
Storing Data Once in M-trees and PM-trees: Revisiting

the Building Principles of Metric Access Methods �

Humberto Razente1, Maria Camila N. Barioni1, Yasin N. Silva2

1Universidade Federal de Uberlândia (UFU)
Faculdade de Computação

Campus Santa Mônica, Uberlândia, MG, Brazil
{humberto.razente,camila.barioni}@ufu.br

2Arizona State University (ASU)
School of Mathematical and Natural Sciences

Glendale, Arizona, USA
ysilva@asu.edu

Abstract

Since the introduction of the M-tree, a fundamental tree-based data structure
for indexing multi-dimensional information, several structural enhancements
have been proposed. One of the most effective ones is the use of additional
global pivots that resulted in the PM-tree. These two indexing structures,
however, can store the same data element in multiple nodes. In this article,
we revisit both the M-tree and the PM-tree to propose a new construction
algorithm that stores data elements only once in the tree hierarchies. The
main challenge to accomplish this, is to properly select data elements when
an inner node split is needed. To address it, we propose an approach based
on the use of aggregate nearest neighbor queries. The new algorithms en-
able building the search result set as data elements are evaluated for pruning
during traversal, allowing faster retrieval of k-nearest neighbors and range
searches. We conducted an extensive set of experiments with different real
datasets. The results show that that our proposed algorithms have consid-
erably superior performance when compared with the standard M-tree and
PM-tree.

�This work has been supported by the Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior - Brasil (CAPES) – Finance Code 001, and by the Brazilian National
Council for Scientific and Technological Development (CNPq).

Preprint submitted to Information Systems September 3, 2021

Manuscript File Click here to view linked References

Keywords: Metric access methods, Ball-partitioning indexing, M-tree,
PM-tree, k-nearest neighbor query, range query

1. Introduction

Since the development of the B+tree, focused on secondary storage, even
though some keys are used as routing information in the inner nodes, all keys
are stored in the leaf nodes of tree-based methods. The motivation for this
tree organization is that the space in an inner node is so valuable that it is
better to use it to partition the data than to store the location of the data
represented by that key [1]. Moreover, the leaves are connected and form a
sequential set, which is of great interest when searching for a range of keys
based on the total ordering relation.

The M-tree stores all data elements in the leaf nodes, although a few
are also stored in the inner nodes for routing purposes. The leaves are not
interconnected. For indexes built for similarity search, rather than having
numeric or small text keys, metric data elements may occupy up to a few
kilobytes. Although the purpose of an inner node is to allow data parti-
tioning, storing an 8-byte numeric identifier with each entry may result in
a minimal disturbance in the indexing structure and allows retrieving the
full tuples after retrieving the metric data records in a range or k-nearest
neighbor query.

In this article, we propose not to duplicate elements promoted during node
splits. Instead, the two elements promoted to the upper level during a split
are removed from their original nodes. This algorithm is easily defined for
leaf nodes by removing the elements selected for promotion. When splitting
an inner node, however, it is not possible to remove a local pivot that needs
to be promoted, as it represents a branch. Instead, we have the opportunity
to select a better pivot to be promoted from a leaf node. We propose the
use of an aggregate nearest query to find an element that better minimizes
the covering radius considering the set of ball entries (each composed of an
element and a radius) that form an inner node.

This article extends the concepts introduced in [2] presenting a more
detailed description of the new Metric Access Method (MAM) indexing al-
gorithms including k-nearest neighbors and range algorithms, and the results
obtained with a new set of experiments to evaluate construction and querying
times considering: different construction parameters, query cardinality, and

2

dataset scalability. The main contributions of this article can be summarized
as follows:

� a new indexing approach for M-tree and PM-tree that allows build-
ing more efficient indexes for k-nearest neighbors and range querying
operations;

� k-nearest neighbor and range query algorithms for the new indexing
structures;

� an optimization approach, based on aggregate similarity query algo-
rithms, that allows finding suitable elements to be promoted during
inner node splits;

� the definition of the minimum aggregate radius property that allows
optimizing aggregate range queries;

� an extensive experimental evaluation and discussion to asses diverse
aspects of the new indexing algorithms on M-trees and PM-trees.

The remaining part of the article is organized as follows. In Section 2,
we describe the fundamental concepts. Section 3 details the new construc-
tion algorithms. Section 4 discusses the experimental results and Section 5
presents the final considerations.

2. Fundamental Concepts

A metric space is a pair < S, δ() >, where S is a data domain, and δ() is a
distance function that satisfies the following axioms for any elements x, y, and
z in S: δ(x, x) = 0 (identity); δ(x, y) = δ(y, x) (symmetry); 0 ≤ δ(x, y) < ∞
(non-negativity); and δ(x, y) ≤ δ(x, z) + δ(z, y) (triangle inequality). The
triangle inequality is used to determine if a ball defined by a data element
and a radius covers another element or intersects another ball. It is employed
to avoid reading data and computing distances from data elements that the
user is not looking for.

Existing metric access methods are divided into compact partitioning
techniques and pivot-based techniques [3]. M-tree [4] is the landmark of
compact partitioning techniques. It is a ball-partitioning method that results
in a tree hierarchy composed of inner and leaf nodes, built in a bottom-up
fashion, such as the B+tree. Each inner node contains a set of entries of

3

the form < pivot, radius >, where pivot is a data element and radius is
the branch covering radius (this radius should be greater than the distance
between the pivot and any of the data elements under the pivot). Each
entry defines a ball that covers all the data elements in the tree branch it
represents. The leaf nodes contain all data elements.

Algorithm 1 describes the insertion of an element e. The M-tree is created
with an empty leaf node initially defined as the root. In the case of leaf
overflow, a split algorithm is used to create a new node and to distribute
the elements between them. Each node also promotes one element to the
upper level, which stores it together with the associated coverage radius. The
upper levels are updated recursively, if necessary. This process guarantees
the structure is always balanced. After the first split, the insertion process
starts finding out a path from the root to a leaf. Space is not exclusively
partitioned as node coverage of different nodes may intersect.

Algorithm 1: Insert

Input: M-tree root node node, new element e

1 if node.type is inner then
2 if e is covered by at least one node.entryi then
3 select the node.entryi that minimizes the distance from e
4 else
5 select the node.entryi that minimizes the radius increase
6 Insert(node.entryi, e) // recursion
7 if status returned from recursion is promotion then
8 update node.entryi.pivot and insert new entry

9 else if node.type is leaf then
10 if node is not full then
11 node.add(e)
12 else
13 split(node+ e) and promote routing elements

Observe that the insertion process can result in an inner node overflow
and thus, an inner node split. After the split, a copy of each promoted
element is sent to the upper level. These promoted elements will be used as
routing elements (the first will replace the previous routing element, and the
second will be inserted as a new inner entry). The work in [4] proposes the
use of m RAD, an algorithm that finds a pair of pivots that split a node by

4

minimizing the sum of the covering radii. Its time complexity is O(n2), where
n is the number of elements in a node. Another interesting split strategy [5]
computes a minimum spanning tree and removes its longest edge to split a
node with time complexity of O(n · log n).

Several related contributions have been proposed to enhance the M-tree’s
performance. Some of them explored the reorganization of the trees [5],
the reinsertion of elements [6] and the use of short-term memories during
the construction [7]. Other contributions aimed to explore metric properties
to propose interesting new data structures, such as the Dynamic Spatial
Approximation Trees [8], iDistance [9], GroupSim [10], Omni-R [11], M-Index
[12], and PM-tree [13, 14, 15]. All these contributions demonstrated high
performance levels considering different scenarios. A comprehensive review
of pivot-based methods can be found at [3] and an extensive review of the
area can be found at [16].

Pivot-based techniques consider a static dataset S ⊆ S to find a constant
set of pivots. A naive pivot selection algorithm is to randomly select n
elements as pivots. Finding the optimal pivot set takes polynomial time,
and consequently it is, in many cases, impractical. Several heuristics with
linear time complexity were proposed recently, such as Maximum of Minimum
Distances (MMD) and Maximum of Sum of Distances (MSD) [17]. These
heuristics start by randomly selecting the first pivot and then they add pivots
incrementally, maximizing pi = argmaxs∈S−{p1,...,pi−1}mini−1

j=1 δ(s, pj) (MMD)

or pi = argmaxs∈S−{p1,...,pi−1}
∑i−1

j=1 δ(s, pj) (MSD) regarding the previously
selected pivots.

In addition to creating hierarchies based on local minimum bound rect-
angles (spatial) or pivot (metric) representations, Omni-R [11] proposed the
use of a set of static global pivots to enhance pruning balls on R-trees, while
PM-tree [14] proposed the use of a set of static global pivots to dynamically
store cut-region information on M-trees. Cut-regions allows better pruning
as they are able to exclude dead regions inside balls. The cut-region con-
cepts and algorithms were later formalized in [18, 15]. The PM-tree is the
state-of-the-art indexing structure of dynamic ball-partitioning metric access
methods.

The PM-tree insert algorithm is based on the M-tree insert (Algorithm
1). Additionally, cut-regions are computed and stored in inner nodes. Also,
when a node is split, the cut-regions may be updated in the upper nodes, as
well as the routing elements. Figure 1 illustrates the cut-region of a PM-tree

5

node. The cut-region is composed of the minimum and maximum distances
from each node’s element to each of the global pivots. In this example, one
can notice that although the query q with radius rq overlaps the ball defined
by o and r0, the cut-region allows excluding the dead space, thus enhancing
the pruning ability.

Figure 1: PM-tree: overlap of an inner node and a ball region. The ball defined by pivot
o and distance r0 overlaps the ball defined by q and rq. However, the cut-region allows
excluding the dead space, thus enhancing the pruning ability. Adapted from [15].

3. New M-tree and PM-tree algorithms

A metric index is a metric access method that organizes the elements si
of a dataset S ⊆ S using a metric δ(). Both M-tree and PM-tree indexes
support dynamic insertion of elements and optimization opportunities for the
execution of similarity queries. Among these queries are range and k-nearest
neighbor queries from a query element sq ∈ S based on a limit � that is either
the radius (τ) or the number of neighbors (k). The construction of a PM-tree
also considers a set of static global pivots P ⊆ S. In the next sections, we
refer to the standard algorithms as M-tree and PM-tree and the proposed
algorithms as M#tree and PM#tree.

To store data elements once in the hierarchy of an M-tree or a PM-tree,
we must propose a new insertion algorithm. When inserting a new element,
the algorithm starts from the root node and searches for a leaf to hold the
element, employing a heuristic to choose a suitable branch to follow. If the
node has enough space, it inserts the element, and the coverage radius may be
updated in the upper levels, if necessary. This process is similar to the steps
performed in the original M-tree and PM-tree insertion algorithm. However,

6

in the case of a leaf overflow in M#tree or PM#tree, our algorithm removes
the promoted element from the leaf node, as it will store the element in the
upper level.

When inserting the first elements in a new tree, the leaf node is also the
root node. In the case of an overflow, the algorithm creates a new leaf and
distributes the entries between them. It also creates a new inner node (the
new root node) that receives the pivots promoted from the pair of leaves.
For every leaf split after the first overflow, there will be a prior pivot that
was used to represent the leaf. Instead of maintaining the original pivot, we
propose selecting a new one, allowing the process to find an element that
better represents the portion of the data that remained in the node (the
algorithm assigned some of the elements of the original node to the newly
created node). Since a new pivot is selected/removed from the leaf, and
promoted, the algorithm reinserts the old pivot so that it can find a suitable
leaf node (reinsertion is necessary as there is no other copy of the element in
the index). For the new node, the algorithm selects/removes and promotes a
pivot. The insertion algorithm is recursive and applies the described steps in
a bottom-up fashion. A node split may promote an element that may cause
another split in the upper level.

A key challenge in the insertion algorithm is the selection of the pair of
pivots when an inner node needs to be split. When splitting an inner node,
selecting an element to be promoted and removing it from the node is not
possible, as each element is a pivot that represents a branch. Our proposed
algorithm employs the aggregate nearest neighbor query to solve this issue.
The goal is to find an element that minimizes the covering radius considering
the set of ball entries (each composed of an element and a covering radius)
that form an inner node. The algorithm searches the branch for this element
and removes it from its leaf. The aggregate nearest neighbor query allows
finding, for instance, the element in the branch that minimizes the sum of
distances to the set of ball pivots, among other aggregation functions. Then,
this element is promoted and stored in the upper level. This strategy can be
applied to both M-tree and PM-tree insertion algorithms. Observe that the
aggregate query does not start at the index root node, instead it traverses
from the inner node being split.

Algorithm 2 describes the insertion of an element e in M#tree. The
differences are lines 8 to 14, where after an inner node split, the two elements
returned by the aggregate nearest neighbor queries rooted at both split nodes
will be set as routing elements, being one of them a replacement. Thus the

7

reinsertion of the previous routing element is needed. For the PM#tree, it
is also necessary to update the cut-regions when a node is split.

Algorithm 2: Insert

Input: M#tree root node node, new element e

1 if node.type is inner then
2 if e is covered by at least one node.entryi then
3 select the node.entryi that minimizes the distance from e
4 else
5 select the node.entryi that minimizes the radius increase
6 Insert(node.entryi, e) // recursion
7 if status returned from recursion is promotion then
8 if promoted from inner split then
9 aggregate nearest neighbor(node.entryi)

10 aggregate nearest neighbor(new node)
11 reinsert node.entryi.pivot element
12 update node.entryi.pivot and insert new entry

13 else if promoted from leaf split then
14 update node.entryi.pivot and insert new entry

15 else if node.type is leaf then
16 if node is not full then
17 node.add(e)
18 else
19 split(node+ e) and promote routing elements

When splitting a node, the new methods can employ m RAD, MST
(M#tree and PM#tree), or GrowthOfCutRegionExtension (PM#tree). For
leaf nodes, the complexity is the same as proposed by the original works on
M-tree and PM-tree. For an inner node split, after the node is split into
two nodes, an aggregate nearest neighbor is run for each of them to find the
elements that will be removed from the leaves and promoted to the upper
levels. One of them will replace the previous routing element, which will
need to be reinserted in the index. In short, the complexity of the split of
an inner node is the complexity of the clustering method (m RAD, MST,
GrowthOfCutRegionExtension, etc.) plus the complexity of two aggregate
nearest neighbor queries (optimized as described in Section 3.1.1), and one
reinsertion in the branch being split.

8

Figure 2 illustrates the selection of promoted pivots when an inner node is
split. It represents the set of balls stored in the node. In (a), the node entries
{ < s1, r1 >, < s2, r2 >, < s3, r3 > } represent the pivots and the covering
radii, each one covering a branch of the tree. In the standard M-tree (b), s1 is
promoted to the upper level with radius rp, as among the options {s1, s2, s3},
the element s1 results in the minimization of rp that covers all entries in
this node. The new strategy (c) searches downward to find the aggregate
first-nearest neighbor p with respect to query elements Q = {s1, s2, s3} by
minimizing an aggregation of distances, such as the sum or the mean square
distance.

Figure 2: M-tree inner node representation. (a) Node entries { < s1, r1 >, < s2, r2 >,
< s3, r3 > }. (b) in the standard M-tree, s1 is promoted to the upper level with radius rp:
among the options {s1, s2, s3}, promoting s1 results in the minimization of rp. (c) New
strategy: search downward to find the aggregate first-nearest neighbor p with respect to
query elements Q = {s1, s2, s3}, remove it from its leaf and promote it with radius rq.

Observe that the promoted radius rp from (b) is greater than the pro-
moted radius rq from (c), thus (c) results in less dead space. The definition
and properties of these queries are presented in Section 3.1. The optimization
of the aggregate nearest neighbor query, presented in Section 3.1.1, employs

9

the triangle inequality to prune branches that do not overlap with the search
space. Thus, it is possible to implement general (1) best-first aggregate k-
nearest neighbor and (2) depth-first aggregate range query algorithms by
replacing the filtering step with the lower bound of the aggregate distance
function. In Section 3.2, we present new query algorithms that consider that
each data element appears only once in an index.

3.1. The Aggregate Similarity Query

An aggregate similarity query [19] is a relational selection operation that
retrieves the most similar elements of a dataset S ⊆ S to a set of query
elements Q ⊆ S considering a similarity aggregation function dg(). This
function evaluates the aggregate similarity of each element si ∈ S based on
its similarity, measured by the metric δ(), to every element sq ∈ Q. Limits
can be expressed as a similarity threshold ξ (aggregated radius) or based on
a number k of elements. In this article, we present a refined version of the
general algorithm.

Observe that in this algorithm, the well-known similarity range and k-
nearest neighbor queries correspond to special cases of the aggregate queries,
where the set of query elements has only one element Q = {sq} and the limit
� is either the range or the number of neighbors. As the set of query elements
Q cardinality may be greater than one, the distances δ(si, sq) from each query
element sq ∈ Q to the element si ∈ S must be aggregated. Given a distance
function δ(), the set of query elements Q, a dataset element si, and a non-zero
real value g ∈ R

∗ (limg→0 dg = ∞), the aggregate distance function dg() is
defined by Equation 1. This equation provides several interesting cases. For
instance, g = 1 allows finding the minimization of the sum of the distances;
g = 2 allows finding the minimization of the mean square distance; g = ∞
allows finding the minimization of the maximum distance; and g = −∞
allows finding the minimization of the minimum distance.

dg(Q, si) = g

√∑
sq∈Q

δ(sq, si)
g (1)

3.1.1. Lower Bounding the Aggregate Distance Function

The time complexity of a sequential scan to solve the aggregate range and
aggregate k-NN is O(n ∗ |Q|) distance calculations, where n is the number of
elements in the dataset and |Q| is the cardinality of Q. As it is done in range
queries, the triangle inequality property can be employed to discard branches

10

of ball-partitioning based metric access methods. Let us consider Figure 3
as an example of an aggregate range query in a 2-dimensional Euclidean
space and g = 1. In this case, the query Q is composed of two elements
(q1, q2). The figure shows a branch centered at st with covering radius rt,
and an unknown element h that minimizes dg() with respect to q1 and q2.
The challenge in this case is to compute the lower bound aggregate similarity
from centers q1 and q2 to h to decide if the region defined by the aggregate
range ξ = 1

√
w1 + x1 = w+x overlaps the region covered by the ball centered

at st.

b ll

a

rt

b
cd

st

h

ball

q1 q2

aggregate
query

w x

Figure 3: Ball region and aggregate range for g = 1, Q = {q1, q2} (query), st is a branch
representative with radius rt.

From Figure 3, rt is known and {a, c} can be computed, but {b, d} cannot.
To assure that a branch centered at st with covering radius rt can be pruned,
we need to determine if dg(Q, h) = g

√
bg + dg is less than or equal to the

limiting aggregated radius ξ = g
√
wg + xg that generates the query region,

i.e., if the two regions overlap. If they do not overlap, the branch centered
at st can be pruned. From the definition of distance functions, the following
triangle inequalities hold when g = 1 and dg = b+ d:

b ≥ |a− rt| (2)

d ≥ |c− rt| (3)

b+ d ≥ |a− rt|+ |c− rt| (4)

Generalizing, it can be stated for g > 0 that:

bg ≥ |a− rt|g (5)

11

dg ≥ |c− rt|g (6)

bg + dg ≥ |a− rt|g + |c− rt|g (7)

From Equation 7 we can build Equation 8, where Q is the set of query
centers, ξ is the aggregate query radius, st is a branch representative, and
rt is a branch covering radius. Equation 8 enables verifying if an aggregated
range overlaps a ball with no false dismissals, providing exact answers. This
verification will replace the single center triangle inequality comparisons to
discard branches (when the aggregation is greater than ξ) during, for in-
stance, a depth-first traversal in a range query or in a best-first approach
employed for nearest-neighbor algorithms.

g

√∑
sq∈Q

| δ(sq, st)− rt |g ≤ ξ (8)

3.1.2. The Minimum Aggregate Radius Property

In this section, we present an important property of aggregate range
queries. Given a set Q of query centers and the aggregate function defined in
Equation 1, there exists a minimum aggregate radius that defines a non-null
region where a query can find elements. The minimum radius depends on g,
the number of elements in Q and the pairwise distances among the elements
in Q. Whenever a query with an aggregate radius less than the minimum is
posed, it will result in an empty set regardless of the distribution of elements
in the dataset. This property can be employed by a query plan optimizer to
avoid searching the index.

For illustration purposes and without loss of generality, let us consider
an aggregate range query over a set of four query centers Q = {q1, q2, q3, q4}
as shown in Figure 4. Let h1 be the element that minimizes the similarity
aggregation function for Q. In this figure, {a, b, c, d, e, f} are the pairwise
distances between all the pairs of query centers. However, as the element
h1 is not known (or may not even exist), the distances {v, w, x, y} cannot
be computed. Therefore, the minimum aggregate radius of element h1 to
the query centers is defined as the minimization of the function dg(Q, h1) =
g
√
vg + wg + xg + yg. The minimization problem for the example of Figure 4

can be stated in the following way.
Problem definition. Minimize dg(Q, h1) = g

√
vg + wg + xg + yg subject

to the following rules, which are based on the triangle inequality property
(considering h1 and a different combination of two elements of Q at a time):

12

a
b

f

e

c

q1

q2

q3

q4

d

v

w

x

y

h1

Figure 4: Minimum aggregate radius example.

v + w - a ≥ 0
v + x - b ≥ 0
v + y - c ≥ 0

w + x - d ≥ 0
w + y - e ≥ 0

x + y - f ≥ 0

(9)

For g = 1 (which allows minimizing dg(Q, h1) = v + w + x + y) and
g = ∞ (which allows minimizing dg(Q, h1) = max(v, w, x, y)), this is the
well-known problem of finding minima of arbitrary multidimensional func-
tions. The problem of multidimensional minimization requires finding a point
such that the scalar function f(q1, q2, ..., qn) takes a value lower than at any
of its neighbors, where n is the number of query centers in Q. An example of
multidimensional minimization algorithm is the well-known linear program-
ming Simplex algorithm [20], which maintains n+ 1 trial parameter vectors
as the vertices of an n-dimensional simplex. In each iteration step it tries to
improve the worst vertex by a simple geometrical transformation until the
size of the simplex falls below a given tolerance.
Lemma. Considering g = 1 or g = ∞, the minimization function dg(Q, h1)
subjected to a set of equations derived from the triangle inequality property
will always lead to a consistent system.

We show the intuition of this property using the example of Figure 4
to define Equation 10. In this example, all constants {a, b, c, d, e, f} and
variables {v, w, x, y} involved are greater than or equal to zero, as they are
distances. Therefore, since

13

0 ≤ v ≤ max{a, b, c} and
0 ≤ w ≤ max{a, d, e} and
0 ≤ x ≤ max{b, d, f} and
0 ≤ y ≤ max{c, e, f},

(10)

there is no set of values for variables {v, w, x, y} that generates an inconsistent
system of equations. Thus, it is always possible to compute the minimum
aggregate radius for a given query with a linear programming solver such as
Simplex, if g = 1 or g = ∞.

3.2. Range and k-nearest Neighbor Algorithms

The range search algorithm for tree-based metric access methods employs
the depth-first traversal strategy while pruning tree branches based on the
triangle inequality property. Algorithm 3 presents the new algorithm for
M#tree. The main difference is presented in lines 4 to 5, where as a distance
is computed to allow for pruning, it is also used to check if the routing element
is a candidate to be inserted in the result set. Line 6 checks if a branch can
be pruned, based on the triangle inequality. Additionally, for PM#tree, line
6 checks if the query intersects the cut-region. The cut-region information of
an inner entry is a vector containing the minimum and maximum distances
in the branch for each of the global pivots. Checking if the range query
intersects the cut-region does not require new distance calculations, as all
distances were already computed.

Algorithm 4 presents the new k-nearest neighbor algorithm for M#tree.
Line 1 initially adds all the entries from the root node to a priority queue
ordered by their distances to the query element q. In this algorithm, as a
distance is computed for an inner node entry following the priority queue
(line 7), it is also used to check if the routing element is a candidate to be
inserted in the result set (lines 10 to 14). This step has two advantages: first,
it reduces the number of distances computed, and second, it anticipates the
inclusion of an element into the result set, accelerating the range convergence.
Lines 14 and 22 update the radius (range) to enable the convergence toward
the range query that retrieves the k-nearest neighbors. Note that Line 8
adds a inner entry to the queue if the entry intersects the search space.
Additionally, for PM#tree, line 8 also checks if the query intersects the cut-
region.

14

Algorithm 3: RangeQ

Input: root node node, query element q, query radius r
Output: result set result

1 if node.type is inner then
2 for each routing element si in node do
3 distance = δ(q, node.si)
4 if distance ≤ r then
5 result.Add(distance, node.si)

6 if distance− node.radiusi ≤ r then
7 RangeQ(node.entryi, q, r) // recursion

8 else if node.type is leaf then
9 for each data element si in node do

10 distance = δ(q, node.si)
11 if distance ≤ r then
12 result.Add(distance, node.si)

4. Experiments

All the access methods evaluated in the experiments were implemented
in C++ using the same core data structures [21]. We run the experi-
ments on a Linux 64-bit computer with 8 GB of main memory, Intel Core
i7−4770@3.40GHz processing unit, and 1 TB of hard disk drive.

Table 1 shows the dataset metadata. The Nasa and the Colors datasets
are available in [22], and the Covertype dataset is available in [23]. The
Colorstructure dataset is a subset of the CoPHir dataset [24]. CoPHir is
composed of several features extracted from 100 million images from Flickr.
We selected the first 8 million elements based on the Colour Structure ex-
tractor of CoPHir to compose the Colorstructure dataset.

The embedded dimensionality E in Table 1 represents the number of
dimensions of the dataset spaces. It is well known that the existing correla-
tions among dimensions decrease the intrinsic dimensionality – that is, the
intrinsic characteristics of the data – regardless of the space where it is em-
bedded [25]. In order to compute the intrinsic dimensionality D we employed
the strategy proposed by Chávez et al. [26]. It defines the dimensionality
D = μ2/2σ2, where μ is the mean and σ is the standard deviation of the dis-
tance matrix values. In Table 1, due to the quadratic time complexity of the

15

Algorithm 4: NearestNeighborQ

Input: query element q, number of elements k
Output: result set result

1 queue = newPriorityQueue(root, q)
2 range = ∞
3 while not queue.Empty() do
4 node = queue.GetNextNode()
5 if node.type is inner then
6 for each routing element si in node do
7 distance = δ(q, node.si)
8 if distance− node.radiusi ≤ range then
9 queue.Add(d, node.entryi)

10 if distance ≤ range then
11 result.Add(distance, node.si)
12 if result.Count ≥ k then
13 result.RemoveLast()
14 range = result.MaxDistance()

15 else if node.type is leaf then
16 for each data element si in node do
17 distance = δ(q, node.si)
18 if distance ≤ range then
19 result.Add(distance, node.si)
20 if result.Count ≥ k then
21 result.RemoveLast()
22 range = result.MaxDistance()

method, we present an approximation of D as the average D computed from
random samples of 20k elements. We employed the closest integer to D to
determine the number of global pivots of the PM-trees and PM#Trees. Pre-
vious related studies used the intrinsic dimensionality for pivot selection in
pivot-based indexes [27, 25] as this value tends to create fine-tuned indexes.

All the experiments employed the Euclidean distance. We employed the
MaxSum algorithm [17] to select D global pivots (Table 1, # of pivots)
for PM-tree and PM#Tree. All indexes were built considering the opti-
mistic forced reinsertion strategy with parameters maxRemoved = 5 and
recursionDepth = 10 [6]. M-tree and M#tree employed m RAD for node

16

Table 1: Datasets.
Dataset Cardinality Embedded Intrinsic # of

dim. E dim. D pivots
Nasa 40,150 20 5.18 5
Colors 112,682 112 2.75 3
Covertype 581,012 54 9.08 9
Colorstructure 8,000,000 64 7.99 8

split. PM-tree and PM#tree employed the SingleWayForCutRegions to find
the path to the leaf nodes and GrowthOfCutRegionExtension as the metric
for node split [15]. M#tree and PM#tree employed g = 1 to compute the
aggregate distance when choosing the element to be promoted when an inner
node split occurs.

4.1. Effect of the node size

In this experiment, we evaluate the methods regarding the size of the
nodes during index construction (Section 4.1.1) and searches (Section 4.1.2).

4.1.1. Construction

For all the evaluated methods, a disk page stores a single node. As the
page size grows, there may be more elements per node, potentially resulting
in hierarchies with lower heights. On the other hand, node split becomes ex-
pensive due to the time complexity of the split strategies. Figure 5 presents
the heights of the indexes. As shown in this figure, the proposed method
resulted in indexes with the same height as the indexes of standard algo-
rithms for most of the configurations (or at most a difference of 1), which is
important to allow for a fair comparison of the querying features.

Figure 6 presents the index file sizes. The number of nodes is the ra-
tio between the file size and the page size. PM-tree and PM#tree indexes
store fewer entries in the inner nodes when compared to M-tree and M#tree
due to the storage of cut-regions. Thus, the inner nodes of PM-trees and
PM#trees have a smaller capacity to partition the data. Nevertheless, PM-
tree and PM#tree resulted in more compact indexes when compared to M-
tree and M#tree in terms of file size and the respective number of nodes. In
some cases, the smaller number of entries in the inner nodes of PM-tree and
PM#tree indexes generated higher tree heights (e.g., see 4KB and 12KB for
Covertype, and 4KB and 8KB for Colorstructure in Figure 5).

17

 2

 3

 4

 5

4096
8192

12288

16384

Tr
ee

 h
ei

gh
t

Disk page size (bytes) (a)

 2

 3

 4

 5

 6

8192
16384

24576

32768

Tr
ee

 h
ei

gh
t

Disk page size (bytes) (b)

 3

 4

 5

 6

 7

 8

4096
8192

12288

16384

Tr
ee

 h
ei

gh
t

Disk page size (bytes) (c)

 4

 5

 6

 7

 8

 9

 10

4096
6144

8192
10240

Tr
ee

 h
ei

gh
t

Disk page size (bytes) (d)

M-tree M#tree PM-tree PM#tree

Figure 5: Effect of the node size: index height. (a) Nasa. (b) Colors. (c) Covertype. (d)
Colorstructure.

 5200
 5400
 5600
 5800
 6000
 6200
 6400
 6600
 6800

 4096 8192 12288 16384

Fi
le

 si
ze

 (K
B)

Disk page size (bytes) (a)

 65000
 70000
 75000
 80000
 85000
 90000
 95000

 100000

 8192 16384 24576 32768

Fi
le

 si
ze

 (K
B)

Disk page size (bytes) (b)

 170000
 180000
 190000
 200000
 210000
 220000
 230000
 240000
 250000

 4096 8192 12288 16384

Fi
le

 si
ze

 (K
B)

Disk page size (bytes) (c)

 2.8×106
 3×106

 3.2×106
 3.4×106
 3.6×106
 3.8×106

 4×106
 4.2×106
 4.4×106
 4.6×106

 4096 6144 8192 10240

Fi
le

 s
iz

e
(K

B)

Disk page size (bytes) (d)

M-tree M#tree PM-tree PM#tree

Figure 6: Effect of the node size: file size in KB. (a) Nasa. (b) Colors. (c) Covertype. (d)
Colorstructure.

18

Figure 7 shows the index construction times. Although M#Tree’s and
PM#Tree’s inner node split requires the execution of an aggregate nearest
neighbor query, the execution of this step is usually delayed (in comparison
to M-Tree and PM-Tree) due to a small reduction in the number of tree
nodes resulting from data elements being stored only once. Thus, we did
not observe any significant increase in index creation time. The fluctuations
in Figures 6 and 7 are due to several factors, such as the resulting overlap
among sibling branches, index heights, and internal fragmentation.

 0
 20
 40
 60
 80

 100
 120
 140
 160

 4096 8192 12288 16384

To
ta

l t
im

e
in

 s
ec

on
ds

Disk page size (bytes) (a)

 0

 50
 100

 150

 200
 250

 300

 8192 16384 24576 32768

To
ta

l t
im

e
in

 s
ec

on
ds

Disk page size (bytes) (b)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 4096 8192 12288 16384

To
ta

l t
im

e
in

 s
ec

on
ds

Disk page size (bytes) (c)

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

 4096 6144 8192 10240

To
ta

l t
im

e
in

 s
ec

on
ds

Disk page size (bytes) (d)

M-tree M#tree PM-tree PM#tree

Figure 7: Effect of the node size: time to build the indexes. (a) Nasa. (b) Colors. (c)
Covertype. (d) Colorstructure.

4.1.2. k-Nearest Neighbor Queries

The k-nearest neighbor query algorithm employed in the experiments uses
a priority queue as proposed for R-trees in [28]. We randomly selected 100
elements of each dataset to be the query elements. Figure 8 presents the
average number of disk accesses to run 100 k-nearest neighbor queries with
k=10. We count all page accesses, regardless of any system/hardware cache
or page fault. Moreover, as we are comparing structures built with different
page sizes, we should also consider the number of bytes read to process the
queries, as shown in Figure 9. As shown in Figure 8 and Figure 9, one can
notice the decrease in the number of node accesses and, consequently, the

19

number of bytes read when comparing M-tree to M#tree and PM-tree to
PM#tree for the two larger datasets. These figures also reveal that, across
all of the methods, as the node size increases, the number of nodes that are
effectively accessed decreases. However, this does not necessarily result in a
significant decrease in the number of bytes effectively read.

 100
 150
 200
 250
 300
 350
 400
 450
 500

 4096 8192 12288 16384

Av
g

di

sk
 a

cc
es

se
s

Disk page size (bytes) (a)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 8192 16384 24576 32768

Av
g

di

sk
 a

cc
es

se
s

Disk page size (bytes) (b)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 4096 8192 12288 16384

Av
g

di

sk
 a

cc
es

se
s

Disk page size (bytes) (c)

 50000
 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000
 500000

 4096 6144 8192 10240

Av
g

#
 d

is
k

ac
ce

ss
es

Disk page size (bytes) (d)

M-tree M#tree PM-tree PM#tree

Figure 8: Effect of the node size: average disk accesses to run 100 k-nearest neighbor
queries with k=10. (a) Nasa. (b) Colors. (c) Covertype. (d) Colorstructure.

Figures 10 and 11 show the average number of distance calculations and
the total time to run the queries, respectively. When traversing the index,
as M#tree and PM#tree compute the distance to an inner entry to decide
if a branch must be visited, it uses this distance information to check if the
data element is a candidate to be inserted in the result set. In the standard
M-tree and PM-tree, as all elements are in the leaf nodes, the distances to
the copies of the elements promoted to inner nodes are not used to consider
elements to be inserted in the result set. Thus, they need to compute the
distance to all unpruned elements in the leaf nodes. As shown in these
figures, both the average number of distances computed and the time to
execute the queries decrease as the disk page size increases. This behavior
is due to several factors, such as the decrease in the tree heights (Figure 5),
the reduction in the overlap among sibling branches, the number of nodes
accessed (Figure 8), and the internal fragmentation, at the cost of more

20

 1100
 1200
 1300
 1400
 1500
 1600
 1700
 1800
 1900
 2000
 2100
 2200

 4096 8192 12288 16384

Av
g

KB

 re
ad

Disk page size (bytes) (a)

 12000
 14000
 16000
 18000
 20000
 22000
 24000
 26000
 28000
 30000
 32000

 8192 16384 24576 32768

Av
g

KB

 re
ad

Disk page size (bytes) (b)

 0
 5000

 10000
 15000
 20000
 25000
 30000

 4096 8192 12288 16384

Av
g

KB

 re
ad

Disk page size (bytes) (c)

 600000
 800000
 1×106

 1.2×106
 1.4×106
 1.6×106
 1.8×106

 2×106

 4096 6144 8192 10240
Av

g
#

 K
B

re
ad

Disk page size (bytes) (d)

M-tree M#tree PM-tree PM#tree

Figure 9: Node size: average KB read when running 100 k-nearest neighbor queries with
k=10. (a) Nasa. (b) Colors. (c) Covertype. (d) Colorstructure.

expensive index construction. Overall, we observe that the execution times
of the proposed methods are significantly better that those of the original
approaches. For instance, the queries on M#tree run 26% to 44% faster than
those on the M-tree, and on PM#tree from 26% to 40% faster than those
on the PM-tree for the Colorstructure dataset. The performance gains when
comparing M-tree versus M#tree and PM-tree versus PM#tree is detailed
in Table 2.

Figures 9 and 10 are the main components of the query times presented
in Figure 11. In Figure 11 we can see the query time decreases as the page
size increases.

4.2. Effect of k

In this set of experiments, we evaluate k-nearest neighbor queries re-
garding k. We created the indexes with page sizes of 8 KB for Nasa, 16
KB for Colors, and 8 KB for both Covertype and Colorstructure (see the
abscissa of Figures 5 to 11). As shown in Figure 12, when k increases, the
total time spent to run the k-nearest neighbor queries increases as a logarith-
mic function for all the evaluated indexes. Moreover, the indexes built with
the proposed methods perform significantly better than the original indexes

21

 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500
 8000

 4096 8192 12288 16384

Av
g

di

st
an

ce
s

Disk page size (bytes) (a)

 10000
 12000
 14000
 16000
 18000
 20000
 22000
 24000

 8192 16384 24576 32768

Av
g

di

st
an

ce
s

Disk page size (bytes) (b)

 0
 5000

 10000
 15000
 20000
 25000
 30000

 4096 8192 12288 16384

Av
g

di

st
an

ce
s

Disk page size (bytes) (c)

 1×106
 1.2×106
 1.4×106
 1.6×106
 1.8×106

 2×106
 2.2×106
 2.4×106
 2.6×106
 2.8×106

 4096 6144 8192 10240
Av

g
#

 d
is

ta
nc

es

Disk page size (bytes) (d)

M-tree M#tree PM-tree PM#tree

Figure 10: Effect of the node size: average distance calculations to run 100 k-nearest
neighbor queries with k=10. (a) Nasa. (b) Colors. (c) Covertype. (d) Colorstructure.

 0.06
 0.065

 0.07
 0.075

 0.08
 0.085

 0.09
 0.095

 0.1
 0.105

 0.11

 4096 8192 12288 16384

To
ta

l t
im

e
in

 s
ec

on
ds

Disk page size (bytes) (a)

 0.6
 0.5
 0.7
 0.8
 0.9

 1
 1.1
 1.4
 1.2
 1.3

 8194 15283 43675 24758

To
ta

l t
im

e
in

 s
ec

on
ds

Disk page size (bytes) (b)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 4096 8192 12288 16384

To
ta

l t
im

e
in

 s
ec

on
ds

Disk page size (bytes) (c)

 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

 4096 6144 8192 10240

To
ta

l t
im

e
in

 s
ec

on
ds

Disk page size (bytes) (d)

M-tree M#tree PM-tree PM#tree

Figure 11: Effect of the node size: time to run 100 k-nearest neighbor queries with k=10.
(a) Nasa. (b) Colors. (c) Covertype. (d) Colorstructure.

22

Table 2: Comparison of gains in M-tree/M#tree and PM-tree/PM#tree: time to run 100
k-nearest neighbor queries with k=10.

Dataset Node Time in seconds
size (KB) M-tree M#tree % PM-tree PM#tree %

4 0.107 0.090 -16% 0.080 0.067 -16%
Nasa 8 0.083 0.073 -12% 0.064 0.062 -3%

12 0.076 0.072 -5% 0.072 0.067 -7%
16 0.079 0.075 -5% 0.074 0.068 -8%
8 1.399 1.067 -24% 0.998 0.664 -34%

Colors 16 1.059 0.775 -27% 0.794 0.555 -30%
24 1.012 0.775 -23% 0.743 0.600 -19%
32 0.885 0.725 -18% 0.744 0.571 -23%
4 1.427 0.954 -33% 0.721 0.175 -76%

Covertype 8 0.538 0.482 -10% 0.297 0.118 -60%
12 0.412 0.355 -14% 0.176 0.143 -19%
16 0.337 0.289 -14% 0.152 0.113 -26%
4 119.570 88.776 -26% 108.335 65.417 -40%

Color 6 84.846 62.870 -26% 74.651 49.637 -34%
structure 8 72.741 52.748 -27% 54.909 40.874 -26%

10 86.806 48.298 -44% 57.407 38.656 -33%

across all values of k. Considering the Colorstructure dataset, for exam-
ple, the time difference (performance gain) is approximately 19.5s when we
compare M-tree versus M#tree, and approximately 15s when we compare
PM-tree versus PM#tree.

4.3. Effect of radius

In this set of experiments, we evaluate range queries regarding the search
radius. For these experiments, we created the indexes as described in Section
4.2. The query radii employed were interpolated between the distances to
the 10th and the 100th elements retrieved for a random k-nearest neighbor
query, resulting in different result set cardinalities for each dataset. Figure
13 presents the average number of elements retrieved, up to 293, 169, 926
and 6,270 for the Nasa, Covertype, Colors and Colorstructure datasets, re-
spectively. Although it is not a requirement for range queries, our result-set
data structure maintains the retrieved elements sorted by their distances to
the query element. As shown in Figure 14, the indexes built with the pro-
posed methods also perform better that the original methods as the radius
increases. For example, considering the Colorstructure dataset, the time dif-
ference is approximately increases from 16.7s (r=167) to 17.9s (r=186) when

23

 0.06
 0.07
 0.08
 0.09

 0.1
 0.11
 0.12
 0.13
 0.14

 10 20 30 40 50 60 70 80 90 100

To
ta

l t
im

e
in

 s
ec

on
ds

k (a)

 0.6
 0.7
 0.8
 0.9
 0.1

 2
 2.2
 2.3
 2.4
 2.5
 2.6

 20 30 40 50 60 70 80 90 10 200

To
ta

l t
im

e
in

 s
ec

on
ds

k (b)

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 10 20 30 40 50 60 70 80 90 100

To
ta

l t
im

e
in

 s
ec

on
ds

k (c)

 40
 45
 50
 55
 60
 65
 70
 75
 80
 85

 10 20 30 40 50 60 70 80 90 100
To

ta
l t

im
e

in
 s

ec
on

ds
k (d)

M-tree M#tree PM-tree PM#tree

Figure 12: Effect of k: time to run 100 k-nearest neighbor queries. (a) Nasa. (b) Colors.
(c) Covertype. (d) Colorstructure.

 50
 100
 150
 200
 250
 300

 0.3
 0.32

 0.34
 0.36

 0.38
 0.4

 0.42
 0.44

 0.46
 0.48

Av
g

el

em
en

ts

Radius (a)

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0.09
 0.095

 0.1
 0.105

 0.11
 0.115

 0.12
 0.125

 0.13

Av
g

el

em
en

ts

Radius (b)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0.06
 0.07

 0.08
 0.09

 0.1
 0.11

 0.12
 0.13

 0.14
 0.15

Av
g

el

em
en

ts

Radius (c)

 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500

 160
 165

 170
 175

 180
 185

 1

Av
g

#
 e

le
m

en
ts

Radius (d)

All methods

Figure 13: Effect of radius: average number of retrieved elements when running 100 range
queries. (a) Nasa. (b) Colors. (c) Covertype. (d) Colorstructure.

24

we compare M-tree versus M#tree.

 0.05
 0.06
 0.07
 0.08
 0.09

 0.1
 0.11
 0.12
 0.13

 0.3
 0.32

 0.34
 0.36

 0.38
 0.4

 0.42
 0.44

 0.46
 0.48

To
ta

l t
im

e
in

 s
ec

on
ds

Radius (a)

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

 0.09
 0.095

 0.1
 0.105

 0.11
 0.115

 0.12
 0.125

 0.13

To
ta

l t
im

e
in

 s
ec

on
ds

Radius (b)

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0.06
 0.07

 0.08
 0.09

 0.1
 0.11

 0.12
 0.13

 0.14
 0.15

To
ta

l t
im

e
in

 s
ec

on
ds

Radius (c)

 35
 40
 45
 50
 55
 60
 65
 70
 75
 80

 160
 165

 170
 175

 180
 185

 1

To
ta

l t
im

e
in

 s
ec

on
ds

Radius (d)

M-tree M#tree PM-tree PM#tree

Figure 14: Effect of radius: time to run 100 range queries. (a) Nasa. (b) Colors. (c)
Covertype. (d) Colorstructure.

4.4. Scalability

In this set of experiments, we evaluate the index scalability increasing
the dataset in batches of 10% of the total size of each dataset. For these
experiments, we defined the page size of the indexes page as described in
Section 4.2. After inserting each batch, we executed the queries. Figure 15
presents the indexes’ heights. As shown in this figure, in the case of Nasa and
Colors, all indexes achieved their final heights after 10% and 20% of the data
elements were inserted, respectively. In the case of Covertype, both PM-
tree and PM#tree achieved their final heights after 20%, while for M-tree
and M#tree it happened after we inserted 50% of the elements. Moreover,
the experimental results obtained showed that the file sizes and the time to
build the indexes grow linearly with each batch to the values presented for
the respective configurations in Figures 6 and 7.

Figure 16 presents the execution time of running 100 k-nearest neighbor
queries with k = 10 after each insertion batch. As shown in this figure,
as the dataset cardinality increases, the differences between the time spent
by M-tree and PM-tree compared to their improved versions M#-tree and

25

 2

 3

 4

10 20 30 40 50 60 70 80 90 100
 1

Tr
ee

 h
ei

gh
t

Data cardinality (%) (a)

 2

 3

 4

 5

10 20 30 40 50 60 70 80 90 100
 1

Tr
ee

 h
ei

gh
t

Data cardinality (%) (b)

 3

 4

 5

 6

10 20 30 40 50 60 70 80 90 100
 1

Tr
ee

 h
ei

gh
t

Data cardinality (%) (c)

 4

 5

 6

 7

 8

10 20 30 40 50 60 70 80 90 100
 1

Tr
ee

 h
ei

gh
t

Data cardinality (%) (d)

M-tree M#tree PM-tree PM#tree

Figure 15: Scalability: index height. (a) Nasa. (b) Colors. (c) Covertype. (d) Colorstruc-
ture.

PM#tree also increase. For instance, considering the Colorstructure dataset,
the time difference increases from 1.6s to 17.1s for M-tree/M#tree and from
1.1s to 16.4s for PM-tree/PM#tree.

5. Conclusion

The design of efficient and dynamic metric access methods is fundamental
for many search and analysis processes based on similarity comparison op-
erations. In this article, we present a new construction strategy for M-trees
and PM-trees that does not duplicate elements during node split. To achieve
this goal, we employed an aggregate k-nearest neighbor query to select the
elements to be promoted during an inner node split. We also present an
optimized algorithm to solve this query based on the aggregation of triangle
inequality relations.

In our experiments, we thoroughly compare the standard M-tree and PM-
tree against the proposed indexing methods. We empirically show that our
strategy allows building indexes that significantly increase the performance
of k-nearest neighbors and range queries. This performance improvement is

26

 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1

 10 20 30 40 50 60 70 80 90 100

To
ta

l t
im

e
in

 s
ec

on
ds

Data cardinality (%) (a)

 0

 0.2
 0.3

 0.4

 0.5
 6

 6.2

 60 20 70 30 80 40 90 50 10 600

To
ta

l t
im

e
in

 s
ec

on
ds

Data cardinality (%) (b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 10 20 30 40 50 60 70 80 90 100

To
ta

l t
im

e
in

 s
ec

on
ds

Data cardinality (%) (c)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 10 20 30 40 50 60 70 80 90 100
To

ta
l t

im
e

in
 s

ec
on

ds
Data cardinality (%) (d)

M-tree M#tree PM-tree PM#tree

Figure 16: Scalability: time spent to run 100 k-nearest neighbor queries. (a) Nasa. (b)
Colors. (c) Covertype. (d) Colorstructure.

achieved due to better data partitioning and a reduction in the number of
distance calculations and disk accesses during query execution.

References

[1] D. Comer, The ubiquitous b-tree, ACM Computing Surveys 11 (1979)
121–137. doi:10.1145/356770.356776.

[2] H. L. Razente, M. C. N. Barioni, Storing data once in M-tree and PM-
tree, in: Int’l Conf. on Similarity Search and Applications (SISAP),
LNCS 11807, Springer, Newark, NJ, 2019, pp. 18–31. doi:10.1007/978-
3-030-32047-8 2.

[3] L. Chen, Y. Gao, B. Zheng, C. S. Jensen, H. Yang, K. Yang, Pivot-
based metric indexing, Proc. VLDB Endowment (PVLDB) 10 (2017)
1058–1069. doi:10.14778/3115404.3115411.

[4] P. Ciaccia, M. Patella, P. Zezula, M-tree: An efficient access method for
similarity search in metric spaces, in: Int’l Conf. on Very Large Data
Bases (VLDB), Athens, Greece, 1997, pp. 426–435.

27

[5] C. Traina-Jr, A. Traina, C. Faloutsos, B. Seeger, Fast indexing and
visualization of metric data sets using Slim-trees, IEEE Trans. Knowl.
Data Eng. 14 (2002) 244–260. doi:10.1109/69.991715.

[6] J. Lokoč, T. Skopal, On reinsertions in M-tree, in: Int’l Workshop on
Similarity Search and Applications (SISAP), IEEE, Cancun, Mexico,
2008, pp. 121–128. doi:10.1109/SISAP.2008.10.

[7] H. L. Razente, R. M. S. Sousa, M. C. N. Barioni, Metric indexing
assisted by short-term memories, in: Int’l Conf. on Similarity Search
and Applications (SISAP), LNCS 11223, Springer, Lima, Peru, 2018,
pp. 107–121. doi:10.1007/978-3-030-02224-2 9.

[8] G. Navarro, N. Reyes, New dynamic metric indices for secondary mem-
ory, Inf. Syst. 59 (2016) 48–78. doi:10.1016/j.is.2016.03.009.

[9] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, R. Zhang, idis-
tance: An adaptive b+-tree based indexing method for nearest
neighbor search, ACM Trans. Database Syst. 30 (2005) 364–397.
doi:10.1145/1071610.1071612.

[10] H. Razente, R. Lima, M. C. Barioni, Similarity search through one-
dimensional embeddings, in: Symp. Applied Comp. (SAC), ACM, Mar-
rakech, Morocco, 2017, pp. 874–879. doi:10.1145/3019612.3019674.

[11] C. Traina-Jr, R. F. S. Filho, A. J. M. Traina, M. R. Vieira, C. Faloutsos,
The omni-family of all-purpose access methods: a simple and effective
way to make similarity search more efficient, The VLDB Journal 16
(2007) 483–505. doi:10.1007/s00778-005-0178-0.

[12] D. Novak, M. Batko, P. Zezula, Metric index: An efficient and scalable
solution for precise and approximate similarity search, Inf. Syst. 36
(2011) 721–733. doi:10.1016/j.is.2010.10.002.

[13] T. Skopal, J. Pokorný, V. Snásel, PM-tree: Pivoting metric tree for
similarity search in multimedia databases, in: East European Conf. on
Advances in Datab. Inf. Syst. (ADBIS), Budapest, Hungary, 2004.

[14] T. Skopal, J. Pokorný, V. Snásel, Nearest neighbours search using the
PM-tree, in: Int’l Conf. Database Syst. Adv. Applic. (DASFAA), LNCS
3453, Springer, Beijing, 2005, pp. 803–815. doi:10.1007/11408079 73.

28

[15] J. Lokoč, J. Mosko, P. Cech, T. Skopal, On indexing metric spaces using
cut-regions, Inf. Syst. 43 (2014) 1–19. doi:10.1016/j.is.2014.01.007.

[16] H. Samet, Foundations of Multidimensional and Metric Data Structures,
Morgan Kaufmann, San Francisco, 2006.

[17] R. Socorro, L. Mico, J. Oncina, A fast pivot-based indexing al-
gorithm for metric spaces, Pat. Recog. Let. 32 (2011) 1511–1516.
doi:10.1016/j.patrec.2011.04.016.

[18] J. Lokoč, P. Čech, J. Novák, T. Skopal, Cut-region: A compact building
block for hierarchical metric indexing, in: Int’l Conf. on Similarity
Search and Applications (SISAP), Springer, Toronto, 2012, pp. 85–100.
doi:10.1007/978-3-642-32153-5 7.

[19] H. Razente, M. C. Barioni, A. Traina, C. Faloutsos, C. Traina-Jr,
A novel optimization approach to efficiently process aggregate simi-
larity queries in metric access methods, in: Int’l Conf. Inf. Knowl-
edge Manag. (CIKM), ACM, Napa Valley, CA, 2008, pp. 193–202.
doi:10.1145/1458082.1458110.

[20] J. A. Nelder, R. Mead, A simplex method for function minimization,
Computer Journal 7 (1965) 308–315.

[21] A. Traina, C. Traina-Jr, D. Kaster, E. Seraphim, F. Chino, M. Vieira,
M. Bedo, W. Oliveira, The Database Group at ICMC/USP Arbore-
tum Library, https://bitbucket.org/gbdi/arboretum, 2017. Ac-
cessed December, 2020.

[22] K. Figueroa, G. Navarro, E. Chaves, Metric spaces library,
http://www.sisap.org/metricspaceslibrary.html, 2007. Accessed
December, 2020.

[23] D. Dua, C. Graff, UCI Machine Learning Repository, Univ. California,
Irvine, School Inf. Comp. Sciences, http://archive.ics.uci.edu/ml,
2017. Accessed December, 2020.

[24] P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese, R. Perego,
T. Piccioli, F. Rabitti, CoPhIR: a test collection for content-
based image retrieval, CoRR abs/0905.4627 (2009). URL:
http://arxiv.org/abs/0905.4627.

29

[25] G. Navarro, R. Paredes, N. Reyes, C. Bustos, An empirical evalua-
tion of intrinsic dimension estimators., Inf. Syst. 64 (2017) 206–218.
doi:10.1016/j.is.2016.06.004.

[26] E. Chávez, G. Navarro, R. Baeza-Yates, J. L. Marroqúın, Search-
ing in metric spaces, ACM Comput. Surv. 33 (2001) 273–321.
doi:10.1145/502807.502808.

[27] C. Traina-Jr, A. Traina, L. Wu, C. Faloutsos, Fast feature selection
using fractal dimension, J. Inf. Data Manag. (JIDM) 1 (2010) 3–16.

[28] G. R. Hjaltason, H. Samet, Distance browsing in spatial
databases, ACM Trans. Database Syst. 24 (1999) 265–318.
doi:10.1145/320248.320255.

30

