
Front.Comput.Sci.
DOI

RESEARCH ARTICLE

String Similarity Join With Different Similarity Thresholds
Based On Novel Indexing Techniques

Chuitian Rong 1, Yasin N. Silva2, Chunqing Li1

1 School of Computer Science & Software Engineering, Tianjin Polytechnic University,Tianjin 300387, China
2 Arizona State University, Tempe, AZ 85281, USA

c⃝ Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Abstract String similarity join is an essential
operation of many applications that need to find all
similar string pairs from two given collections. A
quantitative way to determine whether two strings are
similar is to compute their similarity based a certain
similarity function. The string pairs with similarity
above a certain threshold are regarded as results. The
current approaches to solve the similarity join problem
use a unique threshold value. There are, however,
several scenarios that require the support of multiple
thresholds. For instance, when the dataset includes
strings of various lengths. In this scenario, longer
string pairs typically tolerate many more typos than
shorter ones. Therefore, we proposed a solution for
string similarity joins that supports different similarity
thresholds in a single operator. In order to support
different thresholds, we devised two novel indexing
techniques: partition based indexing and similarity
aware indexing. To utilize the new indices and improve
the join performance, we proposed new filtering
methods and index probing techniques. To the best of
our knowledge, this is the first work that addresses this
problem. Experimental results on real-world datasets
show that our solution performs efficiently while
providing a more flexible threshold specification.

Keywords Similarity Join, Similarity Aware Index,
Similarity Thresholds

Received month dd, yyyy; accepted month dd, yyyy

E-mail: chuitian@t jpu.edu.cn

1 Introduction

String is a fundamental data type and widely used in a
variety of applications, such as recording product and
customer names in marketing, storing publications in
academic research, and representing the content of
web sites. Frequently, different strings from different
sources may refer to the same real-world entity due to
various reasons.

In order to combine heterogenous data from
different sources and provide a unified view of entities,
the string similarity join is proposed to find all pairs of
strings between two string collections based on a string
similarity function and a user specified threshold. The
existing similarity functions fall into two categories:
set-based similarity functions (e.g., Jaccard [1]) and
character-based similarity functions (e.g., Edit
Distance). The threshold is a value in [0,1] or a
suitable integer according to the similarity function. In
general, the implementation of the similarity join
operation is different based on the type of similarity
function that is used. For the character-based similarity
functions, the implementations consider each string as
a sequence of characters and employ a tree-based
index structure, such as the B+-tree [2, 3] and the
Trie-tree [4]. Unfortunately, the Trie-tree based
indexing technique constrains itself to in-memory join
operations and is inefficient for long strings, while the
B+-tree based indexing technique requires the whole
index to be constructed in advance, and its
performance suffers in the case of short strings. Thus,
the tree-based indices are not suitable for processing
similarity joins over very large string collections. For

2
Chuitian RONG et al.

Table 1 Data Sets
ID String

R
r1 Probabilistic set similarity joins
r2 Efficient exact set-similarity joins
r3 Efficient parallel set similarity joins using MapReduce

S
s1 Top-k set similarity joins
s2 Efficient exact set similarity joins
s3 Efficient parallel set-similarity joins using MapReduce

the set-based similarity functions, the implementations
usually divide each string into a set of tokens and
extract its signatures, and then index the signatures
using inverted indices [5, 6]. A pair of strings that
share a certain number of signatures are regarded as a
candidate pair. Our solution in this paper falls into this
category.

To identify all similar string pairs in two given
collections, the methods that employ inverted indices
follow a filter and refine process. In the filter step, they
generate a set of candidate pairs that share a common
token. In the verification step, they verify the candidate
pairs to generate the final result. However, if the
strings contain popular tokens, the number of qualified
candidate pairs will be very large. To address this
problem, the prefix filtering [7] method has been
proposed. According to this technique, all the strings
in the collections are sorted based on a global ordering
and the first T tokens are selected as their prefix. The
number of T is determined by |s| (the number of words
in s), the similarity function sim, and the user specified
similarity threshold θ. Using the Jaccard similarity
function as an example, T = |s| − ⌈|s| ∗ θ⌉ + 1. This
means that for any other string r, the necessary
condition of sim(s, r) > θ is that the prefixes of s and r
must have at least one token in common [6–8]. Let us
consider the Example 1 and apply a prefix filtering
technique to generate its candidate pairs, based on the
Jaccard similarity function.

Example 1 Table 1 lists two string collections of
publication titles from two different data sources. We
sorted the words of each string in R and S based on
reverse alphabetical order and selected the first
(|s| − ⌈|s| ∗ θ⌉ + 1) words (prefixes) as their prefix.
Then, we constructed two inverted indices for the
prefix tokens of each string in S using θ = 0.8 and
θ = 0.6, respectively. The prefix tokens of strings in S
are given in Table 2. The inverted indices for prefix
tokens of strings in S are shown in Figure 1.

During the similarity join process, we use the prefix
tokens of every string in R to probe the corresponding
inverted index and generate candidate pairs. When

Table 2 Prefix Tokens Using Different Thresholds
θ ID String

0.8
s1 Top-k similarity set joins
s2 similarity set joins exact Efficient
s3 using set-similarity MapReduce parallel joins Efficient

0.6
s1 Top-k similarity set joins
s2 similarity set joins exact Efficient
s3 using set-similarity MapReduce parallel joins Efficient

Table 3 The Variation of Similarity Value
Similarity Value Length of ri Length of si ♯ Different Tokens
sim(r1, s1)=0.6 4 4 2
sim(r2, s2)=0.5 4 5 3
sim(r3, s3)=0.625 7 6 3

θ = 0.8, we have two candidate pairs
{< r2, s3 >, < r3, s3 >}. When θ = 0.6, we have seven
candidate pairs {< r1, s1 >, < r1, s3 >, < r2, s1 >, <

r2, s3 >, < r3, s3 >, < r3, s3 >, < r3, s2 >} and two final
results < r1, s1 > and < r3, s3 >. When θ = 0.5, we
have an additional result pair < r2, s2 >. Observe that
all the pairs < ri, si >(i=1,2,3) refer to the same
publications, respectively. In fact, the values of
sim(ri, si)(i=1,2,3) are different as there are some
different tokens between ri and si. In general, the same
number of spelling differences will generate different
values of similarity distance depending on the length
of the strings. This can be observed in Table 3. For
instance, the string pairs < r2, s2 > and < r3, s3 > have
three different tokens from each other but the similarity
value of the longer string pair (< r3, s3 >) is greater
than the shorter one (< r2, s2 >). All the previously
proposed methods use a predefined or unique
similarity threshold. By doing this, they can lose some
promising results. We propose a solution that supports
the use of different thresholds for different strings. In
this paper, we focus primarily on solutions to support
different similarity thresholds, and leave the problem
of assigning suitable thresholds to strings as a future
work.

The use of a single threshold, considered in
previous methods, simplifies the design of efficient
algorithms. The support of different similarity
thresholds present three challenges that need to be
addressed: (1) As there are a variety of different
thresholds, the widely used prefix filtering method can
not be applied for inverted index construction; (2)
Since the thresholds are not know before the join
operation, we should devise new indexing
mechanisms; (3) We need to explore new index
probing techniques to improve the performance.

In summary, this paper makes the following
contributions:

Front. Comput. Sci.
3

Top-k similarityusingset-similarity

s1 s3 s3 s2

Top-k similarityusingset-similarity set

s1 s3 s3 s1
s2

s2

MapReduce

s3

(a)θ = 0.8 (b) θ = 0.6

Fig. 1 Inverted Index For Prefix Tokens of DataSet S

• We proposed a solution for string similarity join
with different similarity thresholds. This is the
first work that explores similarity joins with
diverse thresholds in one operation.

• We devised two novel indexing structures,
partitioned-based index and similarity-aware
index, to support similarity joins with different
thresholds.

• We provide new index probing techniques and
filtering mechanisms to improve the join
performance.

The rest of the paper is organized as follows. The
related work is given in Section 2. Section 3 presents
the problem definitions and preliminaries. Section 4
describes the index structures. Section 5 presents how
to perform similarity joins by employing the proposed
indexing structures and new probing techniques.
Experimental evaluation is given in Section 6. Section
7 concludes the paper.

2 Related Work

String similarity join is a primitive operation in many
applications such as merge-purge [9], record
linkage [10], object matching [11], reference
reconciliation [12], deduplication [13, 14] and
approximate string join [15]. In order to avoid
verifying every pair of strings in the dataset and
improve performance, string similarity join typically
follows a filtering and refine process [16, 17]. In the
filtering step, the signature assignment process or
blocking process is invoked to group the candidates by
using either an approximate and exact approach,
depending on whether some amount of error could be
tolerated or not. In the past two decades, more than ten
different algorithms have been proposed to solve this
problem [18]. In [18], the authors evaluated existing
algorithms under the same experimental framework
and reported comprehensive findings. Since we aim to
provide exact answers, we will focus on the exact
approaches. Recent works that provide exact answers

are typically built on top of some traditional indexing
methods, such as tree based and inverted index based
structures. In [19], the Trie-tree based approach was
proposed for edit similarity search, where an
in-memory Trie-tree is built to support edit similarity
search by incrementally probing it. The edit similarity
join method based on the Trie-tree was proposed
in [4], in which sub-trie pruning techniques are
applied. In [2], a B+-tree based method was proposed
to support edit similarity queries. It transforms the
strings into digits and indexes them in the B+-tree.
In [3], the authors partitioned the string collection into
a number of groups according to a set of reference
strings and index all the strings into a B+-tree based on
the distances to their reference strings. However, these
algorithms are constrained to in-memory processing,
not efficient and scalable for processing large scale
dataset. In [20],the authors proposed the pivotal prefix
to shorten the prefix length by a
dynamic-programming algorithm. They also applied
an alignment filter to prune candidate pairs.

The methods making use of the inverted index are
based on the fact that similar strings share common
parts and consequently they transform the similarity
constraints into set overlap constraints. Based on the
property of set overlap [6], the prefix filtering was
proposed to prune false positives [6–8, 15]. In these
methods, the partial result of the filtering step is a
superset of the final result. The AllPairs method
proposed in [7] builds the inverted index for prefix
tokens and each string pair in the same inverted list is
considered as a candidate. This method can reduce the
false positives significantly compared to the method
that indexes all tokens of each strings [5]. In order to
prune false positives more aggressively, the PPJoin
method uses the position information of the prefix
tokens of the string. Based on the PPJoin, the PPJoin+
uses the position information of suffix tokens to prune
false positives further [8]. In [21], the authors observed
that prefix lengths have significant effect on pruning
false positives and the join performance. They
proposed the AdaptJoin method by utilizing different

4
Chuitian RONG et al.

prefix lengths. [22] proposed the MGJoin method that
is based on multiple prefix filters, each of which is
based on a different global ordering. [23] studied the
problem with synonyms by utilizing a novel index that
combines different filtering strategies. In [24], the
authors proposed a prefix tree to support string
similarity join and search on multi-attribute data. They
proposed a cost model to guide the prefix tree
construction process.

All the aforementioned works applied a predefined
and unique threshold when performing joins.
Furthermore, the index that is used to accelerate the
join process is build using an specific distance
threshold. If the strings have significantly different
lengths, the same number of different tokens between
pairs of strings will generate different effects on the
similarity function value (see Table 3). So, applying a
unique threshold may lose some results that are still
considered very similar in practical scenarios. In this
paper, we first propose a partition based inverted index
to support string similarity joins with different
similarity thresholds. In order to improve the
performance further, we devise a similarity-aware
index and new probing techniques.

3 Preliminary

In this section, we provide the problem definition
followed by a description of similarity measures and
prefix filtering.

3.1 Problem Definition

In this paper, we consider a string as set of tokens, each
of which can be a word or n-gram. For example, the
tokens set of r2 in R (Table 1) is {Efficient, exact, set,
similarity, joins}. The string similarity join is defined
as follows.

Definition 1 String Similarity Join
Given two string collections R and S, a similarity

function Sim and each r ∈ R has its own join threshold
r.θ, the string similarity join finds all the string pairs
(r, s), such that r ∈ R , s ∈ S, and Sim(r, s) > r.θ.

3.2 Similarity Measures

A similarity function measures how similar two strings
are. There are two main types of similarity functions
for strings, set-based similarity functions and
character-based similarity functions. In this paper, we

Table 4 Symbols and Definitions
Symbols Definition
R,S collections of strings
| · | the element number of a set
t a token of s
Tr set of tokens for string r
Vr Tr transformed to Vector Space Model
T p

r the first p tokens of string r
θ pre-assigned threshold
sim(ri, s j) similarity between ri and s j

O global ordering
T p

r (O) T p
r under O

Table 5 Similarity Functions
Similarity Function Definition Prefix Length
simdice(ri, s j)

2×|Tri∩Ts j |
|Tri |+|Ts j |

|Ts| − ⌈|Ts| ∗ θ⌉ + 1

sim jaccard(ri, s j)
|Tri∩Ts j |
|Tri∪Ts j |

|Ts| − ⌈|Ts| ∗ θ⌉ + 1

simcosine(ri, s j)
Vri ·Vs j√
|Vri |×|Vs j |

|Ts| − ⌈|Ts| ∗ θ2⌉ + 1

utilize three widely used set-based similarity functions,
namely Dice [25], Jaccard [1], and Cosine [26], whose
computation problem can be reduced to the set overlap
problem [7]. They are based on the fact that similar
strings share common components. Their definitions
are summarized in Table 5, in which Tr denotes the
token set of r, Vr denotes the vector transformed from
Tr and | · | denotes the size of a set. Unless otherwise
specified, we use Jaccard as the default function, i.e.,
sim(r, s) = sim jaccard(r, s). For example,
sim jaccard(r2, s2) = 3

6 .

3.3 Prefix Filtering

The prefix filtering technique is commonly used in the
filtering step to generate candidate pairs that share
common prefix tokens. In [6, 7], the methods sort the
tokens of each string based on some global ordering O
(e.g., an alphabetical order or a term frequency order),
select a certain number of its first tokens as the prefix,
and use the tokens in the prefix1) as its signatures. Its
has been proved that the necessary condition for every
two strings r and s to be a candidate pair is that their
prefixes T p

r and T p
s must have at least one token in

common. The number of tokens in the prefix for each
string can be computed using the formulas shown in
Table 5. Essentially, the prefix length relies on the
similarity function, the join threshold, and the length
of the string.

By applying the prefix filtering technique, candidate

1) When there is no ambiguity, we will simply refer to token pre-
fixes as prefixes.

Front. Comput. Sci.
5

pairs with no overlap in their corresponding prefixes
can be safely pruned. In this manner, the number of
candidate pairs can be significantly reduced since
popular words or frequent tokens can be set to the end
of the global ordering so that they are not probable to
be selected as prefixes.

3.4 Inverted Index

The naive method to perform joins is to enumerate all
pairs < r, s >∈ R × S and verify whether they share
common prefix tokens. This approach is rather
expensive when processing large scale datasets. In
order to improve the performance, the inverted index is
widely employed to find all pairs < r, s >∈ R × S that
share common prefix tokens. We first construct an
inverted index for prefix tokens of each string in one of
the collections, e.g., S. By doing so, the strings that
share the same prefix tokens are mapped into the same
inverted list. Then, we can process each string r ∈ R to
get its prefix tokens, and then to merge the
corresponding inverted lists for the prefix tokens to get
all candidate pairs. Take r3 as an example, assume
r3.θ = 0.6, its prefix tokens are {using, similarity, set}.
We merge the inverted lists for these three prefix
tokens, as shown in Figure 1(b), and get three
candidate pairs: {< r3, s1 >, < r3, s2 >, < r3, s3 >}.

4 Index Technique to Support Different
Similarity Thresholds

All the previous work on similarity joins use a
predefined and unique threshold for all the objects in
the input collections. When a unique threshold is used,
it is easy to implement and optimize the similarity join
algorithms. The application of a unique threshold may
lose some promising results or be too rigid to express
the nature of similarities that users want to identify on
the datasets. The prefix filtering technique is widely
used in existing works due to its effective pruning
power. The prefix filtering is based on a necessary
condition for similar pairs of strings, which is that they
must share at least one prefix token when sorted by the
same global order. The prefix tokens of two strings are
determined by their length and the unique threshold.
Supporting different thresholds in similarity join has
its own challenges. Particularly, when constructing the
inverted index for prefix tokens of each string s ∈ S,
we cannot predict the threshold of r ∈ R that will be
used to perform the join with s. The problem is that we

cannot exactly identify the number of prefix tokens of
s ∈ S. In this section, we propose the index techniques
that can support different similarity thresholds.

4.1 Straightforward Approach

As stated previously, since we cannot predict the
threshold of r ∈ R, we cannot identify the number of
prefix tokens of s ∈ S and cannot construct the
inverted index as in the case of single threshold
approaches. The straightforward approach is to map all
tokens of s ∈ S to inverted lists. When performing
joins, we process each string r ∈ R and get its prefix
tokens. Then, we can get the candidate pairs by
merging the corresponding inverted lists. Obviously,
this approach will map unnecessary tokens into
inverted lists and increase the index size. As a result,
this approach incurs on unnecessary overhead when
probing the inverted lists and thus the similarity join
performance is degraded.

4.2 Partition-Based Inverted Index

The similarity join performance is mainly determined
by the prefix filtering power and the efficiency of
merging inverted lists. In order to decrease the
unnecessary index probing cost, we proposed a
Partition Based inverted Index, denoted as PBI for
abbreviation.

When using different thresholds during the join
operation, different strings may have different
thresholds. As the threshold is a value in [0,1], we
choose some representative values within the interval
and build incremental inverted indices with them. For
example, if we choose 0.8, 0.6 and 0.4, we build the
inverted index in the following way. First, we map the
prefix tokens of each s ∈ S using θ = 0.8 into inverted
lists as done in existing works (we denote this inverted
index as I0.8). Then, we map the prefix tokens using
θ = 0.6 into inverted index ∆I0.6, excluding the tokens
that have been mapped into I0.8. Similarly, we map the
prefix tokens using θ = 0.4 into inverted index ∆I0.4,
excluding the tokens that have been mapped into I0.8

and ∆I0.6. Figure 2 shows the partition-based inverted
index for the collection S in Table 1.

The pseudo-code of the PBI construction
algorithm is shown in Algorithm 1. The algorithm
takes a string collection S that is sorted by string
length, a global ordering O, and the number of
representative thresholds N as input. Its output is a
PBI, such as Iθ,∆Iθ1 ,,∆IθN−1 . It first selects N

6
Chuitian RONG et al.

Top-k similarityusingset-similarity

s1 s3 s3 s2

similarity set

s1 s2

MapReduce

s3

set joins

s1 s2

parallel

s3

Fig. 2 Partition-Based Inverted Index

Algorithm 1: PartitionBasedIndex(S,O,N)
Input :

S: the collection of string
O: one global ordering
N : the number of representative thresholds

Output:
PBI: Iθ,∆Iθ1 ,,∆IθN

1 θ[N]← select N representative thresholds from [0,1];
2 foreach s ∈ S do
3 TokenList(s)← Tokenize(s,O);
4 for i = 0→ N do
5 T p

s (θ[i])← getPrefix(TokenList(s), θ[i]);
6 if i == 0 then
7 foreach t ∈ T p

s (θ[i]) do
8 Map t into Iθ[i][t];

9 else
10 foreach t ∈ {T p

s (θ[i]) − T p
s (θ[i − 1])} do

11 Map t into ∆Iθ[i][t];

12 foreach t ∈ {Ts − T p
s (θ[N − 1])} do

13 Map t into ∆Iθ[N][t];

representative thresholds that are used to construct the
partition based inverted index (Line 1). For each s ∈ S,
it first generates a sorted token list using the function
Tokenize, which tokenizes the string s into a token set
and then sorts it by the global ordering O (Line 2). For
the sorted token list, the algorithm gets different prefix
tokens using different thresholds in θ[N]. It maps each
prefix token t ∈ T p

s (θ[0]) into inverted list Iθ[t], which
belongs to Iθ. For other thresholds in θ[N], it maps
each prefix token in T p

s (θ[i]) − T p
s (θ[i − 1]) into

inverted list ∆Iθ[i][t], which belongs to ∆Iθ[i] (Lines
5-10). Finally, it maps the remaining tokens in
Ts − T p

s (θ[N − 1]) into inverted index ∆Iθ[N].

The partition-based inverted index can decrease the
probing cost significantly, as it partitions the inverted
list of the same token into several smaller lists, as
shown in Figure 2. For r ∈ R, assume r.θ = 0.8, when
performing joins we can only probe and merge the
inverted lists in I0.8. If r.θ = 0.7, we should probe and
merge the inverted lists I0.8 and ∆I0.6.

Algorithm 2: S imilarityAwareIndex(S,O)
Input :

S: the collection of string
O: one global ordering

Output:
SAI: similarity aware index

1 foreach s ∈ S do
2 TokenList(s)← Tokenize(s,O);
3 N ← TokenList.size;
4 for n = 0→ N do
5 TUB(n)← N−n+1

N ;
6 t ← TokenList[n];
7 Map < t,TUB(n) > into S AI[t];

4.3 Similarity Aware Index

The partition-based inverted index can decrease the
unnecessary probing cost to some extent, but there are
still ways to improve the performance. In order to do
this, we proposed a Similarity Aware Index that
exploits the relationship of token positions and
similarity thresholds, denoted as SAI.

Definition 2 Threshold Upper Bound
When a string r ∈ R (or s ∈ S) is tokenized into a token
set Tr and sorted using the global orderingO, the tokens
that are selected as prefix tokens are determined by the
value of the threshold. The maximum threshold for a
token to be selected as a prefix token is referred to as
the threshold upper bound, denoted as TUB.

Theorem 1 Let token t ∈ Tr be located at position n
when Tr is sorted by global ordering O. If t is a prefix
token, TUB(n) = |Tr |−n+1

|Tr | .

Proof For the token set Tr, the number of prefix
tokens |T p

r | is determined by the formula.
|T p

r | = |Tr | − ⌈|Tr | ∗ θ⌉ + 1
Let |T p

r | = n, that is to say the last prefix token is
located at the position n. Then, we can get

|Tr | − n < |Tr | ∗ θ 6 |Tr | − n + 1
We can get θ 6 |Tr |−n+1

|Tr | . So,
TUB(n) = |Tr |−n+1

|Tr | .
�

Front. Comput. Sci.
7

similarity set joins Efficient

Fig. 3 Similarity Aware Inverted Index

Based on the above analysis, we can conclude that
the selection of a token t ∈ Tr as a prefix token depends
on its position n and TUB(n) when |Tr | is sorted by
a global ordering. So, we can map both the token t
and TUB(n) to the inverted index when constructing
the index for collection S. When probing the inverted
index, it can support any threshold of r ∈ R. Unlike
the partition-based inverted index that sorts the inverted
lists by the length of the strings, we sort the inverted
lists by the value of TUB(n). Figure 3 shows part of
the similarity-aware inverted index for the collection S
in Table 1.

The pseudo-code of the similarity aware index
construction algorithm is shown in Algorithm 2. For
each string s ∈ S, it generates a sorted token list by
applying the Tokenize function. Then, for each token in
TokenList, it computes the TUB(n) based on the
token’s position n and the size of TokenList. Finally, it
maps the pair < t,TUB(n) > into SAI[t]. Observe
that, each inverted list is sorted by the value of TUB.

5 String Similarity Join Processing

In this section, we describe how similarity join
operation can be performed using the proposed
indexing mechanism. We present the details about how
to handle different thresholds in one join procedure.

In general, the similarity join methods employing
inverted indexes follow a filter and refine framework
and consist of three phases.

• Index Construction In this phase, the strings in
the collection S are sorted based on a global
ordering, such as alphabetical order or token’s
term frequency. Then, a number of tokens will be
extracted from each string according to
predefined rules and mapped into inverted lists.

• Candidate Pairs Generation The strings in the
collection R will be processed sequentially. For
each string in R, the string will be sorted and a
number of tokens will be extracted from it as

done in the index construction step. The extracted
tokens are considered as the string’s signatures
and are used to probe corresponding inverted lists
using filtering strategies. As a result, we can
derive the candidate set for each string.

• Verification We compute the similarity between
the string and its candidates one by one to find the
final results. The final result will be composed of
pairs with similarity not less than θ.

In order to support different similarity thresholds in
string similarity joins, the straightforward approach is
to extend the PPJoin and PPJoin+ [8] methods using
the index as described in section 1. As this approach
maps all tokens into inverted lists, the join procedure
will probe the index with unnecessary overhead.

5.1 Similarity Join on PBI

Using the partition-based index to support different
similarity thresholds, the first problem is to select a
number of representative values from [0,1]. The
selected values will be used to partition the threshold
range into several intervals, and then partition the
inverted lists into several small inverted lists. As an
example, we can select the following representative
values 0.8, 0.6, 0.4. The index for string collection S is
constructed as indicated by Algorithm 1.

After the index construction step, each string r ∈ R
is sorted based on a global ordering O, and then the
prefix tokens T p

r are extracted according to the length
and its own similarity threshold r.θ, as described in
section 3. For each prefix token, the corresponding
inverted lists with representative thresholds not smaller
than r.θ and the first inverted list with representative
threshold equal or smaller than r.θ will be probed to
generate candidates.

The details of similarity join using PBI is shown in
Algorithm 3.

When performing similarity join operations, each
string in collection R will be tokenized by the same
global ordering O that was used on string collection S
(Line 2). Take the string r3 ∈ R and the selected
representative values θ[3] ={0.8,0.6,0.4} for example.
When r3.θ = 0.8, its prefix token set T p

r3 ={using,
similarity} (Line 3). So, the two inverted lists
I[0.8][using] and I[0.8][similarity] that belong to I[0.8]

will be probed and merged. The acquired candidates
will be added to C for verification (Lines 4-7). Finally,
each candidate pair in C will be verified to check that
their similarity is not less than r3.θ using the selected

8
Chuitian RONG et al.

Algorithm 3: S imJoinOnPBI(R,S)
Input :

R: the string collection R
S: the string collection S

Output:
< r, s >: similar pairs

1 foreach r ∈ R do
2 TokenList(r)← Tokenize(r,O);
3 T p

r ← getPrefixToken(TokenList(r),r.θ);
4 foreach t ∈ T p

r do
5 while k < N ∧ r.θ 6 θ[k + +] do
6 results← listProbing(PBI[k][t]);
7 C.push(results);

8 Verification(C);

similarity function. When r3.θ = 0.7, T p
r3 ={using,

similarity, set}. The inverted lists I[0.8][using] and
I[0.8][similarity] that belong to I[0.8], I[0.6][similarity]
and I[0.6][set] that belong to I[0.6] will be probed and
merged respectively, as shown in Figure 2.

5.2 Similarity Join on SAI

The inverted lists of PBI that were constructed for S
are sorted in ascending order of the record’s length. In
order to avoid probing the inverted lists iteratively, the
string collection R is also sorted by the same order
before performing joins. As the SAI is different to
PBI, each inverted list is sorted in ascending order of
the TUB values. In order to improve the efficiency of
similarity joins using SAI, the string collection R is
sorted in descending order of the string thresholds. By
doing that, we can utilize the TUB filter when
probing the inverted lists.

Definition 3 TUB Filter
For a string r ∈ R with threshold r.θ and prefix token
set T p

r , if ∃s ∈ S ∧ sim(r, s) > r.θ, then ∃t
′ ∈ s ∧ ∃t ∈

T p
r ∧ t

′
= t ∧ TUB(t

′
) > r.θ.

The TUB filter is a necessary condition for two
strings to be similar. It can be used to decrease the cost
of probing inverted lists. By applying this filter during
the join operations, we can just probe the first part of
the corresponding inverted lists to get the results. The
pseudo-code of similarity join on SAI is shown in
Algorithm 4.

Each string r ∈ R is tokenized by the same global
ordering O that was applied to S. Its prefix tokens T p

r

can be acquired based on the number of tokens and its
own threshold r.θ (Lines 2-3). Then, the inverted lists
of tokens in T p

r will be probed and merged. During the
processing, two filters are applied. The first is to probe

Algorithm 4: S imJoinOnS AI(R,S)
Input :

R: the string collection R
S: the string collection S

Output:
< r, s >: similar pairs

1 foreach r ∈ R do
2 TokenList(r)← Tokenize(r,O);
3 T p

r ← getPrefixToken(TokenList(r),r.θ);
4 foreach t ∈ T p

r do
5 while i + + < I[t].size do
6 if r.θ > I[t].tub then
7 break;

8 if r.length > S[I[t].rid].lenght ∗ θ ∥
r.length < S[I[t].rid].lenght/θ then

9 continue;

10 C.push(S[I[t].rid]);

11 Verification(C);

Table 6 Data Sets Information

Data Set ♯ Records Size Distribution Mean Std

CiteSeer 568,237 69.7M
Normal 0.8078 0.0420
Poisson 0.6865 0.0481
Uniform 0.8000 0.1156

DBLP 1,021,062 218M
Normal 0.7774 0.0531
Poisson 0.7227 0.0676
Uniform 0.7923 0.1122

the inverted list until r.θ is not less than the token’s
TUB. This filter assures that only the first part of
inverted lists are used during probing (Line 6). The
second is the length filter. If two strings are similar
their length must satisfy a length constraint. If r is
similar to string s ∈ S, the length of r must be in
(s.length ∗ θ, s.length/θ) (Line 8). Only the strings that
pass the two filters are considered as candidates (to be
later verified).

6 Experimental Evaluation

We conducted extensive experiments to evaluate the
performance and scalability of our techniques to
support similarity joins with different similarity
thresholds.

6.1 Experiments Setup

We selected two publicly available real data sets of
bibliography records from two different data sources
for the experiments. They cover a wide range of data
distributions and were widely used in previous studies.
In order to evaluate the efficiency of our techniques to
support similarity join with different similarity

Front. Comput. Sci.
9

0

5

10

15

20

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
ou

nt
(1

04)

Threshold

Normal
Poisson
Uniform

0

5

10

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
ou

nt
(1

04)

Threshold

Normal
Poisson
Uniform

(a) DBLP (b) CiteSeer

Fig. 4 Threshold Distribution Statistic

thresholds, we generated datasets with threshold values
that were produced using three different distributions:
Uniform, Poisson and Normal.

• DBLP is a snapshot of the bibliography records
downloaded from the DBLP website2). It contains
1,021,062 records, each of which is the
concatenation of the author name(s) and the title
of a publication. The minimum, maximum, and
average length (number of tokens) of the records
in this dataset are 2, 207, 13, respectively.

• CiteSeer is also a snapshot of the bibliography
records downloaded from the CiteSeer website3).
It contains 568,237 records. Each record is a
concatenation of the author names and the title of
a publication. The minimum, maximum, and
average length of records in this data set are 1, 84,
7, respectively.

Figure 4 and Table 6 show the distribution of the
threshold values (θ), the number of records, and the
size of the two datasets.

All the experiments were carried out on a single
machine with AMD 15x4 cores 1GHz and 60GB main
memory. The operating system is CentOS with
installed GCC 4.3. The algorithms were implemented
in C++ and compiled using GCC with -O3 flag.

The PPJoin+ [8] is the state-of-art method for
set-based string similarity join. However, as it based
on prefix filtering, it requires a predefined and unique
threshold before performing joins. Furthermore, the
index that is used to accelerate the join operations is
built for an specific threshold value and will need to be
rebuilt for other threshold values. If multiple
thresholds are supported, the index cannot be built as

2) http://www.informatik.uni-trier.de/∼ley/db
3) http://citeseerx.ist.psu.edu

in [8] and thus the PPJoin+ approach cannot be used
to perform joins with different similarity thresholds
directly. [21] proposed a delta-based-index method, in
which the authors grouped the strings based on their
lengths and built delta indices for the groups. The delta
indices can support similarity search with multiple
thresholds. However, it cannot support similarity join
with multiple thresholds in one join procedure.

In this paper, we have extended the PPJoin+ by
constructing the index as discussed in Section 1 and
modified the inverted lists probing techniques. We
denoted the extended PPJoin+ method as
ExtendedJoin. We have also constructed the delta
index and implemented the AdaptJoin approach [21] to
support similarity joins in one procedure. In order to
verify the efficiency of our proposed methods, we
devised two kinds of indices: partition based inverted
index and similarity aware inverted index. We denoted
the join methods that are based on the two different
indices as PBIJoin and SAIJoin, respectively.

6.2 Comparison on Different Indices

In this section, we evaluate the efficiency of four join
methods based on different indices. In this
experiments, we used two data sets CiteSeer and
DBLP, each of which has three threshold distributions
as shown in Figure 4. We conducted three experiments
using the Jaccard similarity measure on two datasets
under different threshold distributions, including one
RS-Join (CiteS eer ◃▹ DBLP), and two Self-Joins
(DBLP ◃▹ DBLP and CiteS eer ◃▹ CiteS eer). We
plotted the running time cost of the four methods on
each join type in Figure 5.

From the three sub-figures in Figure 5, we can see
that SAIJoin outperforms PBIJoin followed by

10
Chuitian RONG et al.

 0

 10

 20

 30

 40

 50

 60

Normal Uniform Poisson

T
im

e
C

os
t(

S
ec

)

Distribution

ExtendJoin
AdaptJoin

PBIJoin
SAIJoin

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Normal Uniform Poisson

T
im

e
C

os
t(

S
ec

)

Distribution

ExtendJoin
AdaptJoin

PBIJoin
SAIJoin

 0

 5

 10

 15

 20

 25

 30

 35

Normal Uniform Poisson

T
im

e
C

os
t(

S
ec

)

Distribution

ExtendJoin
AdaptJoin

PBIJoin
SAIJoin

(a)CiteSeer ◃▹Jaccard DBLP (b) DBLP ◃▹Jaccard DBLP (c) CiteSeer ◃▹Jaccard CiteSeer

Fig. 5 Comparison On Different Indices

AdaptJoin and ExtendedJoin, regardless of the join
type and threshold distribution. This is due to the
overhead of the indexing structures that are used to
accelerate the join operations. The ExtendedJoin is
based on a straightforward indexing approach where
all the tokens of each string are mapped into inverted
lists. In order to utilize the length filter and improve
the performance of PPJoin+, it requires sorting the
dataset and the inverted lists by the record length.
When applying a predefined and unique threshold,
PPJoin+ can probe the inverted list sequentially, as
similar strings must be located nearby each other in
inverted lists. However, when applying different
thresholds, that list probing technique is not suitable.
After sorting by the record length, the strings that are
located near each other have similar length but
possibly different thresholds. So, their length
constraints to identify similar records can be very
different. In order to get all possible candidates, each
string r ∈ R that is joined with S must probe a large
range of the inverted list, not sequentially. This
problem can not be avoided in AdaptJoin and delta
index. So, AdaptJoin and ExtendedJoin cannot
performs as well as the other two methods.

From Figure 5, we can see that PBIJoin
outperforms ExtendedJoin under different experiment
conditions. This is due to the advantages of the
partition-based inverted index that was applied in
PBIJoin. Before constructing the partition-based
inverted index, a number of values from [0,1] are
selected as representative thresholds. These selected
representative values are used to partition the inverted
index used in ExtendedJoin into several small inverted
indices as shown in Figure 1. When performing joins,
PBIJoin will select related parts of the index and probe
related inverted lists according to r.θ and T p

r . By doing
so, much of the unnecessary list probing cost can be

avoided.
SAIJoin has the best performance among the three

methods. This is due to the similarity-aware inverted
index and the TUB filter. In order to utilize the SAI
index and TUB filter in an efficient way, the string
collections are sorted by their thresholds, and also the
inverted lists are sorted by the tokens’ TUB values.
This type of string collection arrangement and inverted
lists sorting bring the promising results to the head of
the inverted lists. For each string r ∈ R, we can get its
threshold r.θ and prefix token set T p

r . When
performing joins, we just probe the lists I[t] of t ∈ T p

r

and stop when r.θ > t.tup. This makes SAIJoin probe a
small part of the related lists and generates the best
performance.

6.3 Comparison on Different Similarity Measures

In order to evaluate the scalability and robustness of
our proposed methods, we conducted extensive
experiments using another widely popular similarity
measure, Cosine. As in the previous experiments, we
used two datasets, DBLP and CiteSeer, each of which
with three different threshold distributions. We carried
out three types of joins, one RS-Join and two
Self-Joins. The experiment results are plotted in Figure
6.

From the experiment results, we can observe that
the SAIJoin outperforms PBIJoin and ExtendedJoin.
SAIJoin’s execution time is about 50% of the one of
PBIJoin for most experiments. This is because
ExtendedJoin and PBIJoin apply the framework and
filters of PPJoin+, which is based on a predefined and
unique threshold. The filters are not efficient when the
data has different similarity thresholds, especially
when using Cosine. Under the different similarity
thresholds, the SAI index and TUB filter achieve
high pruning power. So, SAIJoin performs well.

Front. Comput. Sci.
11

 0

 50

 100

 150

 200

 250

 300

Normal Uniform Poisson

T
im

e
C

os
t(

S
ec

)

Distribution

ExtendJoin
PBIJoin
SAIJoin

 0

 50

 100

 150

 200

 250

 300

 350

 400

Normal Uniform Poisson

T
im

e
C

os
t(

S
ec

)

Distribution

ExtendJoin
PBIJoin
SAIJoin

 0

 20

 40

 60

 80

 100

 120

Normal Uniform Poisson

T
im

e
C

os
t(

S
ec

)

Distribution

ExtendJoin
PBIJoin
SAIJoin

(a)CiteSeer ◃▹Cosine DBLP (b) DBLP ◃▹Cosine DBLP (c) CiteSeer ◃▹Cosine CiteSeer

Fig. 6 Comparison Of Cosine Similarity Measure

Observe also that the performance of SAIJoin is
better with Cosine than with Jaccard as shown in
Figure 5 and Figure 6. This can be explained by the
definition of similarity measures shown in Table 5. For
the same threshold, the number of prefix tokens of
string r is larger when using Cosine than that of using
Jaccard. Since the join method using Cosine must
probe more inverted lists for each string, it consumes
more time than using Jaccard.

6.4 Comparison on Different Distributions of
Threshold

In this experiment, we verify the efficiency and
robustness of our methods on different datasets with
different thresholds. We conducted experiments on two
datasets and performed three different join operations
using Jaccard. The results are shown in Figure 7. In
this figure, R represents CiteSeer and S represents
DBLP for simplicity, and X denotes the join operation.

From Figure 7, we can observe that the SAIJoin
outperforms PBIJoin by a wide margin followed by
ExtendedJoin regardless of the kind of distribution.
Before performing joins, PBIJoin and ExtendedJoin
sorted the string collections by the string length. By
doing that, the collections that are being joined can be
scanned sequentially by applying length constraints.
However, since the strings have different thresholds,
the strings that are located as neighbors by the sorting
step can have different length constraints. So, the join
operation cannot be performed as PPJoin using the
length filter on the sorted datasets. PBIJoin and
ExtendedJoin must probe a range of inverted lists to
get the exact results. While, SAIJoin performs joins
using SAI index and applies the TUB filter to ensure
that only a small section of the inverted lists are
probed. So, it can get high performance under different
threshold distributions.

For all the three join methods, they perform best on
the dataset whose threshold distribution is Normal,
followed by Uniform and Poisson. This phenomenon
can be observed in Figure 5, Figure 6 and Figure 7.
This can be explained using the threshold distribution
features. For the DBLP dataset, when the threshold
distribution is Normal, the average of threshold values
is 0.8078 and std is 0.0420. This is, the threshold
distribution is more compact than in the other two
cases and the average threshold value is higher then the
ones of the other two distributions. Higher threshold
values generate smaller number of prefix tokens and
less time on probing the inverted list. Consequently,
the join operation takes less time with Normal
distribution than with the other two distributions.
When the distribution is Uniform, the threshold values
are uniformly distributed. The average thresholds is
0.8000, while the std is 0.1156. This is, the threshold
values varied significantly. For the Poisson
distribution, the average threshold value is 0.6865 and
the std is 0.0481. The threshold values are distributed
more compactly and most of them are small threshold
values. Since small threshold values generate large
number of prefix tokens, the join operations must
probe more inverted lists. Thus, all the three join
methods spent more time on the dataset with Poisson
distribution.

7 Conclusions

In this paper, we have studied the problem of similarity
joins with different similarity thresholds. We devised
two new indexing techniques that can support different
thresholds to process join operations. Although the
proposed PBI index reduces the unnecessary probing
cost in comparison with the straightforward approach,

12
Chuitian RONG et al.

 0

 10

 20

 30

 40

 50

 60

 70

RxS RxR SxS

T
im

e
C

os
t(

S
ec

)

Joins

ExtendJoin
PBIJoin
SAIJoin

 0

 10

 20

 30

 40

 50

 60

RxS RxR SxS

T
im

e
C

os
t(

S
ec

)

Joins

ExtendJoin
PBIJoin
SAIJoin

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

RxS RxR SxS

T
im

e
C

os
t(

S
ec

)

Joins

ExtendJoin
PBIJoin
SAIJoin

(a)Uniform (b) Normal (c) Poisson

Fig. 7 Comparison On Different Threshold Distribution

there is still much space for improvement.
In order to improve the performance, we proposed

theSAI index and a new index probing technique. The
experimental results on real-world datasets show that
our proposed solution can support different similarity
thresholds efficiently.

For our future work, we plan to address the problem
of assigning suitable similarity thresholds to different
strings.

Acknowledgements This material is based upon work supported
by the National Natural Science Foundation of China under grant
No.61402329 and No.51378350 .

References

1. Monge A, Elkan C. The field matching problem: Algorithms

and applications. In: SIGKDD. 1996, 267–270

2. Zhang Z, Hadjieleftheriou M, Ooi B, Srivastava D. Bed-tree:

an all-purpose index structure for string similarity search based

on edit distance. In: SIGMOD. 2010, 915–926

3. Lu W, Du X, Hadjieleftheriou M, Ooi B C. Efficiently support-

ing edit distance based string similarity search using b+-trees.

TKDE, 2014, 26(12): 2983–2996

4. Wang J, Feng J, Li G. Trie-join: Efficient trie-based string simi-

larity joins with edit-distance constraints. VLDB, 2010, 3(1-2):

1219–1230

5. Sarawagi S, Kirpal A. Efficient set joins on similarity predi-

cates. In: SIGMOD. 2004, 743–754

6. Chaudhuri S, Ganti V, Kaushik R. A primitive operator for sim-

ilarity joins in data cleaning. In: ICDE. 2006, 61–72

7. Bayardo R, Ma Y, Srikant R. Scaling up all pairs similarity

search. In: WWW. 2007, 131–140

8. Xiao C, Wang W, Lin X, Yu J. Efficient similarity joins for near

duplicate detection. In: WWW. 2008, 131–140

9. Hernández M, Stolfo S. The merge/purge problem for large

databases. In: SIGMOD. 1995, 127–138

10. Winkler W. The state of record linkage and current research

problems. In: Statistical Research Division. 1999

11. Sivic J, Zisserman A. Video google: A text retrieval approach to

object matching in videos. In: Computer Vision. 2003, 1470–

1477

12. Dong X, Halevy A, Madhavan J. Reference reconciliation in

complex information spaces. In: SIGMOD. 2005, 85–96

13. Sarawagi S, Bhamidipaty A. Interactive deduplication using

active learning. In: SIGKDD. 2002, 269–278

14. Arasu A, Ré C, Suciu D. Large-scale deduplication with con-

straints using dedupalog. In: ICDE. 2009, 952–963

15. Gravano L, Ipeirotis P, Jagadish H, Koudas N, Muthukrishnan

S, Srivastava D. Approximate string joins in a database (almost)

for free. In: VLDB. 2001, 491–500

16. Elmagarmid A, Ipeirotis P, Verykios V. Duplicate record detec-

tion: A survey. TKDE, 2007, 19(1): 1–16

17. Naumann F, Herschel M. An Introduction to Duplicate De-

tection. Synthesis Lectures on Data Management, 2010, 2(1):

1–87

18. Jiang Y, Li G, Feng J, Li W S. String similarity joins: An

experimental evaluation. In: PVLDB. 2014, 625–636

19. Chaudhuri S, Kaushik R. Extending autocompletion to tolerate

errors. In: SIGMOD. 2009, 707–718

20. Deng D, Li G, Feng J. A pivotal prefix based filtering algorithm

for string similarity search. In: SIGMOD. 2014, 673–684

21. Wang J, Li G, Feng J. Can we beat the prefix filtering? an adap-

tive framework for similarity join and search. In: SIGMOD.

2012, 85–96

22. Rong C, Lu W, Wang X, Du X, Chen Y, Tung A K. Efficient

and scalable processing of string similarity join. TKDE, 2013,

25(10): 2217–2230

23. Lu J, Lin C, Wang W, Li C, Wang H. String similarity measures

and joins with synonyms. In: SIGMOD. 2013, 373–384

24. Li G, He J, Deng D, Li J. Efficient similarity join and search on

multi-attribute data. In: SIGMOD. 2015, 1137–1151

25. Salton G, McGill M. Introduction to modern information re-

trieval. McGraw-Hill, Inc., 1986

26. Witten I H, Moffat A, Bell T C. Managing Gigabytes: Com-

pressing and Indexing Documents and Images, Second Edition.

Morgan Kaufmann, 1999

Front. Comput. Sci.
13

Chuitian Rong is an associate

professor at Tianjin Polytech-

nic University. He received his

Ph.D. degree from Renmin Uni-

versity of China in 2013. His re-

search interests are database sys-

tem, information retrieval, big

data analysis.

Yasin N. Silva is an Assistant

Professor of Applied Computing

in the School of Mathematical

& Natural Sciences at Arizona

State University. He received his

Ph.D. (2010) and M.S. (2006) in

Computer Science from Purdue

University and his B.S. in Com-

puter Engineering from the Pontificia Universidad Catolica,

Peru (2000). Yasin’s research areas deal with data man-

agement systems and privacy preservation in general. More

specifically, he has been working on the areas of query pro-

cessing and optimization, privacy assurance in database sys-

tems, Big Data management systems, scientific database sys-

tems, and the integration of new data processing technologies

into the computing curricula.

Chunqing Li is a professor

at Tianjin Polytechnic Univer-

sity. His research interests are

database system and applica-

tions, big data analysis, network

management and applications.

