
Noname manuscript No.
(will be inserted by the editor)

Similarity Queries: Their Conceptual Evaluation,
Transformations, and Processing

Yasin N. Silva · Walid G. Aref · Per-Ake Larson · Spencer S. Pearson ·
Mohamed H. Ali

Received: date / Accepted: date

Abstract Many application scenarios can significantly
benefit from the identification and processing of similar-
ities in the data. Even though some work has been done

to extend the semantics of some operators, e.g., join and
selection, to be aware of data similarities; there has not
been much study on the role and implementation of

similarity-aware operations as first-class database op-
erators. Furthermore, very little work has addressed
the problem of evaluating and optimizing queries that

combine several similarity operations. The focus of this
paper is the study of similarity queries that contain
one or multiple first-class similarity database operators,

e.g., Similarity Selection, Similarity Join, and Similar-
ity Group-by. Particularly, we analyze the implemen-
tation techniques of several similarity operators; intro-

duce a consistent and comprehensive conceptual eval-
uation model for similarity queries; and present a rich
set of transformation rules to extend cost-based query

optimization to the case of similarity queries.

Keywords similarity queries · query processing ·
query transformations · conceptual evaluation

Y. N. Silva
Arizona State University, Arizona, USA
E-mail: ysilva@asu.edu

W. G. Aref
Purdue University, Indiana, USA
E-mail: aref@cs.purdue.edu

P.-A. Larson
Microsoft Research, Redmond, USA
E-mail: palarson@microsoft.com

S. S. Pearson
Arizona State University, Arizona, USA
E-mail: sspearso@asu.edu

M. H. Ali
Microsoft Corporation, Redmond, USA
E-mail: mali@microsoft.com

1 Introduction

It is widely recognized that the move from exact seman-

tics of data and queries to imprecise and approximate
semantics is one of the key paradigm shifts in data man-
agement. Many application scenarios, e.g., marketing

analysis, sensor networks, and biological applications,
can greatly benefit from the identification and process-
ing of similarities in data. Some techniques have been

proposed to extend certain data operations, e.g., join
and selection, to make use of data similarities. How-
ever, there has not been much work on the study of

similarity-aware operations as physical database oper-
ators. Furthermore, there is very little work on the im-
portant problem of evaluating and optimizing queries

with multiple similarity operations, i.e., similarity que-
ries. Similarity queries enable answering more complex
and interesting questions like the following (business

scenario):

– Find the closest three suppliers for every customer

within 100 miles from our Chicago headquarters.
– Considering the customers that are located within

200 miles from our Chicago headquarters, cluster

the customers around certain locations of interest
and report the size of each cluster.

– For every customer, identify its closest 3 suppliers

and for each such supplier, identify its closest 2 po-
tential new suppliers.

The focus of this paper is the study of similarity
queries with one or multiple physical similarity database
operators. We describe several similarity operators and

introduce a comprehensive conceptual evaluation model
for similarity queries. Moreover, we present a rich set of
transformation rules that enable cost-based query op-

timization of similarity queries.

2 Yasin N. Silva et al.

This paper builds on two other papers [1,2]. The

work on these previous papers focuses mainly on the in-
dependent study of two similarity database operators:
Similarity Group-by (SGB) [1] and Similarity Join (SJ)

[2]. These operators were also presented in two demon-
stration papers [3,4]. In this paper, we consider the fun-
damental problems of the evaluation and optimization

of similarity queries with multiple similarity operators.
The main contributions of this paper are:

– We consolidate work on previously proposed first-
class similarity database operators. We present the

Similarity Group-by and the Similarity Join opera-
tors (Section 3.1), their generic definitions and mul-
tiple instances. We present the guidelines to imple-
ment these operators (Section 5) and the results of

their performance and scalability evaluation.
– We introduce a comprehensive conceptual evalua-

tion order for similarity queries with multiple simi-

larity operators (Section 3), i.e., Similarity Group-
by, Similarity Join, and Similarity Selection. This
evaluation order specifies a clear and consistent way

to execute a similarity query. It also specifies unam-
biguously what the result of a similarity query is,
even in the presence of various similarity operators.

– We present a rich set of equivalence rules to trans-
form query plans with multiple similarity opera-
tors (Section 4). The presented rules can be used to

transform the conceptual evaluation plan into more
efficient equivalent plans. The presented rules in-
clude: (i) rules to combine and separate multiple

similarity predicates (Section 4.1); (ii) core equiva-
lence rules, e.g., commutativity, distributivity, and
associativity of similarity operators (Section 4.2);

and (iii) rules that exploit interesting properties of
distance functions to generate more efficient plans
(Section 4.3).

– We identify several key general transformation guide-
lines for similarity query optimization and show how
multiple transformation rules can be applied to trans-

form complex similarity queries (Section 4.5).
– We evaluate experimentally the effectiveness of sev-

eral proposed transformation rules and show that

they can generate plans with execution times that
are only 10% to 70% of the ones of the initial query
plans (Section 6).

While the examples presented in this paper consider

the case of numeric and vector data, unless otherwise
stated, the definition of similarity operators, the con-
ceptual evaluation model, and the equivalence rules pre-

sented in the paper are applicable to any data type and
distance function.

The new material is not only more than 50% of this

paper but also the focus of it. The rest of the paper is

organized as follows. Section 2 describes related work.

Section 3 introduces the conceptual evaluation order
for similarity queries. Section 4 presents transforma-
tion rules for similarity queries. Section 5 presents the

implementation guidelines of similarity operators. The
performance evaluation of the implemented operators
and the evaluation of the effectiveness of transforma-

tion rules are studied in Section 6. Section 7 presents
the conclusions and future research directions.

2 Related Work

Clustering, one of the oldest similarity-aware opera-

tions, has been studied extensively, e.g., in pattern recog-
nition, biology, statistics, and data mining. Of special
interest is the work on clustering of large datasets. CURE

[5] and BIRCH [6] are two clustering algorithms based
on sampling and summaries, respectively. They use only
one pass over the data and hence reduce notably the

execution time of clustering. However, their execution
times are still significantly slower than that of the stan-
dard group-by. The main differences between these op-

erations and the Similarity Group-by operators we pre-
sent are: (i) the execution times of the Similarity Group-
by operators are very close to that of the regular group-

by; (ii) Similarity Group-by operators are fully inte-
grated with the query engine allowing the direct use
of their results in complex query pipelines for further

analysis; and (iii) the computation of aggregation func-
tions in Similarity Group-by is integrated in the group-
ing process and considers all the tuples in each group,

not a summary or a subset based on sampling. Sev-
eral clustering algorithms have been implemented in
data mining systems. In general, the use of cluster-

ing is via a complex data mining model and the im-
plementation is not integrated with the standard query
processing engine. The work by Zhang and Huang [7]

proposes some SQL constructs to make clustering facil-
ities available from SQL in the context of spatial data.
Basically, these constructs act as wrappers of conven-

tional clustering algorithms but no further integration
with database systems is studied. Li et al. [8] extend
the group-by operator to approximately cluster the tu-

ples in a pre-defined number of clusters. Their frame-
work makes use of conventional clustering algorithms,
e.g., K-means; and employs summaries and bitmap in-

dices to integrate clustering and ranking into database
systems. Our study differs from the work by Li et al.
in that (i) we focus on similarity grouping operators

without the tight coupling to ranking; (ii) our frame-
work does not depend on costly conventional cluster-
ing algorithms, but rather allows the specification of

the desired grouping using descriptive properties such

Similarity Queries: Their Conceptual Evaluation, Transformations, and Processing 3

as group size and compactness; and (iii) we consider

optimization techniques for queries that combine Sim-
ilarity Group-by and other operators. Previous work
on data reconciliation proposed SQL extensions to sup-

port user-defined similarity functions for grouping pur-
poses [9] and similarity grouping predicates [10]. This
previous work focuses on string similarity and similar-

ity predicates to reconcile records. Although Similarity
Group-by can be used for this purpose, they are more
general and are fully integrated into the query engine.

Significant work has been carried out on the exten-
sion of certain common operations, i.e., Join and Selec-

tion, to make use of similarities in the data. This work
introduced the semantics of the extended operations
and proposed techniques to implement them primarily

as standalone operations outside of a Database Man-
agement System (DBMS) query engine rather than as
physical database operators. Several types of Similarity

Join have been proposed in the literature, e.g., range
distance join (retrieves all pairs whose distances are
smaller than a pre-defined threshold ε) [11], k-Distance

join (retrieves the k most-similar pairs) [12], and kNN-
join (retrieves, for each tuple in one table, the k nearest-
neighbors in the other table) [13]. Also of importance is

the work on Similarity Join techniques that make use
of relational database technology [14,15]. These tech-
niques are applicable only to string or set-based data.

The general approach pre-processes the data and query,
e.g., decomposes data and query strings into sets of
grams (substrings of a string that are used as its sig-

nature), and stores the results of this stage on sepa-
rate relational tables. Then, the result of the Similarity
Join can be obtained using standard SQL statements.

A key difference between this work and ours is that
we focus on studying the properties, optimization tech-
niques, e.g., query transformation rules; and implemen-

tation techniques of several types of Similarity Join as
database operators themselves rather than studying the
way a Similarity Join can be answered using standard

operators.

Similarity Selection operations can be seen as spe-

cial cases of Similarity Joins with single-tuple inner re-
lations. Among recent contributions on Similarity Se-
lection are the study of fast indices and algorithms for

set-based Similarity Selection using semantic properties
for search space pruning [16], a quantitative cost-based
approach to build high-quality grams to support selec-

tion queries on strings [17], and dimensionality reduc-
tion techniques to support similarity search using the
Earth Mover’s Distance [18].

The work by Adali et al. [19] proposes an algebra
for similarity queries and presents extensions of sim-

ple algebra rules to the case of similarity operators. A

framework for similarity query optimization using sim-

ple equivalence rules is presented by Ferreira et al. [20].
These two papers do not consider Similarity Group-by
or all the types of Similarity Join we consider. Traina et

al. [21] propose an extension to the relational algebra to
support similarity predicates combined using Boolean
operators. This work, however, does not consider Simi-

larity Join, Similarity Group-by, and queries that com-
bine non-similarity and similarity predicates. Barioni et
al. [22] propose SQL syntax to express queries that use

both non-similarity and similarity predicates. Baioco
et al. [23] present a cost model to estimate the num-
ber of I/O accesses and distance calculations to answer

similarity queries over data indexed using metric ac-
cess methods. These two papers only consider ε-Join
and kNN-joins. The main difference between the work

in [19–22] and our work is that we present a compre-
hensive model to evaluate queries with multiple simi-
larity operators (Similarity Group-by, Similarity Join,
and Similarity Selection), and a rich set of transforma-

tion rules for queries with multiple non-similarity and
similarity operators.

3 Conceptual Evaluation of Similarity Queries

Many real-world scenarios can benefit from the support
of queries with multiple similarity operators. One of the
core elements to support generic similarity queries is a

conceptual evaluation order that clearly specifies the
expected results of a given query. The conceptual eval-
uation order presented in this section specifies a clear
and consistent way to evaluate queries with multiple

similarity operators.

3.1 Supported Similarity-aware Operators

3.1.1 The Similarity Group-by Operator (SGB)

Similarity Group-by is a physical database operator
that extends the standard group-by to allow the forma-
tion of groups based on similarity rather than equality

of the data. SGB is a practical similarity grouping op-
erator that can be combined with other operators to ef-
ficiently answer similarity queries needed in real-world

applications.

Generic Definition of Similarity Group-by We define
the Similarity Group-by operator as follows:

(G1,S1),...,(Gn,Sn)ΓF1(A1),...,Fm(Am)(E),

where E is a relation, Gi is an attribute of E used to

generate the groups, i.e., similarity grouping attribute,

4 Yasin N. Silva et al.

Group 1 Group 2 Group 3 Group 4 Group 5

(c) SELECT Max(Temperature), Avg(Temperature) FROM SensorsReadings

GROUP BY Temperature DELIMITED BY (SELECT Value FROM Thresholds)

Group 1 Group 2 Group 3 Group 4

(a) SELECT Max(Temperature), Avg(Temperature) FROM SensorsReadings

GROUP BY Temperature MAXIMUM_ELEMENT_SEPARATION 6

MAXIMUM_GROUP_DIAMETER 20

(b) SELECT Max(Temperature), Avg(Temperature) FROM SensorsReadings

GROUP BY Temperature AROUND {10,60}

MAXIMUM_ELEMENT_SEPARATION 6 MAXIMUM_GROUP_DIAMETER 20

1 5 16 20 24 31 35 38 50 54 59 65 71 74

Group 5

1 5 16 20 24 31 35 38 50 57 63 67 7210 60

Group 1 Group 2

1 5 16 20 23 31 35 38 50 54 57 63 71 74
10 25 45 60

Fig. 1 Types of Similarity Group-by

Si is a segmentation of the domain of Gi in non overlap-

ping segments, Fi is an aggregation function, and Ai is
an attribute of E. Similar to group-by, each tuple that
belongs to the result of SGB represents one group.

We present three implementable instances of the
generic SGB. They represent a middle ground between
the regular group-by and standard clustering algorithms.

The SGB instances are intended to be faster than regu-
lar clustering algorithms. These instances generate groups
that capture similarities in the data not identified by

group-by.

Unsupervised Similarity Group-By (SGB-U) This op-
erator groups a set of tuples in an unsupervised fash-
ion, i.e., with no extra data tuples provided to guide the

process. SGB-U is defined only over 1D numeric data
and uses two clauses (group compactness and group size
constraints) to form the groups:

1. MAXIMUM ELEMENT SEPARATION s: The dis-
tance between each pair of adjacent elements that

belong to the same group should be at most s.
2. MAXIMUM GROUP DIAMETER d: For each group,

the distance between the two most separated ele-

ments in the group should be at most d.

The clauses can be combined using the AND oper-

ator. Group formation starts from the tuple with the
lowest grouping attribute value. Fig. 1.a gives an ex-
ample of using SGB-U with s = 6 and d = 20. Group 1

is composed of the records with values 1 and 5. While
this group could also contain values 16 and 20 based
on d, they form part of the second group because the

distance between 5 and 16 is greater than s.

Supervised Similarity Group Around (SGB-A) SGB-A
is defined over data in a Euclidean space. This operator
groups tuples based on a set of guiding points, named

central points, such that each tuple is assigned to the

group of its closest central point. Also, the size and

compactness of the groups can be restricted by:

1. MAXIMUM ELEMENT SEPARATION s: For each

element e of a group, it is possible to build a path
from e to the group’s central point where the length
of every link is at most s.

2. MAXIMUM GROUP DIAMETER 2r: The distance
from each element to its central point is at most r.
r represents the maximum radius.

The central points can be specified using a list of

points or by another select statement. If a tuple is equidis-
tant from multiple central points, the tuple is assigned
to the group of the central point with the lowest lex-

icographical order. SGB-A generates at most as many
groups as central points are provided and all the ele-
ments that do not belong to any group are not consid-

ered in the output. Fig. 1.b gives an example of SGB-A
with s = 6, r = 10 and central points: 10 and 60. Group
1 is composed of values 1, 5, 16 and 20. While this group

can contain value 24 based on s, this value does not be-
long to the group because the distance between 24 and
the group’s central point (10) is greater than r.

Supervised SGB with Delimiters (SGB-D) SGB-D is

defined over data in a Euclidean space. SGB-D forms
groups based on a set of delimiting objects (hyper-
planes: points in 1D, lines in 2D, etc.). To ensure a

deterministic behavior, if a tuple lies on a delimiting
hyperplane specified by a1x1 + a2x2 + · · · + anxn = b,
the tuple belongs to the group that contains points in

the region a1x1 + a2x2 + · · ·+ anxn < b. Fig. 1.c gives
an example of SGB-D with delimiting points 10, 25, 45
and 60. Group 1 contains values 1 and 5.

An important property of all the presented opera-
tors is that multiple executions of the operators on the
same data set and same reference objects, e.g., central

points and delimiting objects, will generate the same
results. In general, a query can have multiple similar-
ity grouping attributes (SGAs) and the segmentation

of each SGA can use a different similarity grouping in-
stance. In this case, the result of SGB is obtained in-
tersecting the segmentations of all the (independent)

SGAs. The following example applies SGB-A on at-
tribute Pressure and SGB-D on attribute Temperature.

SELECT Avg(Temperature), Avg(Pressure)

FROM SensorsReadings GROUP BY

Pressure AROUND {30,50} MAXIMUM_ELEMENT_SEPARATION 3,

Temperature DELIMITED BY (SELECT Val FROM Thresholds);

3.1.2 The Similarity Join Operator (SJ)

Similarity Joins extend regular joins to identify tuples
of similar rather than equal values. SJs have been stud-

ied as key operations in multiple domains. However,

Similarity Queries: Their Conceptual Evaluation, Transformations, and Processing 5

there has not been much study on the role and im-

plementation of SJs as physical database operators. In
this section, we focus on the study of Similarity Joins
as first-class database operators.

Generic Definition and Four Instances of Similarity
Join The generic definition of the Similarity Join (SJ)

operator is as follows:

E ◃▹θS(e,f) F = {⟨e, f⟩|θS(e, f), e ∈ E, f ∈ F},

where θS represents the Similarity Join predicate, i.e.,
the similarity-based conditions that the pairs ⟨e, f⟩ need
to satisfy to be in the output. The SJ types we consider

are presented next. Corresponding SQL syntax and ex-
amples with numerical data are presented in Fig. 2.

1. Range Distance Join (ε-Join): θε(e, f) ≡ dist(e, f) ≤
ε. In the example in Fig. 2.a, ⟨4, 9⟩ is one of the five
pairs that belong to the output (dist(4, 9) ≤ 5).

2. k Nearest Neighbor Join (kNN-Join): θkNN (e, f) ≡
f is one of the k nearest neighbors of e. If a tuple in
E has less than k neighbors in F , the output should
include pairs for all existing neighbors. Let tE be a

tuple of E and tF one of the kNN of tE in F . If
there are other tuples in F with the same distance
from tE , the output should include pairs for all such

tuples. In Fig. 2.b, values 9 and 17 are the two (k=2)
nearest neighbors of value 4, thus ⟨4, 9⟩ and ⟨4, 17⟩
are in the output. Similarly, 10, 22 and 42, each have

two nearest neighbors.
3. k Distance Join (kD-Join): θkD(e, f) ≡ ⟨e, f⟩ is one

of the overall k-closest pairs. If the total number

of possible pairs is less than k, the output should
include all the existing pairs. If there are multiple
pairs separated by the same distance and one of

them is included in the output, then all such pairs
need to be part of the output. In Fig. 2.c, ⟨10, 9⟩
and ⟨22, 24⟩ are the overall two closest pairs.

4. Join Around (Join-Around): θA,MD=2r(e, f) ≡ f is
the closest neighbor of e and dist(e, f) ≤ r. Let tE
be a tuple of E and tF the closest neighbor of tE
in F , if there are other tuples in F with the same
distance from tE , the output should include pairs for
all such tuples. In Fig. 2.d, ⟨10, 9⟩ is one of the three
pairs that belongs to the output (9 is the closest
neighbor of 10 in B and dist(10, 9) ≤ 3).

ε-Join, kNN-Join, and kD-Join are common types of

SJ. We introduce Join-Around, a new useful type of SJ
that combines some properties of ε-Join and kNN-Join
(k=1). Every value of the first joined set is assigned to

its closest value in the second set. Additionally, only
the pairs separated by a distance of at most r are part
of the join output. MD stands for Maximum Diameter

and r=MD/2 represents the Maximum Radius.

(a) -Join: SELECT … FROM A, B WHERE A.a WITHIN OF B.b

(d) Join-Around: SELECT … FROM A, B

WHERE A.a AROUND B.b [MAX_DIAMETER 2r]

(c) kD-Join: SELECT ... FROM A, B

WHERE A.a k TOP_CLOSEST_PAIRS B.b

(b) kNN-Join: SELECT ... FROM A, B

WHERE B.b k NEAREST_NEIGHBOR_OF A.a

4 10 22 42

9 17 24 39

A

B

4 10 22 42

9 17 24 39

A

B
k=2

4 10 22 42

9 17 24 39

A

B
k=2

4 10 22 42

9 17 24 39

A

B
r = 3

=5

Fig. 2 Types of Similarity Join

3.1.3 The Similarity Selection Operator (SS)

Similarity Selection operators can be seen as special
cases of the SJ operators where the inner input relation
consists of a single tuple. The range distance selection

operator is a special case of the range distance join and
the kNN selection operator is a special case of the kNN-
Join. The generic definition of the Similarity Selection

operator is as follows:

σθS (E) = {e|θS(e), e ∈ E},

where θS represents the Similarity Selection predicate.
This predicate specifies the similarity-based conditions

that tuple e needs to satisfy to be in the Similarity
Selection output. The Similarity Selection predicates
for the Similarity Selection operators considered in our

study are as follows. Let C be a constant value.

1. Range Distance Selection (ε-Selection): θε,C(e) ≡
dist(e, C) ≤ ε.

2. kNN-Selection: θkNN,C(e) ≡ e is a k-closest neigh-
bor of C. If C has less than k neighbors in E, the

output should include all the existing neighbors. If
there are multiple tuples equidistant from C and
one of them is included in the output, then all such

tuples need to be part of the output.

We require that all the relations involved in the k-based

operations, i.e., kNN-Join, kD-Join, Join-A and kNN-
Selection, have a primary key (PK). This allows the
correct computation of the results when the relations

have duplicates or have been combined with other re-
lations, using only the values of the attributes involved
in the operations’ predicates (and the required PKs).

3.2 Notation Used in Similarity-aware Expressions

Unless otherwise stated, the expressions in Sections 3

and 4 use the following notation:

6 Yasin N. Silva et al.

1. Relations are represented with uppercase letters, e.g.,

E, F , and G. The attributes of these relations are
represented using the corresponding lowercase let-
ters, e.g., e, f , and g. When an expression requires

multiple attributes of a given relation (E), we use a
number next to the base name, e.g., e1, e2, etc.

2. Similarity and regular (non-similarity) join predi-

cates are specified using the expression θS(e, f). e
and f are the outer and inner join attributes, respec-
tively. When an expression is applicable to multiple

types of joins, the value of S is a general variable,
e.g., S, S1, or S2. If an expression is applicable to a
particular type of Similarity Join, the value of S can

be: ε (ε-Join), kNN (kNN-Join), A (Join-Around)
or kD (kD-Join). Regular join uses a similar no-
tation without the component S. For example, the

predicate θε(e, f) represents an ε-Join between rela-
tions E (outer) and F (inner). E.e and F.f are the
outer and inner join attributes, respectively.

3. Similarity and regular selection predicates are spec-
ified using the expression θS,C(e). e is the selection
attribute and C refers to the constant parameter
in the case of SS. When an expression is applica-

ble to multiple types of selection, the value of S is
a general variable, e.g., S, S1, or S2. If an expres-
sion is applicable to a particular type of Similarity

Selection, the value of S can be: ε (ε-Selection) or
kNN (kNN-Selection). Regular selection predicates
use the same notation without S and C. For exam-

ple, the predicate θε1,C1(e) represents an ε-Selection
operation that selects the tuples where the value of
attribute E.e is within ε1 of the constant C1.

4. Some generic rules have predicates that are applica-
ble to both Similarity Selection and Similarity Join
operations. In this case, we use the notation θS ,

that can be instantiated as θS,C(e) or θS(e, f). Any
constraints on the operation attributes are directly
specified on the rules using this notation.

5. As in regular relational algebra (RA), a (similar-
ity) join predicate can be used with the selection
or join operators in similarity expressions. In regu-

lar RA: σθ(e,f)(E × F) ≡ E ◃▹θ(e,f) F . Likewise, in
similarity-aware RA: σθS(e,f)(E × F) ≡ E ◃▹θS(e,f)

F . We use similarity join predicates with selection

operators in rules that focus on the combination of
multiple operations, e.g., SS and SJ. The notation
using a join operator is used in all other cases.

6. We say that the attributes of an expression have a
single direction when the expression is composed by
join predicates and their attribute graph is of the

form a1 → a2 → · · · → an, e.g., e→ f → g. The at-
tribute graph is built as follows. The vertices of the
graph are the join attributes and each join is repre-

E

S

S

,C1(e)

C1
Output

kNN,C2(e)

C2

E

S
,C1(e)

kNN,C2(e)

E

S

S ,C1(e)

C2
Output

kNN,C2(e)

C1

kNN=4kNN=4

e ee

C1

C2

Evaluating

-Selection first

Evaluating

kNN-Selection first

kNN=4

Fig. 3 Different ways to combine ε-Selection and kNN-
Selection

RegSelPred1 …

RegSelPredp
EpsSelPred1 …

EpsSelPredq
kNNSelPred1 …

kNNSelPredr
RegJoinPred1 …

RegJoinPreds
EpsJoinPred1 …

EpsJoinPredt
kNNJoinPred1 …

kNNJoinPredu
JoinArdPred1 …

JoinArdPredv
kDJoinPred1 …

kDJoinPredw

S

SGB
RegGA1,…,RegGAx
SimGExp1,…,SimGExpy

E1 En...

SELECT [TOP k WITH TIES] ListOfAttributes

FROM E1,…,En WHERE

RegSelPred1 AND…AND RegSelPredp AND

EpsSelPred1 AND…AND EpsSelPredq AND

kNNSelPred1 AND…AND kNNSelPredr AND

RegJoinPred1 AND…AND RegJoinPreds AND

EpsJoinPred1 AND…AND EpsJoinPredt AND

kNNJoinPred1 AND…AND kNNJoinPredu AND

JoinArdPred1 AND…AND JoinArdPredv AND

kDJoinPred1 AND…AND kDJoinPredw
GROUP BY

RegGA1,…,RegGAx
SimGExp1,…,SimGExpy
ORDER BY SortExpr

TOP k

Fig. 4 Conceptual evaluation order of similarity queries

sented as a directed edge from the outer attribute

(left attribute of the join predicate) to the inner one
(right attribute of the join predicate).

3.3 Conceptual Evaluation Order of Similarity Queries

In general, the order in which the operations of a simi-

larity query are evaluated affects the results of a query.
For instance, consider the left hand side (LHS) plan
of Fig. 3. This plan shows a similarity query with two

Similarity Selection predicates (ε-Selection and kNN-
Selection). Fig. 3 illustrates two ways in which this
query could be evaluated and the different results ob-

tained under each evaluation. The middle plan in the
figure corresponds to evaluating first the kNN-Selection
predicate and applying the ε-Selection over the output

of the first operator. The right hand side (RHS) plan
corresponds to evaluating first the ε-Selection predicate
and then the kNN-Selection. It is not clear which way

this query should be evaluated and without a clear con-
ceptual evaluation order of similarity queries, multiple
users may write the same query expecting different re-

sults.

Similarity Queries: Their Conceptual Evaluation, Transformations, and Processing 7

Pred1 … Predn S

E

S

E

Pred1
...

S

Predn

E

Fig. 5 Combining multiple similarity-aware predicates

C1
Output

C2

E

S

,C1(e)

kNN,C2(e)

kNN=4

e

Evaluating

kNN-Selection first

S S

E E

,C1(e) kNN,C2(e)

E

S

S

,C1(e)

kNN,C2(e)

Conceptual Evaluation

C1
Output

C2

kNN=4

e

SELECT e FROM E

WHERE

EpsSelPred(e) AND

kNNSelPred(e)

Fig. 6 Using the conceptual evaluation order

SELECT e, f, g

FROM E, F, G

WHERE

EpsSelPred(e)

AND

kNNSelPred(e)

AND

EpsJoinPred(e,f)

AND

kNNJoinPred(f,g)

S S

1,C1(e) kNN1,C2(e)
S S

E x F x G E x F x G E x F x G E x F x G

kNN2(f,g)2(e,f)

Fig. 7 Conceptual evaluation of a query with multiple sim-
ilarity predicates

Fig. 4 presents the conceptual evaluation order for

similarity queries. The conceptual query plan makes
use of a generic similarity-selection node that combines
multiple SS and SJ predicates using the conventional

intersection operator as shown in Fig. 5. Based on the
conceptual evaluation order presented in Fig. 4, a generic
similarity-aware query composed by multiple SGB, SJ

and SS operators is evaluated as follows. At the bot-
tom of the plan, all the relations involved in the query
get combined using cross product. A generic Similarity

Selection is evaluated after the cross product opera-
tion. This step is equivalent to intersecting the results
of evaluating independently each SS and SJ predicate.

The regular and similarity grouping operations are eval-
uated over the results of the selection node. Finally, an
optional TOP operator selects the top K tuples using

the order established by SortExpr.

The presented conceptual evaluation order specifies
clearly the result of a similarity query even in the pres-
ence of multiple similarity-aware operators. For exam-

ple, Fig. 6 shows how the query represented in the LHS
plan of Fig. 3 is evaluated using the conceptual evalua-
tion order. This figure also illustrates that the concep-

tual evaluation plan of this query is equivalent to evalu-

ating first the kNN-Selection operator and applying the

ε-Selection on the results of the first operator. We will
study this and other equivalence rules in Section 4. Note
that the query corresponding to the other order of exe-

cution, i.e., executing ε-Selection before kNN-Selection,
can be specified using a subquery:

SELECT e FROM (SELECT e FROM E WHERE EpsSelPred(e))

WHERE kNNSelPred(e);

Fig. 7 gives the conceptual evaluation plan of a
query with multiple similarity predicates.

4 Similarity Query Transformations

Similar to conventional query processing, the concep-
tual evaluation of a similarity query is not, in many

cases, an efficient way to evaluate the query. Conven-
tional database systems often make use of equivalence
rules to transform a query plan into equivalent plans

that generate the same result. Cost-based query opti-
mizers compute the cost of each plan and return the
plan with the smallest cost for execution.

Equivalence rules are clearly a core component of
the optimization process. A fundamental question when
considering queries with multiple similarity operators

is how these queries can be transformed. Even though
similarity operators have been extensively studied, there
has not been much study on the way queries with these

operators can be transformed or optimized. This sec-
tion presents a systematic study of equivalence rules
for similarity queries. These rules allow the extension

of cost-based optimization techniques to the case of
similarity queries. The presented rules allow also the
transformation of a similarity query from its conceptual

evaluation plan into multiple equivalent plans. This sec-
tion focuses on the presentation of general rules (GR)
and the discussion of the applicability of these rules

to specific similarity operators. General rules specify
both equivalences and nonequivalences. An extensive
list of equivalence and nonequivalence rules (R), i.e.,

all general rule instances, is presented in Appendix A.
This section includes examples based on an extension
of the TPC-H benchmark [24]. Additional tables and

attributes are described in the example queries. Some
examples use location attributes (latitude/longitude).

4.1 Rules to Combine/Separate Similarity Predicates

This set of rules can be used to serialize multiple oper-
ations involved in a query. For instance, given a simi-
larity query composed of two ε-Selection predicates ap-

plied over the same attribute, the conceptual evaluation

8 Yasin N. Silva et al.

-Selection

Legend

P1 P2

P1 P2

P1 P2

Predicates of types P1 and P2 can be

combined or separated under any

execution order of P1 and P2

Predicates of types P1 and P2 can be

combined or separated only if P1 is

executed before P2

Predicates of types P1 and P2 can not

be combined or separated

kNN-Selection

Fig. 8 Possible ways to combine and separate SS predicates

plan will evaluate each predicate separately. This evalu-

ation will read and process the input relation twice and
then apply an intersection operation over the interme-
diate results. Using the rules of this subsection we are

able to obtain an equivalent plan that serializes both
selection operations. The new plan only reads from the
input relation once to process the first selection and

performs the second one over the intermediate results.
In all the rules that allow the separation, i.e., serializa-
tion, of similarity predicates we assume that the input

relation is composed by the cross product of all the re-
lations involved in the similarity predicates.

4.1.1 Combining/Separating Similarity Selection
Predicates

Multiple SS predicates can be combined or separated
using the following general rule.

GR1. σθS1,C1(e)∩θS2,C2(e)(E) ≡ σθS1,C1(e)(σθS2,C2(e)(E)),
if there is a directed edge from S2 to S1 in Fig. 8.

The graph in Fig. 8 concisely represents the way multi-
ple SS predicates can be combined. A similar notation is
also used in Figures 14 and 19. A doubly directed edge is

a shorthand representation of two directed edges, one in
each direction, between the connected nodes. Based on
GR1, the doubly directed edge that starts and ends at

node ε-Selection means that multiple ε-Selection pred-
icates can be combined in any order, this is:

σθε1,C1(e)∩θε2,C2(e)(E) ≡ σθε1,C1(e)(σθε2,C2(e)(E))

≡ σθε2,C2(e)(σθε1,C1(e)(E)). (R1)

Note that ∩ is commutative. Fig. 9 shows a graph-
ical representation and an example of R1. The figure

shows that the LHS plan with the two combined ε-Sel.
predicates is equivalent to the RHS plan where the two
predicates are serialized. Also using GR1, the directed

edge from kNN-Sel. to ε-Sel. states that predicates of
these types can be combined or separated only when
the kNN-Sel. is executed first. This is:

σθε,C1(e)∩θkNN ,C2(e)(E) ≡ σθε,C1(e)(σθkNN ,C2(e)(E)). (R2)

σθkNN ,C1(e)∩θε,C2(e)(E) ̸≡ σθkNN ,C1(e)(σθε,C2(e)(E)). (R3)

E

S

S

1,C1(e)
C11

1

Output

2,C2(e)
C2

2

2

E

S

1,C1(e)

2,C2(e)Output
C1

C2

1

1

2

2

e e

Fig. 9 Combining/separating ε-Sel. and ε-Sel. (R1)

E

S

S

,C1(e)
C1

Output
kNN,C2(e)

C2

E

S

,C1(e)

kNN,C2(e)Output
C1

C2

kNN2=4

e e

kNN2=4

Fig. 10 Combining/separating ε-Sel. and kNN-Sel. (R2)

E

S

S ,C2(e)

C2
Output

kNN,C1(e)

C1

E

S

kNN,C1(e)

 ,C2(e)
C2
Output
C1

kNN1=4

e e

kNN1=4

Fig. 11 Combining/separating kNN-Sel. and ε-Sel. (R3)

Figure 10 represents the two plans of R2. These
plans are equivalent because kNN-Sel is executed first

in the RHS plan. Figure 11 shows a case where the two
plans of R3 produce different results. Finally, the dotted
edge that starts and ends at the kNN-Selection node in

Fig. 8 states that two kNN-Selection predicates cannot
be combined or separated. This is:

σθkNN1,C1(e)∩θkNN2,C2(e)(E) ̸≡
σθkNN1,C1(e)(σθkNN2,C2(e)(E)). (R4)

Fig. 12 represents R4 and shows a case where the
plans that combine and separate two kNN-Sel. predi-

cates generate different results.

TPC-H Example of R2: List orders that are among
the smallest 20 orders and that still generated a rev-
enue of about $50,000(±5,000). The SQL and evalua-
tion plans based on R2 are presented below.

SELECT * FROM ORDERS O

WHERE o_totalprice WITHIN 5000 OF 50000 AND

o_totalprice 20 TOP_CLOSEST_NEIGHBOR_OF 0;

σθε=5000,C1=50000(o totalprice)∩θkNN=20,C2=0(o totalprice)(O) ≡
σθε=5000,C1=50000(o totalprice)(σθkNN=20,C2=0(o totalprice)(O)).

Proof of Rule R1 Consider a generic tuple tE of E. We
will show that for any possible value of tE , the results

generated by the plans of both sides of the rule are the
same. The top part of Fig. 13.a shows a graphical repre-
sentation of Rule R1. Using the conceptual evaluation

order of similarity queries, we can transform the left

Similarity Queries: Their Conceptual Evaluation, Transformations, and Processing 9

E

S

S

C1
OutputkNN2,C2(e)

C2

E

S

kNN1,C1(e)

kNN2,C2(e)

kNN1,C1(e)

C1
Output

C2

kNN1=4

kNN2=4

e e

kNN1=4

kNN2=4

Fig. 12 Combining/separating kNN-Sel. and kNN-Sel. (R4)

part of the rule to an equivalent expression that uses
the intersection operation as represented in the bottom

part of Fig. 13.a. We will use this second version of the
rule in the remaining part of the proof. Fig. 13.b gives
the different possible regions for the value of tE .e (1D).

1. When the value of tE .e belongs to region A. In the

LHS plan, tE is not selected in any of the ε-Selection
operators since it does not satisfy any of the selec-
tion predicates. Thus, no output is generated by this

plan. In the RHS plan, tE is filtered out by the bot-
tom selection. No tuple flows to the top selection.
Thus, no output is generated by this plan either.

2. When the value of tE .e belongs to B. In the LHS
plan, tE is selected in the left ε-Selection but not
in the right one. The intersection operator does not

produce any output. No output is generated by this
plan. In the RHS plan, tE is filtered out by the bot-
tom selection. No tuple flows to the top selection.

No output is generated by this plan either.
3. When the value of tE .e belongs to C. In the LHS

plan, tE is selected by both ε-Selection operators.

Thus, tE belongs to the output of the intersection
operator. tE belongs to the output of the LHS plan.
In the RHS plan, tE is selected by the bottom ε-

Selection. tE is also selected by the top ε-Selection.
Thus, tE belongs also to the output of the RHS plan.

4. When the value of tE .e belongs to D. In the LHS
plan, tE is selected in the right ε-Selection but not

in the left one. The intersection operator does not
produce any output. In the RHS plan, tE is selected
by the bottom ε-Selection but filtered out by the

top one. No output is generated by this plan either.

We can extend the proof to other data types identify-
ing the corresponding regions A-D. Fig. 13.c shows the
regions for 2D data. For string data and edit distance,

B are the strings within ε1 of C1 but not within ε2 of
C2, D are the strings within ε2 of C2 but not within
ε1 of C1. C and A are the strings that satisfy both or

none of the conditions (within ε1 of C1, within ε2 of
C2), respectively. ⊓⊔

Generic remarks about proofs Most of the presented
rules, with the exception of the rules involving aggrega-

tions, can be proved following a similar approach as the

e

1

1

A

A

B

S S

E E

C1

C2
2

2 D

C

E

S

S

1,C1(e)

2,C2(e)

E

S

1,C1(e)

2,C2(e)

E

S

S

1,C1(e)

2,C2(e)
1,C1(e) 2,C2(e)

(a) Equivalent plans

(b) Regions of values of

possible input tuples (1D)

(c) Regions of values of

possible input tuples (2D)

1 2

A B
C

D

C1 C2

Fig. 13 Combining ε-Sel. and ε-Sel. (R1) - proof

-Join

kNN-

Join

Join-

Around

kD-Join

-Selection

kNN-

Selection

-Join

kNN-

Join

Join-

Around

kD-Join

-Selection

kNN-

Selection

(a) When the sel. attribute is the

inner attr. in the join predicate

(b) When the sel. attribute is the

outer attr. in the join predicate

Fig. 14 Possible ways to combine and separate SS and SJ

one used in the proof of R1, i.e., identifying all the dis-
tinct domain regions of the rule attributes, and showing
that the RHS and LHS expressions of the rule generate

the same output in each region. This paper presents
proofs of multiple rules. The proofs of other rules can
be easily constructed using the described generic ap-

proach. Additional proofs are included in [25].

4.1.2 Combining/Separating Similarity Selection and
Similarity Join

SS and SJ predicates can be combined or separated
using the following generic rules.

When the selection predicate attribute is the inner

attribute in the join predicate:

GR2. σθS1∩θS2
(E) ≡ σθS1

(σθS2
(E)), if there is a di-

rected edge from S2 to S1 in Fig. 14.a.

When the selection predicate attribute is the outer

attribute in the join predicate:

GR3. σθS1∩θS2
(E) ≡ σθS1

(σθS2
(E)), if there is a di-

rected edge from S2 to S1 in Fig. 14.b.

A predicate of the form θS can be instantiated as

a Similarity Sel. (θS,C(e)) or Similarity Join (θS(e, f))
predicate. Figure 14 graphically represents all the ways
in which SS and SJ predicates can be combined. The

following observations can be drawn from it:

10 Yasin N. Silva et al.

E

1(e1,e2)

2,C(e2)
S

S

e1 e2

C

E

2,C(e2)S

1(e1,e2)

S

E

2,C(e2)

S 1(e1,e2)

2

2

Output

1
e1 e2

C2

2

Output

1
e1 e2

C2

2

Output

1

Fig. 15 Combining/separating ε-Join and ε-Sel. (R5)

– We consider two generic cases: when the selection
predicate attribute is the outer attribute in the join
predicate, and when it is the inner one. This distinc-

tion is relevant, i.e., generates different equivalence
rules, when the SJ operation is not commutative
(kNN-Join and Join-Around). In general, if the join

operation is commutative (ε-Join and kD-Join), the
rules for both cases are the same. Commutativity of
SJ operations is discussed in Section 4.2.1.

– Since Join-Around is a hybrid between the kNN-
Join with k=1 and the ε-Join, the way this oper-
ation can be combined with a given SS operator

corresponds to the most restricted way in which the
kNN-Join or the ε-Join can be combined with that
SS operator. This observation applies in fact to any

rule that uses Join-Around.
– The rules where the selection attribute is the in-

ner join attribute (Fig. 14.a) are equal to or more

restrictive than the corresponding rules where the
selection attribute is the outer join attribute (Fig.
14.b).

The instances of GR2 and GR3 are presented in Ap-
pendix A (R5-R31). We describe several of them next.
Based on GR2 (when the selection attribute is the inner

join attribute), the doubly directed edge between nodes
ε-Join and ε-Sel. in Fig. 14.a states that these predi-
cates can be combined/separated in any order, this is:

σθε1(e1,e2)∩θε2,C(e2)(E) ≡ σθε1(e1,e2)(σθε2,C(e2)(E))

≡ σθε2,C(e2)(σθε1(e1,e2)(E)). (R5)

Observe that the middle plan of R5 executes the

ε-Sel. first, while the RHS plan executes the ε-Join
first. R5 is graphically represented in Fig. 15. Also con-
sidering GR2, the directed edge from kNN-Join to ε-

Selection in Fig. 14.a represents that these predicates
can be combined or separated only if the kNN-Join is
executed before the ε-Selection, this is:

σθkNN (e1,e2)∩θε,C(e2)(E) ̸≡ σθkNN (e1,e2)(σθε,C(e2)(E)).(R8)

σθkNN (e1,e2)∩θε,C(e2)(E) ≡ σθε,C(e2)(σθkNN (e1,e2)(E)).(R9)

E

kNN(e1,e2)

,C(e2)S

S

E

kNN(e1,e2)
S

,C(e2)

S

E

S

e1 e2

C

Output

kNN=2
kNN(e1,e2)

,C(e2)

e1 e2

C

Output

kNN=2

e1 e2

C

Output

kNN=2

Fig. 16 Combining/separ. kNN-Join and ε-Sel. (R8, R9)

The RHS plan of R8 executes ε-Sel. first and pro-
duces a different result than the LHS plan. This is il-
lustrated in the bottom plan of Fig. 16. The RHS plan
of R9, on the other hand, executes kNN-Join first and

is equivalent to the LHS plan. This is illustrated in the
top plan of the same figure. Let us consider now the
same pair of nodes (kNN-Join and ε-Selection) under

GR3 (when the selection attribute is the outer join at-
tribute). The edge between these nodes is now a doubly
directed edge (Fig. 14.b) and consequently the predi-

cates can be combined or separated in any order:

σθkNN (e1,e2)∩θε,C(e1)(E) ≡ σθkNN (e1,e2)(σθε,C(e1)(E))

≡ σθε,C(e1)(σθkNN (e1,e2)(E)). (R23)

Observe that the middle plan of R23 executes the ε-
Sel. first while the RHS plan executes the kNN-Join
first. Fig. 17 shows an example of R23. Finally, consid-

ering also GR3, the dotted edge between kD-Join and
kNN-Selection in Fig. 14.b specifies that these predi-
cates cannot be combined or separated in any order

(R27, R28).

TPC-H Example of R23: Find the closest three sup-
pliers for every customer within 100 miles from our
Chicago headquarters (X,Y). The SQL and evaluation
plans based on R23 are presented below.

SELECT c_custkey, s_suppkey FROM CUSTOMER C,

SUPPLIER S WHERE c_loc WITHIN 100 OF (X,Y)

AND s_loc 3 TOP_CLOSEST_NEIGHBOR_OF c_loc;

σθkNN=3(c loc,s loc)∩θε=100,C=(X,Y)(c loc)(C × S) ≡
σθkNN=3(c loc,s loc)(σθε=100,C=(X,Y)(c loc)(C × S)) ≡
σθε=100,C=(X,Y)(c loc)(σθkNN=3(c loc,s loc)(C × S)).

These plans can be further transformed using additional
rules. For instance, since σθS(e,f)(E × F) ≡ E ◃▹θS(e,f)

F (see Section 3.2), the last plan is equivalent to:

σθε=100,C=(X,Y)(c loc)(C ◃▹θkNN=3(c loc,s loc) S).

Proof sketch of Rule R9 kNN-Join is defined over two

relations. Assume that θkNN is defined over relations E1

Similarity Queries: Their Conceptual Evaluation, Transformations, and Processing 11

E

kNN(e1,e2)

,C(e1)S

S

E

kNN(e1,e2)

S ,C(e1)

S

E

S

e2e1

C
Output

kNN=2

kNN(e1,e2)

,C(e1)

e2e1

C
Output

kNN=2

e2e1

C
Output

kNN=2

Fig. 17 Combining/separating kNN-Join and ε-Sel. (R23)

E

kNN(e1,e2)

,C(e2) S

S

E

kNN(e1,e2)
S

,C(e2)

S

E

kNN(e1,e2)
S

,C(e2)

S S

E E

,C(e2)kNN(e1,e2)

e2

C

e1

kNN

A

A

B

D

M

tE1

tE2

(a) Equivalent plans
(b) Regions of values of

possible input tuples

Fig. 18 Combining kNN-Join and ε-Sel. (R9) - proof

and E2, and that the input relation E is the cross prod-
uct of all the relations involved in the similarity-aware

predicates, i.e., E = E1 ×E2. Furthermore, we assume
that the join attributes are E1.e1 and E2.e2. Consider
a generic tuple tE1 of E1. We will show that for any

possible pair (tE1,tE2), where tE2 is a tuple of E2, the
results generated by the plans of both sides of the rule
are the same. The top part of Fig. 18.a gives a graphical

representation of Rule R9. Using the conceptual evalu-
ation order of similarity queries, we can transform the
left part of the rule to an equivalent expression that uses

the intersection operation as represented in the bottom
part of Fig. 18.a. We will use this version of the rule
in the remaining part of the proof. Fig. 18.b gives the

different possible regions for the value of tE2.e2. Note
that the region marked as kNN (which comprises re-
gions B and M) represents the region that contains the

kNN closest neighbors of tE1 in E2.

1. When the value of tE2.e2 belongs to A. In the LHS
plan, (tE1,tE2) is not selected in any of the oper-

ators. No output is generated by this plan. In the
RHS plan, (tE1,tE2) is filtered out by the bottom
selection since tE2 is not one of the kNN closest

neighbors of tE1 in E2. No tuple flows to the top
operator and no output is generated by this plan.

2. When the value of tE2.e2 belongs to B. In the LHS

plan, the pair (tE1,tE2) is selected in the left op-
erator but not in the right one. The intersection
operator does not produce any output and conse-

quently no output is generated by this plan. In the

-Join

kNN-

Join

Join-

Around

kD-Join

(e1,e2)

(e
1
,e
2
)

(e
2
,e
3
)

(e2,e3)

(e
2,
e3
)
(e
1,
e2
)

(e
1
,e
2
)

(e
2,
e3
)(e

2
,e
3
)

(e
1,
e2
)

(e2,e3) (e1,e2)

-Join

kNN-

Join

Join-

Around

kD-Join

(e1,e2)

(e
1
,e
2
)

(e
2
,e
3
)

(e2,e3)

(e
2,
e3
)
(e
1,
e2
)

(e
1
,e
2
)

(e
2,
e3
)(e

2
,e
3
)

(e
1,
e2
)

(e2,e3) (e1,e2)

(a) When the attributes in the predicates

have a single direction: e1 e2, e2 e3

(b) When the attributes in the predicates do

not have a single direction: e1 e2, e2 e3

Fig. 19 Possible ways to combine/separate SJ predicates

RHS plan, (tE1,tE2) is selected in the bottom selec-
tion since tE2 is one of the kNN closest neighbors of

tE1 in E2. However, (tE1,tE2) is filtered out by the
top selection because dist(tE2.e2, C) > ε. Thus, no
output is generated by this plan either.

3. When the value of tE2.e2 belongs to M . In the LHS
plan, (tE1,tE2) is selected in both operators. Con-
sequently, (tE1,tE2) belongs to the output of the

intersection and the LHS plan. In the RHS plan,
(tE1,tE2) is selected by the bottom selection since
tE2 is one of the kNN closest neighbors of tE1 in

E2. (tE1,tE2) is also selected by the top selection
since dist(tE2.e2, C) ≤ ε. Thus, (tE1,tE2) belongs
also to the output of the RHS plan.

4. When the value of tE2.e2 belongs to D. In the LHS
plan, the pair (tE1,tE2) is selected in the right sim-
ilarity operator but not in the left one. The inter-

section operator does not produce any output and
thus no output is generated by this plan. In the RHS
plan, (tE1,tE2) is filtered out by the bottom selec-

tion. No tuple flows to the top operator. Thus, no
output is generated by this plan either. ⊓⊔

4.1.3 Combining/Separating Similarity Join Predicates

Multiple SJ predicates can be combined or separated
using the following general rules.

When the attributes in the predicates have a single

direction (e1→ e2, e2→ e3):

GR4. σθS1(e1,e2)∩θS2(e2,e3)(E) ≡ σθS1(e1,e2)(σθS2(e2,e3)

(E)), and σθS1(e1,e2)∩θS2(e2,e3)(E) ≡ σθS2(e2,e3)

(σθS1(e1,e2)(E)), if the graph of Fig. 19.a has a dou-

bly directed edge of the form: S1
(e1,e2)←−−−−(e2,e3)−−−−→ S2.

GR5. σθS1(e1,e2)∩θS2(e2,e3)(E) ≡ σθS1(e1,e2)(σθS2(e2,e3)

(E)), and σθS1(e1,e2)∩θS2(e2,e3)(E) ̸≡ σθS2(e2,e3)

(σθS1(e1,e2)(E)), if the graph of Fig. 19.a has a di-

rected edge of the form: S1
(e1,e2) (e2,e3)←−−−−−−−−− S2.

12 Yasin N. Silva et al.

E

1(e1,e2)

2(e2,e3)S

S

e1 e2

E

2(e2,e3)S

1(e1,e2)
S

E

2(e2,e3)

S 1(e1,e2)

Output

e3 e1 e2

Output

e3 e1 e2

Output

e3

Fig. 20 Combining/separating two ε-Join predicates (R32)

When the attributes in the predicates do not have
a single direction (e1→ e2, e2← e3):

GR6. σθS1(e1,e2)∩θS2(e3,e2)(E) ≡ σθS1(e1,e2)(σθS2(e3,e2)

(E)), and σθS1(e1,e2)∩θS2(e3,e2)(E) ≡ σθS2(e3,e2)

(σθS1(e1,e2)(E)), if the graph of Fig. 19.b has a dou-

bly directed edge of the form: S1
(e1,e2)←−−−−(e3,e2)−−−−→ S2.

GR7. σθS1(e1,e2)∩θS2(e3,e2)(E) ≡ σθS1(e1,e2)(σθS2(e3,e2)

(E)), and σθS1(e1,e2)∩θS2(e3,e2)(E) ̸≡ σθS2(e3,e2)

(σθS1(e1,e2)(E)), if the graph of Fig. 19.b has a di-

rected edge of the form: S1
(e1,e2) (e3,e2)←−−−−−−−−− S2.

If the edge between two nodes is dotted in Fig. 19,

none of the equivalences presented in rules GR4 or GR6
hold. The graphs in Fig. 19 show the different ways in
which two SJ predicates can be combined/separated.

Two cases are considered: when the attributes in the
predicates have a single direction, e.g., e1 → e2, e2 →
e3; and when this is not the case, e.g., e1→ e2, e2← e3.

In general, this classification generates different equiva-
lence rules when at least one of the SJ operations is not
commutative (kNN-Join and Join-Around). Appendix

A presents all the instances of GR4-GR7 (R32-R65).
We describe some of these here.

Under GR4 (predicates’ attributes have a single di-

rection: e1 → e2, e2 → e3), the doubly directed edge
that starts and ends at the ε-Join node in Fig. 19.a
specifies that two ε-Join predicates can be combined in

any order. This is:

σθε1(e1,e2)∩θε2(e2,e3)(E) ≡ σθε1(e1,e2)(σθε2(e2,e3)(E))

≡ σθε2(e2,e3)(σθε1(e1,e2)(E)). (R32)

Rule R32 is presented graphically in Fig. 20.
Under GR7 (predicates’ attributes do not have a

single direction: e1 → e2, e2 ← e3), the directed edge
from kNN-Join to ε-Join in Fig. 19.b states that these
predicates can be combined executing kNN-Join first:

σθε(e1,e2)∩θkNN (e3,e2)(E) ≡
σθε(e1,e2)(σθkNN (e3,e2)(E)). (R52)

σθε(e1,e2)∩θkNN (e3,e2)(E) ̸≡
σθkNN (e3,e2)(σθε(e1,e2)(E)). (R53)

kNN-Join is executed first in the RHS plan of R52

while ε-Join is executed first in the RHS plan of R53.

Table 1 Cases where selection can be pushed below join

(a) When the sel. predicate attrib. is the outer attrib. in the join predicate

 Reg. Join -Join kNN-Join kD-Join Join-Around

Reg. Selection

-Selection

kNN-Selection

(b) When the sel. predicate attrib. is the inner attrib. in the join predicate

 Reg. Join -Join kNN-Join kD-Join Join-Around

Reg. Selection

-Selection

kNN-Selection

4.2 Other Core Equivalence Rules

4.2.1 Commutativity of Similarity Join Operators

Some SJ operations (ε-Join and kD-Join) are commu-
tative as specified by the following general rule.

GR8. E ◃▹θS(e,f) F ≡ F ◃▹θS(e,f) E, when (i) S is ε-

Join or kD-Join but not kNN-Join or Join-Around,
and (ii) the distance function used in the operations
is symmetric.

4.2.2 Distribution of (Similarity or Regular) Selection
over (Similarity or Regular) Join

Pushing selection below join (distributing selection over

join) is one of the most useful rules in regular relational
algebra. In this section we extend this rule to the case of
SS and SJ. Similarity or regular selection operations can

be pushed below similarity or regular join operations
according to the following general rules.

When the selection predicate attribute is the outer
attribute in the join predicate:

GR9. σθS1(e)(E ◃▹θS2(e,f) F) ≡ (σθS1(e)(E)) ◃▹θS2(e,f)

F , if cell [S1, S2] in Table 1.a is checked.

When the selection predicate attribute is the inner

attribute in the join predicate:

GR10. σθS1(f)(E ◃▹θS2(e,f) F) ≡ E ◃▹θS2(e,f) (σθS1(f)

(F)), if cell [S1, S2] in Table 1.b is checked.

Table 1 summarizes all the cases where a selection
operator (regular or similarity-aware) can be pushed

below a join (regular or similarity-aware). This table
and general rules GR9 and GR10 consider two generic
cases: when the selection attribute is the outer attribute

of the join predicate and when it is the inner one. The
instances of GR9 and GR10 (R70-R101) are included
in Appendix A. Some of them are presented next.

In some cases, a given selection type can be pushed
below either input of a join. For instance, this is the

case for regular selection and ε-Join. Note that both

Similarity Queries: Their Conceptual Evaluation, Transformations, and Processing 13

E

S

F E

S

F

(e)

(e,f)

(e,f)

(e)

f

A

e

a2

A

B

a1

tE tF

(a) Equivalent plans
(b) Regions of values of

possible input tuples

Fig. 21 Distribution of selection over ε-Join (R70)

E F E F

S

S
S

S

C Output OutputC

,C(e)

,C(e)

kNN(e,f)

kNN(e,f)
kNN=2 kNN=2

e f e f

Fig. 22 Distribution of ε-Sel. over kNN-Join - when sel. is
pushed below the outer relation (R88)

E F E F

S

S

S
kNN=2

C

Output

S

C

Output
,C(f)

,C(f)

kNN(e,f)

kNN(e,f)
kNN=2

e f e f

Fig. 23 Distribution of ε-Sel. over kNN-Join - when sel. is
pushed below the inner relation (R89)

cells [Regular Selection, ε-Join] in Tables 1.a and 1.b

have a check mark. Using GR9 and GR10 we obtain:

σθ(e)(E ◃▹θε(e,f) F) ≡ (σθ(e)(E)) ◃▹θε(e,f) F. (R70)

σθ(f)(E ◃▹θε(e,f) F) ≡ E ◃▹θε(e,f) (σθ(f)(F)). (R71)

In R70, selection is pushed below the outer input

of ε-Join; in R70, below the inner one. Fig. 21.a rep-
resents Rule R70 graphically. Similarly, for the case of
ε-Selection and ε-Join we have:

σθε1,C(e)(E ◃▹θε2(e,f) F) ≡
(σθε1,C(e)(E)) ◃▹θε2(e,f) F. (R86)

σθε1,C(f)(E ◃▹θε2(e,f) F) ≡
E ◃▹θε2(e,f) (σθε1,C(f)(F)). (R87)

In other cases, selection can only be pushed below
the outer input of a join. This is the case for ε-Join
and kNN-Join. Note that the cell [Regular Selection,

ε-Join] has a check mark only in Table 1.a. Using GR9
and GR10 we get the following rules:

σθε,C(e)(E ◃▹θkNN (e,f) F) ≡
(σθε,C(e)(E)) ◃▹θkNN (e,f) F. (R88)

σθε,C(f)(E ◃▹θkNN (e,f) F) ̸≡
E ◃▹θkNN (e,f) (σθε,C(f)(F)). (R89)

Fig. 22 shows that pushing ε-Sel. below the outer

input of kNN-Join generates the same result as execut-
ing kNN-Join first. On the other hand, pushing ε-Sel.
below the inner input of kNN-Join can generate a dif-

ferent result as seen in Fig. 23.

TPC-H Example of R86: Considering the customers
that are located within 200 miles from our Chicago head-
quarters (X,Y), identify the customers that are located
within 10 miles of certain locations of interest (INTER
LOCATION). The SQL and evaluation plans based on
R86 are presented below.

SELECT c_custkey, il_locName

FROM CUSTOMER C, INTER_LOCATION IL

WHERE c_loc WITHIN 10 OF il_loc AND

c_loc WITHIN 200 OF (X,Y);

σθε1=200,C=(X,Y)(c loc)(C ◃▹θε2=10(c loc,il loc) IL) ≡
(σθε1=200,C=(X,Y)(c loc)(C)) ◃▹θε2=10(c loc,il loc) IL.

Proof sketch of Rule R70 The join attributes in θε are
E.e and F.f , and θ is defined over E.e. Consider a
generic tuple tE of E. We will show that for any pos-

sible pair (tE ,tF), where tF is a tuple of F , the results
generated by the plans of both sides of the rule are the
same. Fig. 21.b gives the different possible regions for

the values of tF .f and two generic values of tE .e. a2
represents a value that satisfies the predicate θ while
a1 represents a value that does not.

1. When the value of tE .e is a1. In the LHS plan, the
pair (tE ,tF) may or may not belong to the output
of the ε-Join. However, (tE ,tF) will be filtered out

by the selection operator since a1 does not satisfy
the predicate θ. Thus, no output is generated by
this plan. In the RHS plan, tE is filtered out by the
selection since a1 does not satisfy θ. No tuple flows

to the ε-Join operator from its outer input. Thus,
no output is generated by this plan either.

2. When the value of tE .e is a2 and the value of tF .f

belongs to A. In the LHS plan, the pair (tE ,tF)
does not belong to the output of the ε-Join since
dist(tE .e, tF .f) > ε. No tuple flows to the selection

operator. Thus, no output is generated by this plan.
In the RHS plan, tE is selected by the regular se-
lection operator since a2 satisfies θ. However, the

pair (tE ,tF) does not belong to the output of the
ε-Join since dist(tE .e, tF .f) > ε. Thus, no output is
generated by this plan either.

3. When tE .e is a2 and the value of tF .f belongs to B.
In the LHS plan, the pair (tE ,tF) belongs to the out-
put of the ε-Join since dist(tE .e, tF .f) ≤ ε. (tE ,tF)

is also selected by the regular operator since a2 sat-
isfies θ. (tE ,tF) belongs to the output of this plan. In
the RHS plan, tE is selected by the selection oper-

ator since a2 satisfies θ. (tE ,tF) belongs to the out-
put of the ε-Join since dist(tE .e, tF .f) ≤ ε. Thus,
(tE ,tF) also belongs to the output of this plan. ⊓⊔

4.2.3 Associativity of Similarity Join Operators

Associativity of join operators is another core transfor-

mation rule commonly used in query optimization. This

14 Yasin N. Silva et al.

2(f,g)

Output

e f g E

S

F

S

G F

S

G

S

E

1(e,f)

1(e,f)

2(f,g)

Output

e f g

1
2

1
2

Fig. 24 Associativity of ε-Join operators (R102)

E

S

F

S

G F

S

G

S

E

kNN1(e,f)

Output

e f g

kNN1=2

kNN2=2 kNN2(f,g)

kNN2(f,g)

kNN1(e,f)

Output

e f g

kNN1=2

kNN2=2

Fig. 25 Associativity of kNN-Join - when the attributes in
the predicates have a single direction: e→ f , f → g (R103)

rule allows re-ordering multiple join operations and can
significantly improve the efficiency of a query because

different orders can generate different sizes of the inter-
mediate results. In general, plans with smaller interme-
diate results are also more efficient. SJ operations are

associative according to the following general rules.
When the attributes in the predicates have a single

direction (e→ f , f → g):

GR11. (E ◃▹θS1(e,f) F) ◃▹θS2(f,g) G ≡ E ◃▹θS1(e,f)

(F ◃▹θS2(f,g) G), when S1 and S2 are both: ε-Join,

kNN-Join, or Join-Around but not kD-Join.

When the predicates’ attributes do not have a single
direction (e→ f , f ← g):

GR12. G ◃▹θS1(g,f) (E ◃▹θS2(e,f) F) ≡ E ◃▹θS2(e,f)

(G ◃▹θS1(g,f) F), when S1 and S2 are both: ε-Join

but not kNN-Join, kD-Join or Join-Around.

The associativity of multiple SJ operators depends

in general on whether or not the predicates’ attributes
have a single direction. This distinction, however, is not
relevant (generate the same rules) when the join opera-

tors are commutative (ε-Join and kD-Join). All the in-
stances of GR11 and GR12 are presented in Appendix
A (R102 to R109). We describe here some of them.

In the case of a query with two ε-Join operations,
based on GR11 and GR12, we can re-order the oper-
ations whether the attributes in the predicates have

a single direction or not. The corresponding rule in-
stances are:

(E ◃▹θε1(e,f) F) ◃▹θε2(f,g) G ≡
E ◃▹θε1(e,f) (F ◃▹θε2(f,g) G). (R102)

G ◃▹θε1(g,f) (E ◃▹θε2(e,f) F) ≡
E ◃▹θε2(e,f) (G ◃▹θε1(g,f) F). (R106)

The left and right plans of Fig. 24 represent the LHS

and LHS plans of R102, respectively. The left plan in

E

S

F

S

G G

S

F

S

E

kNN1(g,f)

kNN2(e,f)

kNN2(e,f)

kNN1(g,f)

Output

e f g

kNN1=2

kNN2=2

Output

e f g

kNN1=2

kNN2=2

Fig. 26 Associativity of kNN-Join - when the attributes do
not have a single direction: e→ f , f ← g (R107)

the figure performs first the join on e and f and then
the one on f and g. The right plan performs first the
join on f and g and then the one on e and f .

GR11 and GR12 also specify that kNN-Join oper-

ations are associative only when the attributes in the
predicates have a single direction. This is:

(E ◃▹θkNN1(e,f) F) ◃▹θkNN2(f,g) G ≡
E ◃▹θkNN1(e,f) (F ◃▹θkNN2(f,g) G). (R103)

G ◃▹θkNN1(g,f) (E ◃▹θkNN2(e,f) F) ̸≡
E ◃▹θkNN2(e,f) (G ◃▹θkNN1(g,f) F). (R107)

Fig. 25 shows an example of associativity of kNN-

Join operations (R103, single direction). Fig. 26 shows
an example where two kNN-Join operations are not as-
sociative (R107, not single direction).

TPC-H Example of R103: For every customer, iden-
tify its closest 3 suppliers and for each such supplier,
identify its closest 2 potential new suppliers (POT SUP-
PLIER). The SQL and evaluation plans based on R103
are presented below.

SELECT c_custkey, s_suppkey, psu_psuppkey

FROM CUSTOMER C, SUPPLIER S, POT_SUPPLIER PSU

WHERE s_loc 3 TOP_CLOSEST_NEIGHBOR_OF c_loc AND

psu_loc 2 TOP_CLOSEST_NEIGHBOR_OF s_loc;

(C ◃▹θkNN1=3(c loc,s loc) S) ◃▹θkNN2=2(s loc,psu loc) PSU ≡
C ◃▹θkNN1=3(c loc,s loc) (S ◃▹θkNN2=2(s loc,psu loc) PSU).

4.2.4 Other Conventional Equivalence Rules

We briefly discuss here the extension of less common
rules to the case of similarity operators. Selection and

Similarity Selection on grouping attributes cannot be
pushed below any type of SGB. ε-Selection distributes
over set operations in the same way regular selection

does, kNN-Selection does not distribute over any set
operation. Finally, projection distributes over SJ oper-
ations in the same way it does over non-similarity joins.

Details of these rules are included in [25].

Similarity Queries: Their Conceptual Evaluation, Transformations, and Processing 15

E

S

F E

S

F

(e)

(e,f)

± (f)

(e,f)

(e)

Fig. 27 Pushing selection predicate to an originally unre-
lated ε-Join operand (GR13)

E F E F

S

SS

S

S
C

2

1
dist(f,C) 1 + 2

e f

1,C(e)

1,C(e)
(1+ 2),C(f)

2(e,f)

2(e,f)

Fig. 28 Pushing ε-Selection predicate to an originally unre-
lated ε-Join operand (GR14)

4.3 Rules that Take Advantage of Distance Function
Properties

4.3.1 Pushing a Selection Predicate to an Originally
Unrelated ε-Join Operand

In the rules of Section 4.2.2 each selection predicate θ

is pushed only to the join operand that contains the
attribute referenced in θ. In the case of ε-Join, the fil-
tering benefits of pushing selection below join can be
extended by pushing θ or a variant of it to both ε-Join

operands as shown in the following rule (Fig. 27).

GR13. σθ(e)(E ◃▹θε(e,f) F) ≡
(σθ(e)(E)) ◃▹θε(e,f) (σθ±ε(f)(F)).

In this rule, (i) the distance function should satisfy
the properties: Triangular Inequality, Symmetry, and

Identity of Indiscernibles; and (ii) the selection predi-
cate θ ± ε(f) represents a modified version of θ where
each condition is extended by ε. θ ± ε(f) is applied on

f , the join attribute in F , and uses the same distance
function used in θ. For example, if θ(e) is 10 ≤ e ≤ 20,
then θ ± ε(f) is 10− ε ≤ f ≤ 20 + ε.

TPC-H Example of GR13: For every balance level
of interest B (BAL LEVELS), identify the customers
with account balances within 500 of B. Consider only
customers with balances between 2,000 and 50,000. The
SQL and evaluation plans based on GR13 are presented
below. In this case, θ(c acctbal) is 2000 ≤ c acctbal ≤
50000 and θ ± ε(bl bal) is 1500 ≤ bl bal ≤ 50500.

SELECT c_custkey, bl_balance, c_acctbal

FROM CUSTOMER C, BAL_LEVELS BL

WHERE c_acctbal WITHIN 500 OF bl_bal AND

c_acctbal >= 2000 AND c_acctbal <= 50000;

σθ(c acctbal)(C ◃▹θε=500(c acctbal,bl bal) BL) ≡
(σθ(c acctbal)(C)) ◃▹θε=500(c acctbal,bl bal) (σθ±ε(bl bal)(BL)).

Proof sketch of Rule GR13 Pushing selection to the

outer input of ε-Join was studied in R70. We focus here
on the validity of pushing selection to the inner input
of the ε-Join. Assume that in the LHS part of Rule

GR13, the selection predicate θ(e) is e = C and the
ε-Join predicate θε(e, f) is dist(e, f) ≤ ε.

1. Since dist satisfies Identity of Indiscernibles, we know

that dist(e, C) = 0.
2. dist also satisfies the Triangular Inequality property,

thus dist(C, f) ≤ dist(C, e) + dist(e, f).

3. Due to Commutativity, we have that dist(C, f) ≤
dist(e, C) + dist(e, f).

4. Replacing (1) in (3), dist(C, f) ≤ 0 + dist(e, f) ≤
dist(e, f).

5. Using in (4) the fact that dist(e, f) ≤ ε, dist(C, f) ≤
ε.

The expression in (5) dist(C, f) ≤ ε represents the se-
lection predicate being applied on f in the inner input

of the RHS part of Rule GR13. We could extend this
analysis to other types of selection conditions. ⊓⊔

4.3.2 Pushing an ε-Selection Predicate to an

Originally Unrelated ε-Join Operand

The rules of section 4.2.2 allow pushing an SS predicate

θS to the SJ operand that contains the attribute used in
θS . In the case of ε-Join and ε-Selection, we can further
reduce the size of the intermediate results by pushing

θS to one join operand and a variant of θS to the other
one as shown in the following equivalence rule (Fig. 28).

GR14. σθε1,C(e)(E ◃▹θε2(e,f) F) ≡
(σθε1,C(e)(E)) ◃▹θε2(e,f) (σθ(ε1+ε2),C(f)(F)).

In this rule, (i) all ε-Selection and ε-Join opera-

tors use the same distance function; (ii) the distance
function should satisfy the Triangular Inequality and
Symmetry properties; and (iii) the selection predicate

θ(ε1+ε2),C represents an ε-Selection predicate with a
value of ε equal to ε1+ε2, where ε1 and ε2 are the values
of epsilon used in the ε-Selection and ε-Join operators,

respectively. For example, if θε1,C(e) is dist(e, C) ≤ 10,
and θε2(e, f) is dist(e, f) ≤ 5, then θ(ε1+ε2),C(f) is
dist(f, C) ≤ 15.

4.3.3 Associativity Rule that Enables Joining on
Originally Unrelated Attributes

In the associativity rules described in Section 4.2.3, each
SJ predicate involves the same attributes in both sides

of the rules. In the case of ε-Join, when the attributes
e of E and f of F are joined using ε1 and the result
joined with attribute g of G using ε2, there is an im-

plicit relationship between e and g that can be used to

16 Yasin N. Silva et al.

generate a potentially more efficient plan as shown in

the following equivalence rule.

GR15. (E ◃▹θε1(e,f) F) ◃▹θε2(f,g) G ≡
(E ◃▹θε1+ε2(e,g) G) ◃▹θε1(e,f)∧θε2(f,g) F.

In Rule GR15, (i) all the ε-Join operators use the

same distance function; (ii) the distance function should
satisfy the Triangular Inequality and Symmetry prop-
erties; and (iii) the predicate θε1+ε2(e, g) represents an

ε-Join predicate with a value of ε equal to ε1 + ε2. For
example, if θε1(e, f) is dist(e, f) ≤ 10, and θε2(f, g) is
dist(f, g) ≤ 5, then θε1+ε2(e, g) is dist(e, g) ≤ 15.

GR13-GR15 can be used with important distance
functions, e.g., p-norm distance, Edit distance (equal
weights), Hamming distance and Jaccard distance.

4.4 Eager and Lazy Transformations with SJ and SGB

Another important query optimization approach is the

use of pull-up and push-down techniques to move the
grouping operator up and down the query tree. These
techniques were proposed for regular, i.e., non-similarity,

operators by Chaudhuri et al. [26] and Yan et al. [27].
The main Eager and Lazy aggregations theorem [27]
enables several pull-up and push-down techniques for

the regular join and group-by operators. This theorem
allows the pre-aggregation of data before the join oper-
ator to reduce its input size. This subsection presents

the extension of the main theorem to the case of SJ and
SGB. Figures 29-31 illustrate several cases of the Eager
and Lazy transformations that are studied in detail in

this section. In general, the single aggregation operator
of the Lazy approach is split into two parts in the Eager
approach. The first part pre-evaluates some aggregation

functions and calculates the count before the join. The
second part uses the intermediate information to cal-
culate the final results after the join. Both the Eager

and Lazy plans should be considered during query op-
timization since neither of them is the best approach in
all scenarios. The notation used in this section, given in

Table 2, allows a direct comparison with analogous the-
orems for regular operators and uses a convenient rep-
resentation of the operators’ arguments that facilitates

the presentation of theorems and proofs. The proofs of
the presented theorems are included in [25].

4.4.1 Eager and Lazy Transformations with SGB and
Join

Eager and Lazy transformations can be extended to the
case of SGB and regular join as shown in Theorem 1.

Theorem 1 (Eager/Lazy Aggregation Main Theorem

for SGB and Join) The following two expressions:

Table 2 Notation for Eager/Lazy transformation theorems

A ~ B denote that A and B belong to the same similarity
group, and A !~ B denote the opposite

the duplicated aggregation function of Fu, e.g., if
Fu(C1,C2,C3)=(SUM(C1), COUNT(C2), MAX(C3)), then
Fua(C1,C2,C3,CNT)=(SUM(C1)*CNT, COUNT(C2)*CNT,
MAX(C3))

the set of columns, other than CNT, produced in the first
aggregation operation of the eager approach

regular grouping of relation R on grouping attributes GA

similarity grouping of relation R on grouping attributes GA
using segmentations Seg

aggregation operation of a previously grouped table R

sets of aggregation functions and columns, respectively

selection, projection with and without duplicate
elimination, set union without duplicate elimination, cross
product, theta-join, and similarity join respectively

a table that always contains aggregation attributes
a table that may or may not contain aggregation attributes
the grouping columns of Rd and Ru, respectively

all the aggregation columns
the subsets of AA that belong to Rd and Ru, respectively

the conjunctive predicates on columns of Rd and Ru,

respectively

the conjunctive predicates involving columns in both Ru

and Rd

the columns involved in C0

= GAd U (C0) - Rd, columns of Rd that participate in the

join and grouping

the set of all aggregation functions

the members of F applied on AAd and AAu, respectively
the resulting columns of the application of F on AA in the
first grouping operation of the eager strategy

the set of segmentation of the attributes in GA
the subsets of Seg for the attributes in GAd and GAu,

respectively
a set of columns in Rd

the column with the result of Count(*) in the first
aggregation operation of the eager approach

g[GA]R

g[GA; Seg]R

F[AA]R

F and AA

, D, A, UA, ×,

, and

Rd

Ru

GAd and GAu

AA

AAd and AAu

Cd and Cu

C0

(C0)

GAd
+

F

Fd and Fu

FAA

Seg

Segd and Segu

NGAd

CNT

FAAd

Fua

A ~ B, A !~ B

SGB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
SGB

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

SGB

SUM(S1) AS SS1, CNT

G1 around {1,20},

G2 around {1,20}

Eager AggregationLazy Aggregation

5 2

5

1

5

1 2

1

1

SELECT sum(S1), sum(S2) FROM T1, T2 WHERE

J1=J2 GROUP BY G1 around {1,20}, G2 around {1,20}

T1

1 10 5

2 10 10

3 10 5

4 10 5

5 10 5

G1 J1 S1

T2

1 10 5

2 20 10

G2 J2 S2

J1=J2

G1,

G2 around {1,20}

G1 around

{1,20}, J1

J1=J2

Fig. 29 Eager/Lazy aggregation with SGB and join

E1. F [AAd, AAu]πA[GAd, GAu, AAd, AAu]
g[GAd, GAu;Seg]σ[Cd ∧ Cu](Rd ◃▹C0 Ru),

E2. πD[GAd, GAu,FAA](Fua[AAu,CNT], Fd2[FAAd])

πA[GAd, GAu, AAu,FAAd,CNT]
g[GAd, GAu;Segu]σ[Cu](((Fd1[AAd],COUNT)
πA[NGAd, GAd

+, AAd]g[NGAd;Segd]

σ[Cd]Rd) ◃▹C0 Ru),

are equivalent if (i) Fd can be decomposed into Fd1 and

Fd2, (ii) Fu contains only class C or D aggregation
functions [27], (iii) NGAd → GAd

+ holds in σ[Cd]Rd,
and (iv) α(C0) ∩ GAd = ∅. Expressions E1 and E2

represent the Lazy and Eager approaches, respectively.

Similarity Queries: Their Conceptual Evaluation, Transformations, and Processing 17

GB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2) GB

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

GB

SUM(S1) AS SS1,

CNT

G1 , G2

G1 , G2

Eager Aggregation Lazy Aggregation

G1 , J1
5 2

5

1

2

5

1

1

1

SELECT sum(S1), sum(S2) FROM T1, T2 WHERE

J1 within 5 of J2 GROUP BY G1, G2

T1

1 11 5

1 11 10

1 11 5

1 11 5

1 11 5

G1 J1 S1

T2

1 11 5

2 20 10

G2 J2 S2

S

J1 within

5 of J2

S

J1 within

5 of J2

Fig. 30 Eager/Lazy aggregation with group-by and SJ

Fig. 29 presents an example of the application of
Theorem 1. This figure gives the number of tuples that

flow to and from each operator. The join in the Lazy
aggregation plan processes a total of 7 tuples while the
SGB node processes 5 tuples. In the Eager aggregation

plan, all the tuples of T1 get combined into one tuple
in the bottom SGB node, and the join and top SGB
only need to process 3 and 1 tuples, respectively.

TPC-H Example of Theorem 1: Cluster all the or-
der discounts around a set of discount levels of interest
(DCNT LEVELS) and for each cluster report the sum
of discounts given by each clerk type. SQL queries rep-
resenting the Lazy and Eager plans are included below.

Lazy:

SELECT l_discount as DcntLevel,

o_clerkType, sum(l_discount)

FROM LINEITEM, ORDERS WHERE l_orderkey=o_orderkey

GROUP BY o_clerkType, l_discount AROUND DCNT_LEVELS;

Eager:

SELECT R.DcntLevel, o_clerkType, sum(R.SD)

FROM (SELECT l_discount as DcntLevel, l_orderkey,

sum(l_discount) as SD FROM LINEITEM

GROUP BY l_orderkey,

l_discount AROUND DCNT_LEVELS) AS R, ORDERS O

WHERE R.l_orderkey=o_orderkey

GROUP BY o_clerkType, R.DcntLevel;

4.4.2 Eager and Lazy Transformations with Group-by
and SJ

Eager and Lazy aggregation transformations can be ex-
tended to the case of SJ and group-by (Theorem 2).

Theorem 2 (Eager/Lazy Aggregation Main Theorem
for Group-by and SJ) The following two expressions:

E1. F [AAd, AAu]πA[GAd, GAu, AAd, AAu]
g[GAd, GAu]σ[Cd ∧ Cu](Rd◃̃▹C0Ru),

E2. πD[GAd, GAu,FAA](Fua[AAu,CNT], Fd2[FAAd])

πA[GAd, GAu, AAu,FAAd,CNT]
g[GAd, GAu]σ[Cu](((Fd1[AAd],COUNT)
πA[NGAd, GAd

+, AAd]g[NGAd]

σ[Cd]Rd)◃̃▹C0Ru),

SGB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
SGB

T1

T2

(G1,J1,S1)

SUM(SS1) , SUM(S2)*CNT

SGB

SUM(S1) AS SS1, CNT

G1 around {1,20},

G2 around {1,20}

Eager AggregationLazy Aggregation

5 2

5

1

5

1 2

1

1

SELECT sum(S1), sum(S2) FROM T1, T2 WHERE

J1 within 5 of J2 GROUP BY G1 around {1,20}, G2 around {1,20}

T1

1 11 5

2 11 10

3 11 5

4 11 5

5 11 5

G1 J1 S1

T2

1 10 5

2 20 10

G2 J2 S2

S

S

J1 within

5 of J2

J1 within

5 of J2

G1,

G2 around {1,20}

G1 around

{1,20}, J1 (G2,

J2,S2)

Fig. 31 Eager/Lazy aggregation with SGB and SJ

where ◃̃▹C0 is kNN-Join, ε-Join, or Join-Around; are
equivalent under the same conditions as in Theorem 1.

Fig. 30 illustrates Theorem 2. The SJ of the Lazy
aggregation plan processes a total of 7 tuples while the

grouping node processes 5 tuples. In the Eager plan
all the tuples of T1 get grouped into one tuple in the
bottom group-by node, and the SJ and top grouping

operators only need to process 3 and 1 tuples respec-
tively. In scenarios where T1 has a significant number
of tuples with the same value of (G1, J1) the optimizer

will probably select the Eager plan.

4.4.3 Eager and Lazy Transformations with SGB and

SJ

The Eager and Lazy Aggregation transformations can
be extended to the case of SJ and SGB as shown in the
next theorem.

Theorem 3 (Eager/Lazy Aggregation Main Theorem

for SGB and SJ) The following two expressions:

E1. F [AAd, AAu]πA[GAd, GAu, AAd, AAu]
g[GAd, GAu;Seg]σ[Cd ∧ Cu](Rd◃̃▹C0Ru),

E2. πD[GAd, GAu,FAA](Fua[AAu,CNT], Fd2[FAAd])
πA[GAd, GAu, AAu,FAAd,CNT]

g[GAd, GAu;Segu]σ[Cu](((Fd1[AAd],COUNT)
πA[NGAd, GAd

+, AAd]g[NGAd;Segd]
σ[Cd]Rd)◃̃▹C0Ru),

where ◃̃▹C0 is kNN-Join, ε-Join, or Join-Around; are

equivalent under the same conditions as in Theorem 1.

An example of the use of this theorem is presented in

Fig. 31. The numbers of tuples flowing in the pipelines
are similar to the ones of Fig. 30. Note that the bottom
grouping node of the Eager approach merges tuples that

have: (i) the same value of J1 and (ii) values of G2 that
belong to the same similarity group. In this example all
the tuples of T1 are merged even though they have

different values of G1.

18 Yasin N. Silva et al.

SELECT e, f FROM E, F

WHERE EpsJoinPred(e,f) AND EpsSelPred(e)

E F

S

EpsSelPred(e)

EpsJoinPred(e,f)

SSS

E x F E x F

EpsSelPred(e)EpsJoinPred(e,f)

Fig. 32 Query with ε-Selection and ε-Join predicates

SELECT e, f, g FROM E, F, G

WHERE EpsJoinPred(e,f) AND EpsJoinPred(f,g)

E F

S

S

G
EpsJoinPred(e,f)

EpsJoinPred(f,g)

SS

E x F x G E x F x G

EpsJoinPred(e,f) EpsJoinPred(f,g)

Fig. 33 Query with multiple ε-Join predicates

4.5 Examples of the Use of Transformation Rules

The equivalence rules presented earlier in this section
can be used to transform the conceptual evaluation plan

of a similarity query into more efficient equivalent plans.
This section presents examples of this type of query
transformations.

Example 1 Fig. 32 gives the SQL version of a similarity
query with ε-Selection and ε-Join predicates. The left
plan in this figure gives the conceptual evaluation plan

of this query. The right plan shows an equivalent plan
with potentially better execution time (since each re-
lation is read only once and the Similarity Selection is

pushed below the Similarity Join). The following steps
show how the query expression of the left plan can be
transformed into the one of the right plan.

1. σθε1(e,f)∩θε2,C(e)(E × F).
2. ≡ σθε1(e,f)(σθε2,C(e)(E × F)), applying Rule R20.
3. ≡ σθε1(e,f)((σθε2,C(e)E)× F), applying Rule R82.

4. ≡ (σθε2,C(e)E) ◃▹θε1(e,f) F , applying Rule R110.

Example 2 Fig. 33 gives the SQL expression of a simi-
larity query with two ε-Join predicates. The left plan is

the conceptual evaluation plan of the query while the
right one is an equivalent plan with potentially better
execution time (each relation is read only once and only

the tuples that satisfy the bottom SJ flow to the top
SJ). The following steps show the transformation of the
left plan into the right one.

1. σθε1(e,f)∩θε2(f,g)((E × F)×G).

2. σθε2(f,g)(σθε1(e,f)((E×F)×G)), applying Rule R32.
3. σθε2(f,g)((σθε1(e,f)(E×F))×G), applying Rule R82.
4. σθε2(f,g)((E ◃▹θε1(e,f) F)×G), applying Rule R110.

5. (E ◃▹θε1(e,f) F) ◃▹θε2(f,g) G, applying Rule R110.

SELECT e, f, g, h FROM E, F, G, H WHERE EpsSelPred1(e) AND

EpsSelPred2(e) AND kNNSelPred1(f) AND kNNSelPred2(f) AND

EpsSelPred3(g) AND kNNSelPred3(g) AND EpsSelPred4(h) AND

EpsSelPred5(h) AND kNNSelPred4(h) AND kNNSelPred5(h)

E H...

S

EpsSelPred1(e) EpsSelPred2(e) kNNSelPred1(f)

kNNSelPred2(f) EpsSelPred3(g) kNNSelPred3(g)

EpsSelPred4(h) EpsSelPred5(h) kNNSelPred4(h)

kNNSelPred5(h)

EpsSelPred1(e)
S

S

EpsSelPred2(e)

E kNNSelPred1(f)
S S

kNNSelPred2(f)

F F

EpsSelPred3(g)
S

S

kNNSelPred3(g)

G

EpsSelPred4(h)
S

S

EpsSelPred5(h)

kNNSelPred4(h)
S S

kNNSelPred5(h)
H H

Fig. 34 Query with multiple sim. selection predicates

Figures 34-37 give examples of more complex simi-
larity query transformations. These examples also show
several key general transformation guidelines for simi-

larity query optimization.

Example 3 Fig. 34 gives the transformation of a query
with multiple Similarity Selection predicates. This fig-

ure illustrates that multiple ε-Selection operators over
the same attribute can be serialized. Multiple kNN-
Selection operators cannot be serialized; they need to

be executed independently and their results combined
using the intersection operator. ε-Selection and kNN-
Selection operations over the same attribute can be se-

rialized executing the kNN-Selection operations first.

Example 4 Fig. 35 gives the transformation of a query
with multiple ε-Join and SS predicates. This figure illus-
trates that ε-Selection and kNN-Selection can be serial-

ized with ε-Join executing the SS first. Multiple ε-Join
operations can also be serialized, i.e., the results of a
join are sent to the next one.

Example 5 Fig. 36 gives the transformation of a query
with a kNN-Join and multiple SS predicates. This fig-
ure illustrates that ε-Selection and kNN-Selection can

be serialized with the kNN-Join executing the SS first
when they are defined over the outer join attribute.
ε-Selection defined over the inner join attribute of a

kNN-Join can be serialized with the join operation ex-
ecuting the kNN-Join first. kNN-Selection defined over
the inner join attribute of a kNN-Join cannot be serial-

ized with the join operation. In this case, the kNN-Join
and kNN-Selection operations need to be evaluated in-
dependently and the results combined using the inter-

section operation.

Similarity Queries: Their Conceptual Evaluation, Transformations, and Processing 19

SELECT e, f, g FROM E, F, G WHERE EpsJoinPred1(e,f) AND

EpsJoinPred2(f,g) AND EpsSelPred1(e) AND EpsSelPred2(e) AND

kNNSelPred1(e) AND kNNSelPred2(e) AND EpsSelPred3(f) AND

EpsSelPred4(f) AND kNNSelPred3(f) AND kNNSelPred4(f) AND

EpsSelPred5(g) AND EpsSelPred6(g) AND kNNSelPred5(g) AND

kNNSelPred6(g)

EpsJoinPred1(e,f) EpsJoinPred2(f,g) EpsSelPred1(e)

EpsSelPred2(e) kNNSelPred1(e) kNNSelPred2(e)

EpsSelPred3(f) EpsSelPred4(f) kNNSelPred3(f)

kNNSelPred4(f) EpsSelPred5(g) EpsSelPred6(g)

kNNSelPred5(g) kNNSelPred6(g)

EpsSelPred1(e)
S

S

EpsSelPred2(e)

kNNSelPred1(e)

S S

kNNSelPred2(e)
E

S

EpsSelPred3(f)
S

S
EpsSelPred4(f)

kNNSelPred3(f)

S S
kNNSelPred4(f)

EpsJoinPred1(e,f)

S

EpsJoinPred2(f,g)

EpsSelPred5(g)
S

S
EpsSelPred6(g)

kNNSelPred5(g)

S S

kNNSelPred6(g)
G G

E
F F

E G...

S

Fig. 35 Query with multiple ε-Join and sim. sel. predicates

SELECT e, f FROM E, F WHERE kNNJoinPred(e,f) AND

EpsSelPred1(e) AND EpsSelPred2(e) AND kNNSelPred1(e) AND

kNNSelPred2(e) AND EpsSelPred3(f) AND EpsSelPred4(f) AND

kNNSelPred3(f) AND kNNSelPred4(f)

kNNJoinPred(e,f) EpsSelPred1(e) EpsSelPred2(e)

kNNSelPred1(e) kNNSelPred2(e) EpsSelPred3(f)

EpsSelPred4(f) kNNSelPred3(f) kNNSelPred4(f)

E F...

S

EpsSelPred1(e)
S

S
EpsSelPred2(e)

kNNSelPred1(e)
S S

kNNSelPred2(e)

E E

S

F

kNNJoinPred(e,f)
kNNSelPred3(f)

S S

kNNSelPred4(f)

E x F

EpsSelPred3(f)
S

S
EpsSelPred4(f)

E x F

Fig. 36 Query with kNN-Join and sim. sel. predicates

Example 6 Fig. 37 gives the transformation of a generic
query with multiple Similarity Join and Similarity Se-
lection predicates. This figure illustrates that multiple

kNN-Join operations can be serialized as long as the
attributes of the join predicates have a single direc-
tion. kNN-Join and ε-Join can also be serialized execut-

ing the kNN-Joins first. Multiple kNN-Join operations
whose predicates do not have a single direction need to
be evaluated independently and the results combined

using the intersection operation.

SELECT e, f, g, h FROM E, F, G, H WHERE kNNJoinPred1(e,f) AND

kNNJoinPred2(f,g) AND kNNJoinPred3(e,g) AND EpsJoinPred(h,g) AND

EpsSelPred1(e) AND EpsSelPred2(e) AND kNNSelPred1(e) AND

kNNSelPred2(e)

S

F

kNNJoinPred1(e,f)
E x F x G x H

kNNJoinPred1(e,f) kNNJoinPred2(f,g) kNNJoinPred3(e,g)

EpsJoinPred(h,g) EpsSelPred1(e) EpsSelPred2(e)

kNNSelPred1(e) kNNSelPred2(e)

S

kNNJoinPred2(f,g)

S

EpsJoinPred(h,g)

S
kNNJoinPred3(e,g)

G

H

S

S
EpsSelPred2(e)

kNNSelPred1(e)
S S

kNNSelPred2(e)

E E

EpsSelPred1(e)

E H...

S

Fig. 37 Query with multiple sim. join and sel. predicates

4.6 Integration of Rules into Query Optimizers

Several elements need to be considered to fully integrate
the proposed equivalence rules into query optimizers.

Adding Rules to the Enumeration Framework Query

optimizers generate, i.e., enumerate, equivalent plans
of a query and select the one with the lowest esti-
mated cost. Common cost-based optimizers, e.g., sys-

tems based on the Cascades [28] and Volcano [29] frame-
works combine two steps: logical exploration and phys-
ical optimization. Logical exploration applies transfor-

mation rules to generate logically equivalent plans. Since
the transformation rules for similarity operators are ex-
tensions of similar rules for regular database operators,

they can be integrated into query optimizers in a simi-
lar way to their non-similarity counterparts [28,29,27].
For instance, to create an optimizer using the Cascades

framework, the associativity rule for ε-Join can be in-
tegrated as a rule object similar to the one for the as-
sociativity rule of regular join [28]. The physical op-

timization step transforms the logical operators, e.g.,
ε-Join, to physical operators associated with specific
implementation algorithms, e.g., ε-Join can be imple-

mented using the plane sweep approach (Section 5.2)
or the QuickJoin algorithm [11].

Cost Estimation The cost of a query plan is usually

computed based on the cost of individual physical op-
erators. Both CPU and I/O costs are commonly consid-
ered. The cost of an operator depends on its implemen-

tation algorithm and on properties of its input data,

20 Yasin N. Silva et al.

e.g., cardinality. The costs of the SGB and SJ imple-

mentations described in section 5 are discussed in [1,2].
Cost estimation of similarity operators, particularly of
range and kNN queries using index-based access meth-

ods, has also been studied in [23,30].

Derivation of statistics Since the cost of each operator
depends on properties of its input data, e.g., number of

tuples, frequency of values, etc., it is important to have
formulas to propagate these properties at every opera-
tor node. The derivation of the number of tuples for the

SGB and SJ operators is discussed in [1,2]. The num-
ber of groups of SGB-A and SGB-D can be estimated
as the number of tuples of the reference objects query.

The number of groups of SGB-U can be estimated as a
fraction of the number of different values of the group-
ing attribute. In the case of Join-Around, the number

of resulting tuples can be estimated as the number of
tuples in the inner input dataset. In the case of ε-Join,
more complex techniques, e.g., employing histograms

of the density of elements in metric spaces [23] and
using a sampling based algorithm that uses Locality
Sensitive Hashing [31], can be employed. The number

of output tuples of the kNN-Join can be estimated as
(num tuples outer)×min(k, num tuples inner) while
the one of the kD-Join can be estimated as min(num
tuples outer × num tuples inner, k).

5 Implementing Similarity Operators

This section presents the main guidelines to implement

physical similarity operators in standard DBMSs. While
the definition of similarity operators, conceptual evalu-
ation, and transformation rules presented in previous

sections are applicable in general to any data type,
the implementation described in this section focuses on
similarity operators for numerical data. The presented

implementation fulfills two key goals: (i) showing that
similarity database operators can be efficiently realized
and, more importantly, (ii) enabling the evaluation of

transformation rules for similarity queries. The imple-
mentation of similarity operators for other data types
is a task for future work. While the presentation is in-

tended to be applicable to any DBMS, some details
refer to our implementation in PostgreSQL [1,2].

5.1 Implementing Similarity Group-By Operators

This subsection describes the implementation of SGB
instances as physical database operators. We present
the main changes at each stage of the query engine.

Additional details appear in [1].

Agg (a2 around T2, a1), or

Agg (a2 delimited by T2, a1)

1. SELECT … FROM (T)

GROUP BY a1 AROUND (T1),

a2 AROUND (T2)

Sort (a2)

T2

2. SELECT … FROM (T)

GROUP BY a1 DELIMITED BY (T1),

a2 DELIMITED BY (T2)

Sort (T2.col)

Agg (a1 around T1, a2), or

Agg (a1 delimited by T1, a2)

Sort (a1)

T T1

Sort (T1.col)

Join-Around (c,d), or

Epsilon-Join 2 (c,d)

1. SELECT … FROM T1, T2, T3

WHERE T1.a AROUND T2.b AND

T2.c AROUND T3.d

Sort (c)

T3

2. SELECT … FROM T1, T2, T3

WHERE T1.a WITHIN 1 OF T2.b AND

T2.c WITHIN 1 OF T3.d

Join-Around (a,b), or

Epsilon-Join 1 (a,b)

Sort (a)

T1 T2

(b) Similarity Join

Sort (d)

Sort (b)

(a) Similarity Group-by

Fig. 38 Path/Plan trees with SGB and SJ operators

The Parser The raw-parsing grammar rules, e.g., the
yacc rules in the case of PostgreSQL, are extended to
recognize the SQL syntax of the SGB instances. The

parse-tree and query-tree data structures are extended
to include information about the type and parameters
of the similarity grouping operations.

The Planner The regular aggregation node is extended

to support SGB. Each extended aggregation node is
able to process one similarity grouping attribute (SGA)
and any number of regular grouping attributes. Fig.

38.a gives the structure of a plan tree with two SGAs
a1 and a2. Sort nodes are added on top of the data in-
put plan trees and the reference-points input plan trees.

This order is assumed by the routines that form the
similarity groups. When multiple SGAs are used, they
are processed one at a time. In Fig. 38.a, the bottom

aggregation node applies similarity grouping on a1 and
regular aggregation on a2, the result is further aggre-
gated by the top aggregation node that applies similar-

ity grouping on a2 and regular aggregation on a1.

The Executor The executor routine for the SGB oper-
ators uses a single plane sweep approach to form the
groups. The tuples to be grouped and the reference

points have been previously sorted and are processed
simultaneously using a hash table to maintain informa-
tion of the formed groups. At any time, a set of current

groups is maintained and each time the sweeping plane
reaches a tuple the system evaluates whether this tuple
belongs to one of the current groups, does not belong

to any group, or starts a new set of groups.

5.2 Implementing Similarity Join Operators

This subsection presents the main guidelines to im-
plement two SJ operators, ε-Join and Join-Around, as
first-class database operators. Further details are pre-

sented in [2]. One of the goals of the implementation

Similarity Queries: Their Conceptual Evaluation, Transformations, and Processing 21

is to reuse and extend already available routines and

structures to minimize the effort needed to realize these
operators. The ε-Join and Join-Around operators are
implemented as extensions to the Sort Merge Join (SMJ)

operator and consider the case of multiple SJ predicates
over numeric data.

The Parser The raw-parsing grammar rules are ex-

tended to recognize the syntax of the SJ predicates. The
parse-tree and query-tree data structures are extended
to include the type and parameters, e.g., ε, MD, of SJ

predicates. The routines that transform the parse tree
into the query tree are updated accordingly to process
the new parse tree fields.

The Planner Fig. 38.b gives the structure of the plan
tree generated when two SJ predicates, a∼b and c∼d,
are specified. Given that the implementation is based
on Sorted Merge Join, sort nodes that order by the SJ
attributes are added on top of the input plan trees. This

order is assumed by the routines that find the similarity
matches, i.e., links. When multiple SJ predicates are
specified, each predicate is processed by one SJ plan

node. The results of each node are pipelined to the next
node.

The Executor ε-Join and Join-Around are implemented
extending the routines that support the Sort Merge
Join operator. This allows a fast and efficient implemen-

tation of both SJ operators. The sorted tuples received
from the input plans are processed synchronously fol-
lowing a plane sweep approach. The algorithms are

coded in PostgreSQL in the fashion of a state machine.
Both ε-Join and Join-Around use the same set of states
employed by the Sorted Merge Join. The main changes

to implement the SJ operators are on the routine that
evaluates if there is a match between two tuples and on
the way the inner cursor is restored to a previous tuple

to ensure the correct generation of SJ links.

6 Performance Evaluation

This section presents the performance evaluation of the

implemented similarity-aware operators as well as the
evaluation of the effectiveness of several transformation
rules. The dataset used in the tests is based on the

one specified by the TPC-H benchmark [24]. The tables
of reference points and queries used in the tests are
presented in Table 3. The default dataset scale factor

(SF) is 5 (5GB). We use an extension of PostgreSQL
that supports SGB and SJ implemented as described
in Section 5. All the experiments are performed on an

Intel Dual Core 1.83GHz machine (2GB RAM, Linux).

Table 3 Test reference points and queries

Tables of Reference Points

AccBalLevels1: 110 account balance values in the range of CUSTOMER.C_acctbal

[0,11000]

AccBalLevels2: 11000 account balance values in the range of

CUSTOMER.C_acctbal [0,11000]

GB

<GB> AROUND AccBalLevels3GB(SGB)

SGB-A + 'MAXIMUM_GROUP_DIAMETER 2r'. r =11000/(100*SF)SGB-A_MD

SGB-A <GB> AROUND AccBalLevels5

SGB(GB)

SELECT count(R2.A), min(R2.A),max(R2.A),sum(R2.A), avg(R2.A)
FROM (SELECT c_acctbal as A, min(abs(c_acctbal - refpoint)) as

B FROM C, AccBalLevels5 GROUP BY C.c_acctbal) as R1,
(SELECT c_acctbal as A, refpoint as C, abs(c_acctbal - refpoint)
as B FROM C, AccBalLevels5) as R2

WHERE R1.A=R2.A and R1.B=R2.B GROUP BY R2.C

RefDiscLevel: 5 discount levels. {0.010, 0.030, ..., 0.090}

SELECT c_acctbal count(c_acctbal), min(c_acctbal),
max(c_acctbal), sum(c_acctbal), avg(c_acctbal) FROM
CUSTOMER GROUP BY c_acctbal

Queries to Evaluate SGB

AccBalLevels3: All values used by C_acctbal

AccBalLevels4: 50*SF-1 points that partition C_acctbal’s domain in 50*SF segments

of equal length. For SF=1: {-780,560,...,9780}

AccBalLevels5: 50*SF points that correspond to the center of the segments of

RefPoints_1b. For SF=1: {-890,-670, ...,9890}

AssocRule

SELECT * FROM CUSTOMER, AccBalLevels1 R1
WHERE C_acctbal WITHIN 11 OF refpoint AND 2200<C_acctbal
AND C_acctbal<=6600

PushSel

SELECT refpoint, sum(C_acctbal) FROM CUSTOMER Cust,
AccBalLevelsN RN
WHERE C_acctbal WITHIN 11 OF refpoint GROUP BY refpoint

LazySJN,

EagerSJN

LazySGB1,

EagerSGB1

SELECT L.l_discount as DcntLevel, O.o_clerkType,
sum(L.l_discount) FROM LINEITEM L, ORDERS O WHERE
L.l_orderkey=O.o_orderkey GROUP BY O.o_clerkType,
L.l_discount AROUND RefDiscLevel

LazySGB2,

EagerSGB2

(Lazy1, Eager1)+"AND O.o_orderdate between '1994-06-17' and

'1995-06-17' " in WHERE clause

SELECT * FROM CUSTOMER, AccBalLevels1 R1,

AccBalLevels2 R2 WHERE C_acctbal WITHIN 11 OF R1.refpoint

AND R1.refpoint WITHIN 11 OF R2.refpoint;

Queries to Evaluate Transformation Rules

SGB-A + MAXIMUM_ELEMENT_SEPARATION 1SGB-A_MS

SGB-U_MR using 'MAXIMUM_ELEMENT_SEPARATION 1'

instead of 'MAXIMUM_GROUP_DIAMETER d'
SGB-U_MS

SGB-D <GB> DELIMITED BY AccBalLevels4

SGB-U_MD <GB> MAXIMUM_GROUP_DIAMETER d. d =11000/(50*SF)

SJ-JoinAround

SELECT T1.c_custkey, T1.C_acctbal, T2.refpoint FROM

(SELECT c_custkey, C_acctbal, min(dist) as mindist

FROM (SELECT c_custkey, C_acctbal, refpoint,

abs(C_acctbal - refpoint) as dist FROM CUSTOMER,

AccBalLevels1) AS C1 GROUP BY c_custkey, C_acctbal) AS

T1, AccBalLevels1 T2

WHERE R1.mindist = abs(T1.C_acctbal - T2.refpoint);

RegOps-

JoinAround

SJ-EpsJoin
SELECT * FROM CUSTOMER, AccBalLevels1 WHERE C_acctbal

WITHIN OF refpoint;

RegOps-

EpsJoin
SELECT * FROM CUSTOMER, AccBalLevels1 WHERE
abs(C_acctbal - refpoint) <= ;

SELECT c_custkey, C_acctbal, refpoint FROM CUSTOMER,

AccBalLevels1 WHERE C_acctbal AROUND refpoint;

Queries to Evaluate SJ

0

50

100

150

200

2 6 10 14

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Dataset Size (SF)

GB
GB(SGB)_H
GB(SGB)_S
SGB-A_H
SGB-A_S
SGB-A_MD
SGB-A_MS
SGB-D
SGB-U_MD
SGB-U_MS

Fig. 39 Performance of SGB while increasing dataset size

6.1 Performance Evaluation of SGB

Fig. 39 gives the execution time of several aggregation
queries for different dataset sizes. The key result is that

the execution times of all the queries that use similarity
group-by, i.e., SGB-X, are very close to the execution
time of the regular aggregation query GB. Even in the

worst case scenario represented by GB(SGB) X, i.e.,

22 Yasin N. Silva et al.

0

500

1000

1500

2000

2500

3000

0 5 10 15

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Dataset Size (SF)

SGB-A_H

SGB-A_S

SGB(GB)

Fig. 40 Generating similarity groups with group-by vs. SGB

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Dataset Size (SF)

SJ-JoinAround

RegOps-JoinAround

Fig. 41 Perf. of Join-Around while increasing dataset size

0

10

20

30

40

50

0.01 0.1 1 5 10 20

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

% of domain length used as Epsilon

SJ-EpsJoin

RegOps-EpsJoin

Fig. 42 Performance of ε-Join while Increasing ε

queries that use SGB to produce the same result as the
regular group by, the execution time of GB(SGB) is
at most only 25% bigger than that of GB. Although,

in general, it is not possible to produce the output of
SGB queries using only regular SQL operations, this is
feasible in some special cases, e.g., SGB-A without ad-

ditional clauses. Fig. 40 compares the execution time of
SGB-A with that of SGB(GB), a query that generates
the same output as SGB-A while using only regular op-

erators. The presented results show that the execution
time and scalability properties of the SGB query are
much better than those of the query that uses only reg-

ular SQL operators. The execution time of SGB(GB)
grows from being 500% bigger than that of SGB-A for
SF=1 to being 1300% bigger for SF=14.

6.2 Performance Evaluation of SJ

Fig. 41 gives the execution time of the SJ-JoinAround
query compared to the one of the RegOps-JoinAround

query that produces the same output using only regular
operators. The execution time of RegOps-JoinAround
grows from being about 20 times bigger than that of SJ-

JoinAround for SF=1 to being about 200 times bigger

0

40

80

120

160

200

AssocRule_LHS AssocRule_RHS

E
x

e
cu

ti
o

n
 T

im
e

 (
s)

 Cust

S

R2

S

R1 R2

S

R1

S

Cust

Fig. 43 Effectiveness of the associativity transformation

0

40

80

120

160

PushSel_LHS PushSel_RHS1 PushSel_RHS2
E

x
e

cu
ti

o
n

 T
im

e
 (

s)

Cust

S

R2

o o

Cust

S

R2

o

Cust

S

R2

o

Fig. 44 Effectiveness of pushing selection below SJ

for SF=8. The poor performance of RegOps-JoinAround
is due to a double nested loop join in its execution plan

in addition to the use of an aggregation operation. The
Join-Around operator sorts each set once, and processes
both sets synchronously.

Fig. 42 gives the execution time of the SJ-EpsJoin
query compared to the one of the RegOps-EpsJoin query
that produces the same output using non-similarity op-

erators. The results are presented for various values of
ε. The value of ε is a fraction of the domain range (0-
11000). This experiment uses SF=1. The key result of

this experiment is that the SJ-EpsJoin query performs
significantly better than the RegOps-EpsJoin query for
the important case of small values of ε. For instance,

when ε=1, the execution time of RegOps-EpsJoin is
4.32 sec. while the one of SJ-EpsJoin is 0.96 sec. The
advantage of the ε-Join over the regular query gets re-

duced as the value of ε increases. The performance of
SJ-EpsJoin is better for small values of ε because it
generates shorter restorations of the inner cursor. On

the other hand, RegOps-EpsJoin calculates the distance
between all the combinations of outer and inner tuples.

6.3 Effectiveness of Transformation Rules

This section demonstrates experimentally that the use

of the equivalence rules for similarity queries can pro-
duce better performing plans. Even though we evaluate
a subset of the rules, similar results can be obtained for

the other presented rules. Furthermore, while the tests

Similarity Queries: Their Conceptual Evaluation, Transformations, and Processing 23

0

50

100

150

200

250

LazySGB1 EagerSGB1 LazySGB2 EagerSGB2

E
x

e
cu

ti
o

n
 T

im
e

 (
s)

SGB

L

R3

O

L

O

SGB

SGB

R3

SGB

L

R3

O

o

L
O

SGB

SGB

R3

o

Fig. 45 Effectiveness of Lazy/Eager aggregations with SGB

0

5

10

15

20

25

LazySJ1 EagerSJ1 LazySJ2 EagerSJ2

E
x

e
cu

ti
o

n
 T

im
e

 (
s)

GB

S

Cust R1

GB

S

Cust R2

GB

GB

S

Cust

R2

GB

GB

S

Cust

R1

Fig. 46 Effectiveness of Lazy/Eager aggregations with SJ

in this section use numerical data, the proposed rules
could be used with operators that support in general
any data type.

Effectiveness of the Associativity Transformation As-
socRule LHS and AssocRule RHS in Fig. 43 represent
the query AssocRule executed using plans that corre-

spond to the LHS and RHS of Rule R102, respectively.
The execution time of AssocRule RHS is 9.2% of that
of AssocRule LHS. AssocRule LHS joins (ε-Join) first

Customer (C) and R2 generating 17,241,601 interme-
diate rows. The execution time of AssocRule RHS is
much smaller because it joins the two smaller tables

(R1 and R2) first generating 2,519 intermediate rows.

Effectiveness of Pushing Selection below SJ PushSel
LHS, PushSel RHS1, and PushSel RHS2 in Fig. 44 rep-

resent the query PushSel executed using plans that cor-
respond to the LHS and RHS of Rule R70, and the RHS
of Rule GR13, respectively. PushSel LHS performs first

the join (7,241,601 intermediate rows) and then the se-
lection. In PushSel RHS1 the selection operation has
been pushed to the outer join input (300,872 interme-

diate rows). The execution time of PushSel RHS1 is
73% of the one of PushSel LHS. In PushSel RHS2 the
filtering benefit is improved by pushing the selection to

both join inputs. The execution time of PushSel RHS2
is 55% of the one of PushSel LHS.

Effectiveness of Lazy and Eager Aggregation Transfor-

mations with SGB Fig. 45 illustrates the use of the

Eager and Lazy Aggregation transformations with SGB

(Theorem 1) using SF=1. LazySGB1 and EagerSGB1
are equivalent queries. The execution time of EagerSGB1
is 13% smaller than that of LazySGB1. The reason is

that the similarity-based preaggregation step of Ea-
gerSGB1 reduces significantly the number of tuples to
be processed by the join operator. LazySGB2 and Ea-

gerSGB2 are also equivalent queries, and are similar to
LazySGB1 and EagerSGB1, respectively, but only con-
sider orders made in the past six months. In this case,

the execution time of LazySGB2 is 40% smaller than
that of EagerSGB2 because the join is more selective.

Effectiveness of Lazy and Eager Aggregation Transfor-

mations with SJ In Fig. 46, LazySJN and EagerSJN
represent equivalent queries that correspond to the ex-
pressions E1 and E2 of Theorem 2, respectively. The

execution time of EagerSJ1 is 35% of the one of LazySJ1.
The advantage of the Eager approach increases when
the cardinality of the inner input grows. EagerSJ2 has

an execution time that is only 9% of that of LazySJ2.

7 Conclusions and Future Work

The focus of this paper is the proposal and analysis of
several similarity database operators, and the thorough

study of the evaluation and optimization of similarity
queries that combine multiple similarity operators. We
introduce a model for the conceptual evaluation of sim-

ilarity queries that clearly specifies the way a similarity
query should be evaluated even if it has multiple simi-
larity operations. We present a rich set of transforma-

tion rules for similarity queries to transform the con-
ceptual evaluation plan into more efficient plans. Fur-
thermore, we demonstrate that transformation rules for

similarity queries can take advantage of special proper-
ties of the similarity-aware operations and the involved
distance functions to enable more useful query transfor-

mations. We also extend the important Eager/Lazy Ag-
gregation transformation rules to the case of SGB and
SJ. The experimental evaluation of the proposed rules

shows they are highly effective. We also show that sim-
ilarity operators can be efficiently implemented taking
advantage of structures and mechanisms already avail-
able in DBMSs. Paths for future work include the study

of: (i) similarity operators for sensor data, (ii) cloud-
based similarity operators to analyze large datasets,
and (iii) similarity data warehousing operators.

Acknowledgement Walid G. Aref’s research was par-
tially supported by the National Science Foundation

under Grants III-1117766, IIS-0964639, and IIS-0811954.

24 Yasin N. Silva et al.

References

1. Y. N. Silva, W. G. Aref, and M. H. Ali, “Similarity group-
by,” in Proceedings of the 2009 IEEE International Con-
ference on Data Engineering, 2009.

2. ——, “The similarity join database operator,” in Pro-
ceedings of the 2010 IEEE International Conference on
Data Engineering, 2010.

3. Y. N. Silva, M. U. Arshad, and W. G. Aref, “Exploiting
similarity-aware grouping in decision support systems,”
in Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database
Technology, 2009.

4. Y. N. Silva, A. M. Aly, W. G. Aref, and P.-A. Larson,
“Simdb: a similarity-aware database system,” in Proceed-
ings of the 2010 international conference on Manage-
ment of data, 2010.

5. S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient
clustering algorithm for large databases,” in Proceedings
of the 1998 ACM SIGMOD international conference on
Management of data, 1998.

6. T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an
efficient data clustering method for very large databases,”
in Proceedings of the 1996 ACM SIGMOD international
conference on Management of data, 1996.

7. C. Zhang and Y. Huang, “Cluster by: a new sql extension
for spatial data aggregation,” in Proceedings of the 15th
annual ACM international symposium on Advances in
geographic information systems, 2007.

8. C. Li, M. Wang, L. Lim, H. Wang, and K. C.-C. Chang,
“Supporting ranking and clustering as generalized order-
by and group-by,” in Proceedings of the 2007 ACM SIG-
MOD international conference on Management of data,
2007.

9. E. Schallehn, K.-u. Sattler, and G. Saake, “Extensible
grouping and aggregation for data reconciliation,” in In
Proc. 4th Int. Workshop on Engineering Federated In-
formation Systems, EFIS01, 2001.

10. E. Schallehn, K.-U. Sattler, and G. Saake, “Efficient
similarity-based operations for data integration,” Data
Knowl. Eng., vol. 48, pp. 361–387, March 2004.

11. E. H. Jacox and H. Samet, “Metric space similarity
joins,” ACM Trans. Database Syst., vol. 33, pp. 7:1–7:38,
June 2008.

12. G. R. Hjaltason and H. Samet, “Incremental distance join
algorithms for spatial databases,” in Proceedings of the
1998 ACM SIGMOD international conference on Man-
agement of data, 1998.

13. C. Böhm and F. Krebs, “The k-nearest neighbour join:
Turbo charging the kdd process,” Knowl. Inf. Syst.,
vol. 6, pp. 728–749, November 2004.

14. S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive
operator for similarity joins in data cleaning,” in Pro-
ceedings of the 22nd International Conference on Data
Engineering, 2006.

15. L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava, “Approximate
string joins in a database (almost) for free,” in Proceed-
ings of the 27th International Conference on Very Large
Data Bases, 2001.

16. M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Sri-
vastava, “Fast indexes and algorithms for set similarity
selection queries,” in Proceedings of the 2008 IEEE 24th
International Conference on Data Engineering, 2008.

17. X. Yang, B. Wang, and C. Li, “Cost-based variable-
length-gram selection for string collections to support

approximate queries efficiently,” in Proceedings of the
2008 ACM SIGMOD international conference on Man-
agement of data, 2008.

18. M. Wichterich, I. Assent, P. Kranen, and T. Seidl,
“Efficient emd-based similarity search in multimedia
databases via flexible dimensionality reduction,” in Pro-
ceedings of the 2008 ACM SIGMOD international con-
ference on Management of data, 2008.

19. S. Adali, P. Bonatti, M. L. Sapino, and V. S. Subrahma-
nian, “A multi-similarity algebra,” in Proceedings of the
1998 ACM SIGMOD international conference on Man-
agement of data, 1998.

20. M. R. P. Ferreira, C. Traina, Jr., and A. J. M. Traina, “An
efficient framework for similarity query optimization,” in
Proceedings of the 15th annual ACM international sym-
posium on Advances in geographic information systems,
2007.

21. C. Traina, Jr., A. J. M. Traina, M. R. Vieira, A. S.
Arantes, and C. Faloutsos, “Efficient processing of com-
plex similarity queries in rdbms through query rewrit-
ing,” in Proceedings of the 15th ACM international
conference on Information and knowledge management,
2006.

22. M. C. N. Barioni, H. Razente, A. Traina, and C. Traina,
Jr., “Siren: a similarity retrieval engine for complex
data,” in Proceedings of the 32nd international confer-
ence on Very large data bases, 2006.

23. G. B. Baioco, A. J. M. Traina, and C. Traina Jr., “Mam-
cost: Global and local estimates leading to robust cost
estimation of similarity queries,” in Proceedings of the
19th International Conference on Scientific and Statis-
tical Database Management, 2007.

24. “TPC-H version 2.14.3.” [Online]. Available:
http://www.tpc.org/tpch/

25. Y. N. Silva, W. G. Aref, P.-A. Larson, S. S.
Pearson, and M. H. Ali, “Similarity queries -
transformation rules and proofs,” Arizona State
University, Tech. Rep., 2012. [Online]. Available:
http://www.public.asu.edu/∼ynsilva/tr/SQTRep.pdf

26. S. Chaudhuri and K. Shim, “Including group-by in query
optimization,” in Proceedings of the 20th International
Conference on Very Large Data Bases, 1994.

27. W. P. Yan and P.-A. Larson, “Eager aggregation and
lazy aggregation,” in Proceedings of the 21th Interna-
tional Conference on Very Large Data Bases, 1995.

28. G. Graefe, “The cascades framework for query optimiza-
tion,” IEEE Data Engineering Bulletin, vol. 18, no. 3,
pp. 19–29, 1995.

29. G. Graefe and W. J. McKenna, “The volcano optimizer
generator: Extensibility and efficient search,” in Proceed-
ings of the Ninth International Conference on Data En-
gineering. Washington, DC, USA: IEEE Computer So-
ciety, 1993, pp. 209–218.

30. P. Ciaccia, M. Patella, and P. Zezula, “A cost model for
similarity queries in metric spaces,” in Proceedings of the
seventeenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems. New York, NY,
USA: ACM, 1998, pp. 59–68.

31. H. Lee, R. T. Ng, and K. Shim, “Similarity join size es-
timation using locality sensitive hashing,” Proc. VLDB
Endow., vol. 4, pp. 338–349, Mar. 2011.

A Similarity-aware Transformation Rules

Similarity Queries: Their Conceptual Evaluation, Transformations, and Processing 25

Table 4 Transformation rules for similarity-aware operators - instances of generic rules

Combining/Separating Similarity Selection Predicates

R1.

R2.

R3.

R4.

Combining/Separating Similarity Join and Similarity Selection

When the sel. predicate attrib. is the inner attrib. in the join predicate:

R5.

R6.

R7.

R8.

R9.

R10.

R11.

R12.

R13.

R14.

R15.

R16.

R17.

R18.

R19.

When the sel. predicate attribute is the outer attrib. in the join predicate:

R20.

R21.

R22.

R23.

R24.

R25.

R26.

R27.

R28.

R29.

R30.

R31.

Combining/Separating Similarity Join Predicates

When the attributes have a single direction (e1 e2, e2 e3):

R32.

R33.

R34.

R35.

R36.

R37.

R38.

R39.

R40.

R41.

R42.

R43.

R44.

R45.

R46.

When the attributes do not have a single direction (e1 e2, e2 e3):

R47.

R48.

R49.

R50.

R51.

R52.

R53.

R54.

R55.

R56.

R57.

R58.

R59.

R60.

R61.

R62.

R63.

R64.

R65.

Commutativity of Similarity Join Operators

R66.

R67.

R68.

R69.

Distribution of Selection over Similarity Join

R70.

R71.

R72.

R73.

R74.

R75.

R76.

R77.

R78.

R79.

R80.

R81.

Distribution of Similarity Selection over Join

R82.

R83.

R84.

R85.

Distribution of Similarity Selection over Similarity Join

R86.

R87.

R88.

R89.

R90.

R91.

R92.

R93.

R94.

R95.

R96.

R97.

R98.

R99.

R100.

R101.

Associativity of Similarity Join Operators

When the attributes in the predicates have a single direction (e f, f g):

R102.

R103.

R104.

R105.

When the predicates’ attributes do not have a single direction (e f, f g):

R106.

R107.

R108.

R109.

Applying Selection with a SJ predicate over Cross Product

R110.

R111.

R112.

R113.

Rules that Take Advantage of Distance Function Properties

R114.

R115.

R116.

