which can cause death.

8. Conclusion

Time series join is a primitive operation for large time series analysis and is

widely used in many applications. In this paper, we propose a parallel time series

join on Spark that faster than the non-parallel method Jocor. To this end, we

devised a parallel FFT algorithm and proposed novel partitioning mechanisms

for time series segmentation and shift cross product matrix decomposition. A
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thorough performance evaluation show that the proposed methods are efficient

and scalable under different experimental settings. In the future, we plan to

investigate parallel joins using different similarity measures.
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