
The Similarity Join Database Operator
*

Yasin N. Silva1, Walid G. Aref 1, Mohamed H. Ali2

1Department of Computer Science, Purdue University, Indiana, USA

{ysilva,aref}@cs.purdue.edu

2Microsoft Corporation, Washington, USA

mali@microsoft.com

Abstract— Similarity joins have been studied as key operations in

multiple application domains, e.g., record linkage, data cleaning,

multimedia and video applications, and phenomena detection on

sensor networks. Multiple similarity join algorithms and

implementation techniques have been proposed. They range

from out-of-database approaches for only in-memory and

external memory data to techniques that make use of standard

database operators to answer similarity joins. Unfortunately,

there has not been much study on the role and implementation of

similarity joins as database physical operators. In this paper, we

focus on the study of similarity joins as first-class database

operators. We present the definition of several similarity join

operators and study the way they interact among themselves,

with other standard database operators, and with other

previously proposed similarity-aware operators. In particular,

we present multiple transformation rules that enable similarity

query optimization through the generation of equivalent

similarity query execution plans. We then describe an efficient

implementation of two similarity join operators, Ɛ-Join and Join-

Around, as core DBMS operators. The performance evaluation

of the implemented operators in PostgreSQL shows that they

have good execution time and scalability properties. The

execution time of Join-Around is less than 5% of the one of the

equivalent query that uses only regular operators while Ɛ-Join’s

execution time is 20 to 90% of the one of its equivalent regular

operators based query for the useful case of small Ɛ (0.01% to

10% of the domain range). We also show experimentally that the

proposed transformation rules can generate plans with execution

times that are only 10% to 70% of the ones of the initial query

plans.

I. INTRODUCTION

The shift from systems that focus on exact semantics of

data and queries to systems that focus on approximate and

imprecise semantics is recognized as one of the main current

paradigm transitions in data management systems. Different

areas have made important contributions to this paradigm shift,

among them: similarity-aware query processing in database

systems, integration of information retrieval and database

operations, and uncertain or probabilistic databases. The study

of the similarity-aware counterparts of common database

operations, i.e., selection, join, and grouping is a central goal

of the work on similarity query processing. Similarity joins

(SJ) are operations that combine two sets of data using

similarity join predicates that match tuples with similar or

approximate values. Similarity joins have been studied as key

components to solve multiple problems, e.g., record linkage,

data cleaning, phenomena detection on sensor networks,

———————————————
* This work was partially supported by NSF Grant IIS-0811954.

Implementation

complexity

Take

advantage of

DB optimizer

Composable

with other DB

operators

Supported

Join types

Similarity Join Implementation Approach

As Stored

Procedures
Outside of DB

Using Basic

SQL Operators

Integrated in

DB Engine

Queries use a

complex mix of

joins and

aggregations

Can reuse

and extend

DB operators

and structures

No

NoNo

Yes (trans. rules,

pre-aggregation,

MVs, etc.)

No directly

No

Yes (full

pipelining of

results)

AllAllAll

Certain types may

be unfeasible or

require very

complex queries
Requires

specialized

structures,

spilling

mechanisms,

etc.

Requires

specialized

structures,

mechanisms to

deal with large

data sets, etc.
Yes (resulting

queries can be

highly complex)

Fig. 1 Comparison of similarity join implementation approaches

marketing analysis, multimedia and video applications, etc.

Multiple SJ algorithms and implementation techniques have

been proposed. They range from out-of-database approaches

for only in-memory or external memory data, to techniques

that use standard database operators to answer SJs. However,

there has not been much study on the role and implementation

of similarity joins as database operators. Fig. 1 compares

several approaches to implement Similarity Joins. The

implementation of SJ as integrated database operators has the

following key advantages: (i) SJ database operators can be

interleaved with other regular and similarity-aware operators

and their results pipelined for further processing; (ii)

important optimization techniques, e.g., pushing certain

filtering operators to lower levels of the execution plan, pre-

aggregation, and the use of materialized views can be

extended to the new operators; and (iii) the implementation of

these operators can reuse and extend other operators and

structures to handle large datasets, and use the cost-based

query optimizer machinery to enhance query execution time.

This paper focuses on the study of similarity joins as first-

class database operators. Its main contributions are:

 We study the similarity join as a first-class database

operator, its interaction with other non-similarity and

similarity-based operators, and its implementation as

integrated component of the DBMS query processing and

optimization engine.

 We present the different types of similarity joins,

introduce a new useful similarity join type, the Join-

Around, and propose SQL syntax to express similarity

join predicates.

 We analyze multiple transformation rules for the SJ

operators. These rules enable query optimization through

the generation of equivalent query execution plans. We

study: (i) multiple core equivalence rules for SJ operators;

(ii) the main theorem of Eager and Lazy aggregation for

queries with similarity join and similarity group-by; (iii)

the scenarios in which similarity predicates can be pushed

from similarity join to similarity group-by; and (iv)

equivalence rules between different SJ operators and

between SJ and the similarity group-by operator.

 We describe an efficient implementation of two SJ

operators, the Epsilon-Join and Join-Around, as core

DBMS operators. We consider the case of multiple SJ

predicates and one-dimensional (1D) attributes.

 We evaluate the performance and scalability properties of

our implementation of the Epsilon-Join and Join-Around

operators in PostgreSQL. The execution time of Join-

Around is less than 5% of the one of the equivalent query

that uses only regular operators while Ɛ-Join’s execution

time is 20 to 90% of the one of its equivalent regular

operators based query for the useful case of small Ɛ

(0.01% to 10% of the domain range).

 We also evaluate experimentally the effectiveness of the

proposed transformation rules and show they can generate

plans with execution times that are only 10% to 70% of

the ones of the initial query plans.

The rest of this paper is organized as follows. Section II

discusses the related work. Section III presents the different

types of SJ and the proposed syntax to specify their similarity

predicates. Section IV studies the equivalence rules among SJ

and other regular and similarity-aware operators. Section V

presents implementation guidelines based on a prototype

realization of two SJ operators within PostgreSQL. Section VI

reports the performance evaluation of the implemented

operators and Section VII presents the conclusions and

directions for future research.

II. RELATED WORK

Several types of similarity join, and corresponding

implementation strategies, have been proposed in the literature,

e.g., range distance join (retrieves all pairs whose distances

are smaller than a pre-defined threshold) [1], [2], [3], [8], [9],

[10], k-Distance join (retrieves the k most-similar pairs) [4],

and kNN-join (retrieves, for each tuple in one table, the k

nearest-neighbors in the other table) [5], [6], [7]. The range

distance join, also known as the Ɛ-Join, has been the most

studied type of similarity join. Among its most relevant

implementation techniques, we find approaches that rely on

the use of pre-built indices, e. g., eD-index [8] and D-index

[9]. These techniques strive to partition the data while

clustering together similar objects. However, this approach

may require rebuilding the index to support queries with

different similarity parameter values, i.e., epsilon.

Furthermore, eD-index and D-index are directly applicable

only to the case of self-joins. Several non-index-based

techniques have also been proposed to implement the Ɛ-Join.

EGO [10], GESS [11], and QuickJoin [12] are three of the

most relevant non-index-based algorithms. The Epsilon Grid

Order (EGO) algorithm [10] imposes an epsilon-sized grid

over the space and uses an efficient schedule of reads of

blocks to minimize I/O. The Generic External Space Sweep

(GESS) algorithm [11] creates hypersquares centered on each

data point with epsilon length sides, and joins these

hypersquares using a spatial join on rectangles. The Quickjoin

algorithm [12] recursively partitions the data until the subsets

are small enough to be efficiently processed using a nested

loop join. The algorithm makes recursive calls to process each

partition and a separate recursive call to process the “windows”

around the partition boundary. Quickjoin has been shown to

perform better than EGO and GESS [12].

Also, of importance is the work on similarity join

techniques that make use of relational database technology

[17], [18], [19]. These techniques are applicable only to string

or set-based data. The general approach pre-processes the data

and query, e.g., decomposes data and query strings into sets of

q-grams, and stores the results of this stage on separate

relational tables. Then, the result of the similarity join can be

obtained using standard aggregate/group-by/join SQL

statements. Indices on the pre-processed data are used to

improve performance. A key difference of this work with our

contributions in this paper is that we focus on studying the

properties, optimization techniques, e.g., pre-aggregation and

query transformation rules, and implementation techniques of

several types of similarity joins as database operators

themselves rather than studying the way a SJ can be answered

using standard operators. In fact, several of the discussed

properties for epsilon-join in this paper are also applicable to

the operators proposed in [17] and [18]. Moreover, the

implementation section of our work focuses on SJ on

numerical data rather than string data.

A related type of join is the band join introduced in [32].

The join predicate of this join type has the form S.s-Ɛ1≤R.r≤

S.s+Ɛ2. A key difference of our work with the work on band

joins is that band joins represent only a special case of one of

the four types of joins considered in our study. Specifically, a

band join where Ɛ1=Ɛ2 is a special case of Ɛ-Join for the case

of 1D data. We propose transformation rules and properties

for similarity joins that apply in general to multi-dimensional

data. Moreover, a key goal of our implementation is to take

advantage of the mechanisms and data structures already

available in most DBMS’ engines to facilitate the integration

of similarity joins into real world DBMSs. The

implementation of band joins in [32] makes use of specialized

sampling, partitioning, and page replacement mechanisms.

Some recent work in the area of similarity joins has focused

on: proposing a compact way to represent the output of an

epsilon join [11], i.e., reporting groups of nearby points

instead of every join link; efficient algorithms for in-memory

similarity join with edit distance constraints [14]; algorithms

for near duplicate detection that exploit the ordering of tokens

in a record to reduce the number of required distance

computations [15]; and similarity join algorithms that exploit

sorting and searching capabilities of GPUs [16].

The extension of other standard operations to their

similarity-based counterparts, e. g., similarity selection [20],

[21], [22], [23], and similarity grouping [24], has been studied

previously. Among the important recent contributions in this

area are: the study of fast indices and algorithms for set

similarity selection using semantic properties that allow

pruning large percentages of the search space [20], a

quantitative cost-based approach to build high-quality grams

to support selection queries on strings [21], a method that

finds all data objects that match with a given query object in a

low-dimensional subspace instead of the original full space

[22], and flexible dimensionality reduction techniques to

support similarity search using the Earth Mover’s Distance

[23]. Of special interest is the work on Similarity Group-by

(SGB) presented in [24]. SGB is an extension of the group-by

database operator that supports the formation of groups of

similar objects. Three SGB instances are introduced, i.e.,

group-around, unsupervised group-by, and group-by with

delimiters; and are shown to have good execution time and

scalability properties with at most only 25% increase in

execution time over the regular group-by [24]. We study the

interaction and equivalences between SJ and SGB.

Furthermore, we discuss scenarios in which the similarity

predicate of SJ can be pushed partially or totally to SGB.

The work in [25] proposes an algebra for similarity-based

queries. This work presents the extension of simple algebra

rules, e.g., pushing selection into join, to the case of similarity

operators. The work in [26] proposes an extension to the

relational algebra to support similarity queries with several

similarity predicates combined using the Boolean operators

and, or, and not. However, [26] does not consider similarity

joins or queries that combine non-similarity and similarity

predicates. [27] proposes an extended SQL syntax to express

queries that use both non-similarity and similarity predicates.

The work in [28] presents a cost model to estimate the number

of I/O accesses and distance calculations to answer similarity

queries over data indexed using metric access methods. Both

[27] and [28] only consider range distance and knn-joins. A

framework for similarity query optimization is presented in

[29]. This work makes use of simple equivalence rules to

generate multiple alternative query plans. The main difference

between [25], [26], [27] and our work is that we focus on

analyzing in detail the properties and equivalence rules that

involve the different kinds of similarity join. Our study

considers four types of SJ, the equivalences among them and

with the similarity group-by operator. Furthermore, we study

extensions of the important Lazy and Eager aggregation

transformations to the case of similarity join queries.

Some of the optimization techniques of SJ presented in this

paper build on previous work on optimization of regular non

similarity queries. Larson et al. study pull-up and push-down

techniques that allow the query optimizer to move aggregation

operators up and down the query plan [30], [31]. These

techniques enable complete [30] or partial [31] pre-

aggregation that can reduce significantly the input size of a

join and decrease the execution time of an aggregation query.

III. SIMILARITY JOIN OPERATORS

The generic definition of the Similarity Join (SJ) operator is

as follows:

𝐴 ⋈𝜃𝑆
𝐵 = 𝑎, 𝑏 𝜃𝑆 𝑎, 𝑏 , 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

ε-Join: SELECT … FROM A, B

 WHERE A.a WITHIN ε OF B.b

Around-Join: SELECT … FROM A, B

 WHERE A.a AROUND B.b [MAX_DIAMETER 2r]

kNN-Join: SELECT ... FROM A, B

 WHERE B.b k NEAREST_NEIGHBOR_OF A.a

kD-Join: SELECT ... FROM A, B

 WHERE A.a k TOP_CLOSEST_PAIRS B.b

Fig. 2 Extended SQL syntax for similarity join predicates

A

ε

k=2

ε-Join

B A B A B

Join-AroundkNN-Join

A B

kD-Join

k=2

r

Fig. 3 Types of Similarity Join

where θs represents the similarity join predicate. This

predicate specifies the similarity-based conditions that the

pairs <a,b> need to satisfy to be in the similarity join output.

The similarity join predicates for the similarity join operators

considered in our study are as follows.

 Range Distance Join (Ɛ-Join):

 𝜃𝜀 ≡ 𝑑𝑖𝑠𝑡 𝑎, 𝑏 ≤ 𝜀
 kNN-Join:

 𝜃𝑘𝑁𝑁 ≡ 𝑏 𝑖𝑠 𝑎 𝑘 − 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑛𝑒𝑖𝑔𝑏𝑜𝑟 𝑜𝑓 𝑎
 k-Distance-Join (kD-Join):

𝜃𝑘𝐷 ≡ 𝑎, 𝑏 𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑘 − 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑝𝑎𝑖𝑟𝑠
 Join-Around (A-Join):

 𝜃𝐴,𝑀𝐷=2𝑟 ≡ 𝑏 𝑖𝑠 𝑡𝑒 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑛𝑒𝑖𝑔𝑏𝑜𝑟 𝑜𝑓 𝑎 𝑎𝑛𝑑
 𝑑𝑖𝑠𝑡 𝑎, 𝑏 ≤ 𝑟

The range distance, kNN, and k-Distance join operators are

common and extensively used types of similarity join. The

Join-Around is a new useful type of similarity join that

combines some properties of both the range distance and kNN

joins. Every value of the first joined set is assigned to its

closest value in the second set. Additionally, only the pairs

separated by a distance of at most r are part of the join output.

MD stands for Maximum Diameter and r=MD/2 represents

the Maximum Radius. As presented in Section IV, the Join-

Around operator with MD=∞ is equivalent to the kNN-Join

for k=1. Some queries that show the usefulness of this new

type of similarity join are presented later in this section.

Fig. 2 shows an extension of SQL syntax to express the

different types of similarity join predicates. Fig. 3 shows

examples of the four types of similarity join operators when

they are applied to two numerical datasets.

Similarity joins are core operations in multiple application

domains, e.g., data cleaning, pattern recognition,

bioinformatics, multimedia, phenomena detection on sensor

networks, marketing analysis, etc. Many of these scenarios,

e.g., pattern recognition and bioinformatics, inherently need

the support of similarity joins on multidimensional data.

However, there are also many application scenarios, e.g.,

marketing analysis and phenomena detection on sensor

networks, that can greatly benefit from the use of similarity

joins on one dimensional data. Fig. 4 gives four similarity

queries that use similarity joins to answer business-oriented

questions in a decision support system. The presented

similarity queries are extensions of several non-similarity-

based TPC-H queries [33]. The similarity queries in Fig. 4

illustrate that the use of similarity joins allows answering

more complex and interesting business questions.

IV. OPTIMIZING SIMILARITY JOINS

This section presents the study of similarity join properties

and techniques that enable the optimization of similarity join

queries through the generation of alternative execution plans.

This section introduces: (i) core equivalence rules that exploit

specific properties of SJs, (ii) equivalence rules between

multiple SJ operators and between SJ and similarity group-by

(SGB) operators, and (iii) the study of Eager and Lazy

transformation techniques that exploit pre-aggregation using

group-by and similarity group-by to significantly reduce the

amount of data to be processed by SJs.

A. Core Equivalence Rules

This section presents multiple equivalence rules that

involve the different SJ operators. This section not only

considers the extension of common equivalence rules to the

case of similarity joins, but particularly also studies scenarios

that exploit certain specific properties of SJs to enable more

effective query transformations. The rules in this section and

in section IV.B use the notation presented in Fig. 5. The

examples assume the following relations’ content:

E1=E2=E3={1,2,...,100}, and E4={21,22,...,25}.

1) Basic Distribution of Selection over SJ: The regular

selection operation distributes over the similarity join

operations according to the following rules.

When all the attributes of the selection predicate θ involve

only the attributes of one of the expressions being joined (E1):

a. 𝜎𝜃 𝐸1 ⋈𝜃𝜀
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝜀

𝐸2

b. 𝜎𝜃 𝐸1 ⋈𝜃𝑘𝑁𝑁
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝑘𝑁𝑁

𝐸2

c. 𝜎𝜃 𝐸1 ⋈𝜃𝐴
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝐴

𝐸2

When the selection predicates θ1 and θ2 involve only the

attributes of E1, and E2, respectively:

d. 𝜎𝜃1∧𝜃2 𝐸1 ⋈𝜃𝜀
𝐸2 ≡ (𝜎𝜃1(𝐸1)) ⋈𝜃𝜀

(𝜎𝜃2(𝐸2))

Usage: In the RHS of these rules, the selection operator is

pushed under the SJ operators to reduce the number of tuples

to be processed by the join. The transformation from the LHS

expression to the RHS one can generate low cost plans

because in general SJ operators are expected to be more costly

than selection filters. Fig. 6.a presents an example of rule 1.a.

The numbers next to the arrows represent the number of

flowing tuples in the query pipeline. The SJ operator of the

LHS expression processes a total of 200 tuples while the one

of the RHS expression only processes a total of 105 tuples.

2) Pushing Selection Predicate under Originally Unrelated

Join Operand: In the equivalence rules presented in Section

Business Question: Study how well the order priority system works around

dates of interest (holydays, marketing campaigns, etc.)
Select d_refdate, o_orderpriority, count(*) as order_count from orders, DatesOfInterest

Where o_orderdate AROUND d_refdate

 and exists (Select * from lineitem

 Where l_orderkey = o_orderkey and l_commitdate < l_receiptdate)

group by o_orderpriority, d_refdate order by o_orderpriority, d_refdate

Original TPC-H Query

Q4 – Business Question: Study how well the order priority system is

working in a given quarter

Similarity-aware Query

Business Question: Study the revenue volume done between local

(nearby) suppliers and customers (Revenue of “short distance”orders)
Select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue

From customer, orders, lineitem, supplier, nationSupp NS, nationCust NC, region

Where c_custkey = o_custkey and l_orderkey = o_orderkey

 and l_suppkey = s_suppkey and c_location WITHIN Ɛ TO s_location

 and c_nationkey = NC.n_nationkey and s_nationkey = NS.n_nationkey

 and NC.n_regionkey = NS.n_regionkey and NC.n_regionkey = r_regionkey

 and r_name = '[REGION]' and o_orderdate >= date '[DATE]'

 and o_orderdate<date '[DATE]'+interval '1' year

group by n_name order by revenue desc

Original TPC-H Query

Q5 – Business Question: Study the revenue volume done between

suppliers and customers of the same country

Similarity-aware Query

Business Question: Forecast revenue change that would have resulted

from eliminating certain discounts on certain date ranges of interest

(holydays, marketing campaigns, etc.)
Select d_refdate, sum(l_extendedprice*l_discount) as revenue

From lineitem, DatesOfInterest

Where l_shipdate AROUND d_refdate MAX_SIZE 'D' day

 and l_discount between [DISCOUNT] - 0.01 and [DISCOUNT] + 0.01

 and l_quantity < [QUANTITY]

Group by d_refdate;

Original TPC-H Query
Q6 – Business Question: Forecast revenue change that would have

resulted from eliminating certain discounts in a given year
Similarity-aware Query

Business Question: Classify customers based on their buying power
Select c_name, c_custkey, r_refRevlevel

From (Select c_name, c_custkey, sum(l_extendedprice) as TotalBuy

 From customer, orders, lineitem

 Where o_orderkey in (Select l_orderkey From lineitem

 Group by l_orderkey Having sum(l_quantity) > [QUANTITY])

 and c_custkey = o_custkey and o_orderkey = l_orderkey

 Group by c_name, c_custkey), RevenueLevelsOfInterest

Where TotalBuy AROUND r_refRevlevel Order by r_refRevlevel

Original TPC-H Query
Q18 – Business Question: Find large volume(quantity) customers. Large

volume orders are the ones with a total quantity greater than a given level.
Similarity-aware Query

Similarity Query Example 1

Similarity Query Example 2

Similarity Query Example 3

Similarity Query Example 4

Fig. 4 Examples of the use of Similarity Join

Ei a relation

ei an attribute of Ei

σ and the selection and join operators respectively

θ a non similarity predicate
θƐ, θkNN, θkD, θA the different similarity join predicates as defined in section III

GAγF(AA)(R)

the aggregation operator
is the relation being aggregatedR
 the aggregation attributesAA
 the aggregation functionsF
the grouping attributes. It can be a simple attribute in the
case of regular grouping, or an expression like E1.e1
around E2.e2 in the case of Similarity Group Around
(SGB-A), a type of similarity grouping that groups the
tuples of E1 around a set of central points (tuples of E2)
assigning every tuple of E1 to the group of the central
point with the minimum dist (E1.e1, E2.e2) [24]

GA

Fig. 5 Notation for equivalence rules

IV.A.1, each selection predicate θ is pushed only under the

join operand that contains all the attributes referenced in θ. In

the case of the Ɛ-Join operator, the filtering benefits of

pushing a selection predicate θ can be further improved by

pushing θ under both operands of the join as shown in the

following equivalence rule.

a. 𝜎𝜃 𝐸1 ⋈𝜃𝜀
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝜀

(𝜎𝜃±𝜀(𝐸2))

where all the attributes of the selection predicate θ involve

only the attributes of E1, and the selection predicate θ±Ɛ

represents a modified version of θ where each condition is

“extended” by Ɛ and is applied on the join attribute of E2. For

example, if θ = 10 ≤ e1 ≤ 20, then θ±Ɛ = 10–Ɛ ≤ e2 ≤ 20+Ɛ.

Usage: The single selection operator of the LHS expression is

used to filter both inputs of the join in the RHS expression.

The transformation from the LHS expression to the RHS one

can generate a plan with even lower cost than the one

generated applying rule 1.a. Fig. 6.b presents an example

where the SJ operator of the LHS expression processes a total

of 200 tuples while the one of the RHS expression only

processes a total of 20 tuples.

3) Basic Associativity of SJ Operators: Similarity Join

operators are associative using the following rules.

Rules with the same type of similarity join:

a. 𝐸1 ⋈𝜃𝜀1
𝐸2 ⋈𝜃𝜀2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝜀1∧𝜃 (𝐸2 ⋈𝜃𝜀2

𝐸3)

b. 𝐸1 ⋈𝜃𝐴1
𝐸2 ⋈𝜃𝐴2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝐴1∧𝜃 (𝐸2 ⋈𝜃𝐴2

𝐸3)

c. 𝐸1 ⋈𝜃𝑘𝑁𝑁 1
𝐸2 ⋈𝜃𝑘𝑁𝑁 2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝑘𝑁𝑁 1∧𝜃 (𝐸2 ⋈𝜃𝑘𝑁𝑁 2

𝐸3)

Rules that combine different types of similarity and regular

join:

d. 𝐸1 ⋈𝜃𝐴1
𝐸2 ⋈𝜃𝑘𝑁𝑁 2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝐴1∧𝜃 (𝐸2 ⋈𝜃𝑘𝑁𝑁 2

𝐸3)

e. 𝐸1 ⋈𝜃𝑘𝑁𝑁 1
𝐸2 ⋈𝜃𝐴2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝑘𝑁𝑁 1∧𝜃 (𝐸2 ⋈𝜃𝐴2

𝐸3)

f. 𝐸1 ⋈𝜃𝜀1
𝐸2 ⋈𝜃2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝜀1∧𝜃 (𝐸2 ⋈𝜃2 𝐸3)

g. 𝐸1 ⋈𝜃1 𝐸2 ⋈𝜃𝐴2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃1∧𝜃 (𝐸2 ⋈𝜃𝐴2
𝐸3)

h. 𝐸1 ⋈𝜃1 𝐸2 ⋈𝜃𝑘𝑁𝑁 2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃1∧𝜃 (𝐸2 ⋈𝜃𝑘𝑁𝑁 2
𝐸3)

where θ1, θƐ1, θA1, and θkNN1 involve attributes from only E1

and E2; θ2, θƐ2, θA2, and θkNN2 involve attributes from only E2

and E3.

Usage: Given an expression with several SJ operations, the

plan cost depends on how many tuples need to be processed

by each SJ operator and the processing cost of each specific

type of SJ. Thus, the cost depends on which SJ operation is

computed first. This will determine the number of flowing

tuples to be processed by the remaining SJ operators. Fig. 6.c

presents an example of rule 3.a. The LHS expression

computes first the less selective SJ and processes a total of

1158 tuples in the second one. The RHS expression computes

first the most selective SJ and processes only 200 tuples in the

second one. The optimizer will probably select the RHS plan.

4) Associativity Rule that Enables Join on Originally

Unrelated Attributes: In the equivalence rules presented in

Section IV.A.3, each join predicates involves the same

attributes in both sides of the rule. In the case of Ɛ-Join, when

the attributes e1 of E1 and e2 of E2 are joined using Ɛ1 and the

result joined with attribute e3 of E3 using Ɛ2, there is an

implicit relationship between e1 and e3 that is exploited by the

following equivalence rule.

σ

E1

a) Distribution of selection over

SJ

S

E2

e1 within

5 of e2

20<e1≤25

100 100

1058

55

Q1: SELECT e1, e2 FROM E1, E2

WHERE e1 within 5 of e2 and 20<e1<=25

σ

E1

S

E2

100
100

55

5

σ

E1

b) Pushing selection predicate under

originally unrelated join operand

S

E2

e1 within

5 of e2

20<e1≤25

100 100

1058

55

σ

E1

S

E2

100 100

55

5

20<e1≤25
σ

15<e2≤3020<e1≤25

15

c) Associativity of SJ operators

Q2: SELECT e1, e2, e2 FROM E1,

E2, E3 WHERE e1 within 5 of e2

and e2 within 0.5 of e3

E1

S

E2

100

100

1058

1058

S

E3

e1 within

5 of e2

e2 within

0.5 of e3

100

E2

S

E3

100
100

1058

100

S

E1

e1 within

5 of e2

100

e2 within

0.5 of e3

d) Associativity rule that enables join on

originally unrelated attributes

Q3: SELECT e1, e2, e4 FROM E1,

E2, E4 WHERE e1 within 5 of e2

and e2 within 5 of e4

E1

S

E2

100

5

605

1058

S

E4

e1 within

5 of e2

e2 within

5 of e4

100

E1

S

E4

100

100

605

55

S

E2

e1 within 5 of e2,

e2 within 5 of e4

5

e1 within

10 of e4

Fig. 6 Extended SQL syntax for Similarity Join predicates

a. 𝐸1 ⋈𝑒1 𝜃𝜀1 𝑒2
𝐸2 ⋈𝑒2 𝜃𝜀2 𝑒3

𝐸3 ≡

 𝐸1 ⋈𝑒1 𝜃𝜀1+𝜀2 𝑒3
𝐸3 ⋈(𝑒1 𝜃𝜀1 𝑒2)∧(𝑒2 𝜃𝜀2 𝑒3) 𝐸2

Notice that this rule is expressed using an extended notation

that specifies explicitly the attributes being joined.

Usage: The RHS expression of this rule produces a bottom

join that joins attributes that are not joined in the LHS

expression. The transformation from the LHS expression to

the RHS one has the potential to generate a lower cost plan

when the RHS’ bottom join outputs a low number of tuples.

Fig. 6.d presents an example of rule 4.a. The LHS expression

processes a total of 200 tuples in the first SJ and 1063 tuples

in the second one. The LHS expression processes 105 tuples

in the first SJ and 155 tuples in the second one. Notice that the

top RHS’ SJ has a slightly more complex SJ predicate.

5) Commutativity of SJ Operators: Some similarity Join

operations are commutative:

a. 𝐸1 ⋈𝜃𝜀
𝐸2 ≡ 𝐸2 ⋈𝜃𝜀

𝐸1

b. 𝐸1 ⋈𝜃𝑘𝐷
𝐸2 ≡ 𝐸2 ⋈𝜃𝑘𝐷

𝐸1

kNN-Join and Join-Around operators are not commutative.

Usage: Similarly to the case of regular join, the cost of a given

implementation of a SJ operator can be different when

considering the larger relation to be joined as the inner or

outer input of the operator. This rule is used to consider both

cases during cost-based optimization.

Additionally, other rules like the distribution of projection

over SJ and the combination of selection predicates with SJ

predicates apply to the case of SJs in a similar way they do to

the case of non-similarity joins.

B. Equivalence Among Similarity Operators

The Join-Around and the Similarity Group Around (SGB-A)

operators are equivalent in the following way:

a. 𝛾𝐹(𝐴𝐴)(𝐸1)𝑒1 𝑎𝑟𝑜𝑢𝑛𝑑 𝐸2 .𝑒2
≡ 𝛾𝐹 𝐴𝐴 (𝐸1 ⋈𝑒1 𝜃𝐴 𝑒2 𝐸2)𝑒2

i.e., a SGB-A operation can be transformed into a regular

Group-by applied to the result of a Join-Around operation.

Usage: This rule can be used to support a similarity grouping

operation using the implementation of the Join-Around.

The following rules describe the special cases in which

different similarity join operators are equivalent.

b. 𝐸1 ⋈𝜃𝐴 ,𝑀𝐷 =∞
𝐸2 ≡ 𝐸1 ⋈𝜃𝑘𝑁𝑁 (𝑘=1)

𝐸2

c. 𝐸1 ⋈𝜃𝐴 ,𝑀𝐷 =2𝜀
𝐸2 ≡ 𝐸1 ⋈𝜃𝜀

𝐸2,

if the joins operate on one-dimensional data and 2Ɛ <

minimum distance of consecutive points in E2 , i.e., there

is no overlap in the MD ranges.
d. 𝐸1 ⋈𝜃𝑘𝐷

𝐸2 ≡ 𝐸1 ⋈𝜃𝜀
𝐸2,

if Ɛ = distance of the k-th (longest) link in LHS.

C. Eager and Lazy Transformations with SJ and SGB

An important query optimization approach is the use of

pull-up and push-down techniques to move the grouping

operator up and down the query tree. The main Eager and

Lazy aggregations theorem introduced in [30] enables several

pull-up and push-down techniques for the regular, i.e., non-

similarity, join and group-by operators. This theorem allows

the pre-aggregation of data before the join operator to reduce

its input size. The main theorem is extended in [24] to the case

of regular join and similarity group-by (SGB). This subsection

presents the extension of the main theorem to the case of

similarity join and (regular or similarity) group-by.

Furthermore, we study scenarios in which the similarity

predicate of SJ operators can be pushed totally or partially to

the grouping operator.

General usage: Figures 8, 9, 10, and 11 illustrate several

cases of the eager and lazy transformations that will be studied

in detail later in this section. In general, the single aggregation

operator of the Lazy approach is split into two parts in the

Eager approach. The first part pre-evaluates some aggregation

functions and calculates the count before the join. The second

part uses the intermediate information to calculate the final

results after the join. Both the eager and lazy versions of a

query should be considered during query optimization since

neither of them is the best approach in all scenarios. Joins with

high selectivity tend to benefit the Lazy approach while

aggregations that reduce considerably the number of tuples

that flow in the pipeline tend to benefit the Eager approach.

The presentation of the theorems and proofs in this section

use the notation presented in Fig. 7. This notation is used

because: (i) it allows a direct comparison with analogous

theorems for regular operators [30] and for similarity grouping

[24] that use a similar notation, and (ii) it uses a convenient

representation of operators’ arguments that facilitates the

presentation of the theorems and proofs. The Eager and Lazy

aggregation theorems for the case of (i) regular join and

group-by [30], and (ii) regular join and similarity group-by

[24] are presented next. These theorems are referenced in the

new extensions of the theorem studied later in this section.

Theorem 1 Eager/Lazy Aggregation Main Theorem for

Group-by and Join: The following two expressions

g[GA]R regular grouping of relation R on grouping attributes GA

g[GA; Seg]R
similarity grouping of relation R on grouping attributes GA
using segmentations Seg. The domain of the nth element of GA
is partitioned by the nth element of Seg

F[AA]R aggregation operation of a previously grouped table R

F and AA sets of aggregation functions and columns, respectively

σ, πD, πA, UA

and

selection, projection with and without duplicate elimination, set
union without duplicate elimination, theta-join, and similarity
join respectively

Rd a table that always contains aggregation attributes
Ru a table that may or may not contain aggregation attributes

GAd and GAu the grouping columns of Rd and Ru, respectively
AA all the aggregation columns

AAd and AAu the subsets of AA that belong to Rd and Ru, respectively
Cd and Cu the conjunctive predicates on columns of Rd and Ru, respectively

C0 the conjunctive predicates involving columns in both Ru and Rd

α(C0) the columns involved in C0

GAd
+ = GAd U α(C0)-Rd, columns that participate in join and grouping

F the set of all aggregation functions
Fd and Fu the members of F applied on AAd and AAu, respectively

FAA
the resulting columns of the application of F on AA in the first
grouping operation of the eager strategy

Seg the set of segmentation of the attributes in GA
Segd and Segu the subsets of Seg for the attributes in GAd and GAu, respectively

NGAd a set of columns in Rd

CNT
the column with the result of Count(*) in the first aggregation
operation of the eager approach

FAAd
the set of columns, other than CNT, produced in the first
aggregation operation of the eager approach

Fua
the duplicated aggregation function of Fu, e.g., if Fu=(SUM,
MAX), then Fua=(SUM, MAX, count) = (SUM*count, MAX)

Fig. 7 Algebraic notation for Eager and Lazy transformation theorems

 E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

 g [GAd, GAu]σ[Cd ^ Cu] (Rd ⋈𝐶0 Ru)

 E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT]

 g [GAd, GAu]σ[Cu]

 (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

 g [NGAd]σ[Cd]Rd) ⋈𝐶0 Ru)

are equivalent if (1) Fd can be decomposed into Fd1 and Fd2, (2)

Fu contains only class C or D aggregation functions [30], (3)

NGAd → GAd
+ holds in σ[Cd]Rd, and (4) α(C0) ∩ GAd = Ø.

Expression E1 represents the Lazy approach while

expression E2 represents the Eager approach.

Theorem 2 Eager/Lazy Aggregation Main Theorem for

Similarity Group-by and Join: The following expressions

 E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

 g [GAd, GAu; Seg]σ[Cd ^ Cu] (Rd ⋈𝐶0 Ru)

 E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT]

 g [GAd, GAu; Segu]σ[Cu]

 (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

 g [NGAd; Segd]σ[Cd]Rd) ⋈𝐶0 Ru)

are equivalent under the same conditions as Theorem 1.

1) Eager and Lazy Transformations with GB and SJ: The

Eager and Lazy aggregation transformations can be extended

to the case of similarity joins as shown in Theorem 3.

Theorem 3 Eager/Lazy Aggregation Main Theorem for

Group-by and Similarity Join: The following expressions

E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

 g [GAd, GAu]σ[Cd ^ Cu] (Rd ⋈ 𝐶0 Ru)

E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT]

 g [GAd, GAu]σ[Cu]

 (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

 g [NGAd]σ[Cd]Rd) ⋈ 𝐶0 Ru)

where ⋈ C0 is kNN-Join, Ɛ-Join, or A-Join; are equivalent

under the same conditions as Theorem 1.

Usage: Fig. 8 illustrates an example of the application of this

theorem. The SJ of the Lazy aggregation expression processes

a total of 7 tuples while the grouping node processes 5 tuples.

In the Eager aggregation expression all the tuples of T1 get

combined into one tuple in the bottom grouping node and the

SJ and top grouping operators only need to process 3 and 1

tuples respectively. In scenarios where T1 has a significant

number of tuples with the same value of (G1, J1) the

optimizer will probably favor the Eager approach; otherwise

the Lazy approach will probably be selected.

Proof sketch: The validity of this theorem relies on the

following properties.

Given Rd' and Ru' instances of Rd and Ru respectively, the

result of (Rd' ⋈ 𝐶0 Ru') is equivalent to the result of (Rd' ⋈𝜃 Ru')

where θ = disjunction of (Rd.C0d=x ^ Ru.C0u=y) for every

different link (x,y) of the result of (Rd' ⋈ 𝐶0 Ru'). (1)

θ, as defined in (1), remains unchanged and valid when Rd' is

augmented with tuples that have already present values of

Rd'.C0d, i.e., duplicates, or when such tuples are removed from

Rd'. (2)

The validity of Theorem 3 can be shown by following these

steps:

For every Rd’ and Ru’ instances of Rd and Ru, respectively,

1. E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

 g [GAd, GAu]σ[Cd ^ Cu] (Rd’ ⋈ 𝐶0 Ru’)

 is equivalent to

 E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

 g [GAd, GAu]σ[Cd ^ Cu] (Rd’ ⋈𝜃 Ru’),

 where θ is defined as in (1).

2. E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

 g [GAd, GAu]σ[Cd ^ Cu] (Rd’ ⋈𝜃 Ru’)

 is equivalent to

 E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT]

 g [GAd, GAu]σ[Cu]

 (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

 g [NGAd]σ[Cd]Rd’) ⋈𝜃 Ru’)

 because of Theorem 1.

3. E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT]

 g [GAd, GAu]σ[Cu]

 (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

 g [NGAd]σ[Cd]Rd’) ⋈𝜃 Ru’)

 is equivalent to

 E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT]

 g [GAd, GAu]σ[Cu]

 (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

 g [NGAd]σ[Cd]Rd’) ⋈ 𝐶0 Ru’)

since the grouping operation before the join merges only

tuples that share the same value of Rd’.C0d, and (2).

GB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2) GB

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

GB

SUM(S1) AS SS1,

CNT

G1 , G2

G1 , G2

b) Eager Aggregation a) Lazy Aggregation

G1 , J1
5 2

5

1

2

5

1

1

1

Q5: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE

J1 within 5 of J2 GROUP BY G1, G2

T1

1 11 5

1 11 10

1 11 5

1 11 5

1 11 5

G1 J1 S1

T2

1 11 5

2 20 10

G2 J2 S2

S

J1 within

5 of J2

S

J1 within

5 of J2

Fig. 8 Eager/Lazy transformation with GB and SJ

SGB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
SGB

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

SGB

SUM(S1) AS SS1, CNT

G1 around {1,20},

G2 around {1,20}

b) Eager Aggregationa) Lazy Aggregation

5 2

5

1

5

1 2

1

1

Q6: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE

J1 within 5 of J2 GROUP BY G1 around {1,20}, G2 around {1,20}

T1

1 11 5

2 11 10

3 11 5

4 11 5

5 11 5

G1 J1 S1

T2

1 10 5

2 20 10

G2 J2 S2
S

S

J1 within

5 of J2

J1 within

5 of J2

G1,

G2 around {1,20}

G1 around

 {1,20}, J1

Fig. 9 Eager/Lazy transformation with SGB and SJ

2) Eager and Lazy Transformations with SGB and SJ: The

Eager and Lazy Aggregation transformations can be extended

to the case of similarity join and similarity group-by as shown

in Theorem 4.

Theorem 4 Eager/Lazy Aggregation Main Theorem for

Similarity Group-by and Similarity Join: The following

two expressions

 E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

 g [GAd, GAu; Seg]σ[Cd ^ C0 ^ Cu] (Rd ⋈ 𝐶0 Ru)

 E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT]

 g [GAd, GAu; Segu]σ[C0 ^ Cu]

 (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

 g [NGAd; Segd]σ[Cd]Rd) ⋈ 𝐶0 Ru)

where ⋈ 𝐶0 is kNN-Join, Ɛ-Join, or A-Join; are equivalent

under the same conditions as Theorem 1.

Usage: An example of the use of this theorem is presented in

Fig. 9. The number of tuples flowing in the pipelines is similar

to the one of the previous example. The bottom grouping node

of the Eager approach merges tuples that have: (i) the same

value of J1 and (ii) values of G2 that belong to the same

similarity group. In the example all the tuples of T1 are

merged even though they have different values of G1.

Proof sketch: The validity of this theorem relies on the

validity of theorems 2 and 3.

3) Pushing Similarity Predicate from Ɛ-Join to GB: This

subsection and the following one explore ways to further

enhance the filtering power of the pre-aggregation step of the

Eager approach pushing down the similarity predicates from

the SJ operator to the grouping one. The equivalences

described in these subsections are enhancements over the one

presented in Section IV.C.1.

The similarity predicate of the Ɛ-Join can be (partially)

pushed down to a grouping operator as shown in Fig. 10. The

bottom aggregation of the Eager approach performs regular

aggregation on G1 and similarity aggregation SGB-A' on J1

around J2 with MAX_GROUP_DIAMETER = 2Ɛ. SGB-A' is a

variation of similarity group around (SGB-A) [24] that only

merges tuples that are linked to only one central point (J2) by

the Ɛ-Join. The value of J1 in a resulting tuple of SGB-A' can

be the value of the central point, i.e., J2, or any of the values

of J1 of the grouped tuples. In both cases, the Ɛ-Join of the

Eager approach will generate the correct join links. SGB-A'

generates at most one group per different value of J2, i.e.,

tuples with the same value of J2 in T2 are treated as a single

central point. The goal of pushing the similarity predicate

from SJ to the aggregation operator is to increase the number

of pre-aggregated tuples while maintaining a grouping

operator that can be executed quickly. SGB-A has been shown

to have an execution time not higher than 25% of that of the

regular group-by for one dimensional data. SGB-A' is

expected to perform similarly.

Usage: In the example presented in Fig. 10, the bottom

grouping node of the Eager approach merges all the tuples of

T1 even though they have different J1 values. Notice that

applying the transformation of Section IV.C.1 to this case

would generate five tuples rather than one as the result of the

bottom grouping node of the Eager approach.

The validity of this equivalence relies on the following

properties: (i) if two tuples t1a and t1b are grouped by the

bottom aggregation of the Eager approach around a center

point tuple, say t2, then t1a and t1b will always be matched

with t2 by the Ɛ-Join of the Lazy approach; and (ii) tuples that

are not merged with others at the bottom aggregation of the

Eager approach, are always processed in the same way in both

approaches.

4) Pushing Similarity Predicate from Join-Around to GB:

The similarity predicate of the Join-Around can be

(completely) pushed down to a grouping operator as shown in

Fig. 11. The bottom aggregation of the Eager approach

performs regular aggregation on G1 and similarity

aggregation SGB-A [24] on J1 around J2 with

MAX_GROUP_DIAMETER = 2Ɛ. The value of J1 in a

resulting tuple of SGB-A is the value of the central point, i.e.,

J2. This will enable generating the correct links using only a

regular join in the Eager approach. This regular join is still

required to obtain the values of G2 and S2. SGB-A generates

at most one group per different value of J2, i.e., tuples with

the same value of J2 in T2 are treated as a single central point.

Usage: As illustrated in Fig. 11, the Eager approach avoids

completely the use of the SJ operator, using instead a fast

similarity group-by operator and a regular join. In the example

shown in Fig. 11, the bottom grouping node of the Eager

approach merges all the tuples of T1 even though they have

different values of J1; applying the transformation of Section

IV.C.1 would produce five tuples instead.

GB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
GB

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

SGB

SUM(S1) AS SS1,

CNT

G1 , G2

G1 , G2

b) Eager Aggregation a) Lazy Aggregation

T2

G1,

J1 around'MGD=10 J2

R.r S.s

ε

ε

SGB-A'

 Group by

R.r around'MGD=2Ɛ S.s

5 2

5

1

5
2

1
2

1

1

Q7: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE

J1 within 5 of J2 GROUP BY G1, G2

T1

10 18 5

10 19 5

10 20 10

10 21 5

10 22 5

G1 J1 S1

T2

20 20 10

15 40 5

G2 J2 S2

S

S

J1 within

5 of J2

J1 within

5 of J2

Fig. 10 Pushing similarity predicate from Ɛ-Join to GB

GB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
GB

T2
(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

J1←J2, SUM(S1)

AS SS1, CNT

G1 , G2
G1 , G2

b) Eager Aggregation a) Lazy Aggregation

J1=J2

G1,

J1 aroundMGD=10 J2

Join

R.r S.s

ε

ε

SGB-A

Group by

R.r aroundMGD=2Ɛ S.s

SGB5 2

5

1

1

1

1 2
S

Q8: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE

J1 around J2 MAX_DIAMETER 10 GROUP BY G1, G2

T1

10 18 5

10 19 5

10 20 10

10 21 5

10 22 5

G1 J1 S1

T2

20 20 10

15 40 5

G2 J2 S2

T1(G1,J1,S1)
T2

5
2

J1 around J2

MD=10

Fig. 11 Pushing similarity predicate from Join-Around to GB

The validity of this equivalence relies on the following

properties: (i) if two tuples t1a and t1b are grouped by the

bottom aggregation of the Eager approach around a center

point tuple t2, t1a and t1b are always matched with t2 by the

Join-Around of the Lazy approach; and (ii) if two tuples t1a

and t1b share the same value of G1 and are linked to tuple t2

in the Lazy approach, then t1a and t1b will always be grouped

by the bottom aggregation of the Eager approach.

V. IMPLEMENTING SIMILARITY JOIN

This section presents the guidelines to implement two

similarity join operators, Ɛ-Join and Join-Around, inside the

query engine of standard RDBMSs. Although the presentation

is intended to be applicable to any RDBMS, some specific

details refer to our implementation in PostgreSQL. One of the

goals of the implementation is to reuse and extend already

available routines and structures to minimize the effort needed

to realize these operators. The Ɛ-Join and Join-Around

operators are implemented as extensions of the Sort Merge

Join (SMJ) operator and consider the case of one dimensional

numeric data and multiple similarity join predicates.

To add support for SJs in the parser, the raw-parsing

grammar rules, e.g., yacc rules in the case of PostgreSQL, are

extended to recognize the syntax of the various new similarity

join predicates presented in Section III. The parse-tree and

query-tree data structures are extended to include the type and

parameters, e.g., Ɛ, MD, of SJ predicates. The routines in

charge of transforming the parse tree into the query tree are

updated accordingly to process the new fields in the parse tree.

A. The Optimizer

Fig. 12.a presents the structure of the plan tree when one

similarity join predicate is used. Given that the

implementation is based on Sorted Merge Join, sort nodes that

order by the similarity join attributes are added on top of the

input plan trees. This order is assumed by the routines that

find the similarity matches, i.e., links. When multiple

similarity join predicates are used, they are processed one at a

time. Fig. 12.b gives the structure of the plan tree generated

when two similarity join predicates, a~b and c~d, are used.

The bottom similarity join makes use of a~b while the top one

uses c~d. The routines that find the similarity matches are

presented in Section V.B. Another important change in the

optimizer is in the way the number of tuples generated by a

similarity aggregation node is estimated. This important

estimation is used to compare the cost of different query

execution plans. In the case of Join-Around, the number of

resulting tuples can be estimated as the number of tuples in

the inner input dataset. In the case of Ɛ-Join, more complex

techniques, e.g., employing histograms of the density of

elements in metric space [28], can be employed. The number

of output tuples of the kNN-Join can be estimated as (# of

tuples of outer input)*min(k, # of tuples of inner input) while

the one of the kD-Join can be estimated as min(# of tuples of

outer input * # of tuples of inner input, k). The estimated

number of output tuples can be used to reduce the cost of

queries with several similarity join predicates. Since the order

of processing these predicates does not change the final result,

they can be arranged to minimize the overall cost of the query.

B. The Executor

When several similarity join predicates are used, the

constructed query plan uses several similarity join nodes

where the result of each node is pipelined to the next one as

illustrated in Section V.A. The executor routines that produce

the similarity links in a SJ node are expected to handle one

similarity join predicate. Additionally, they could be extended

to handle any number of regular join predicates. The tuples

received from the input plans have been previously sorted as

explained in Section V.A. The executor routines process the

input tuples synchronously following a plane sweep approach.

Fig. 13 presents the algorithms of the main operation of the

regular Sort Merge Join (13.a), Join-Around (13.b), and Ɛ-Join

(13.c). The sections that were modified to support the SJ

operators are shown in bold. It is clear from Fig. 13 that the

use of the already implemented machinery that supports

Sorted Merge Join as the basis to support similarity joins,

allows a fast and efficient implementation of both SJ operators.

The Sorted Merge Join algorithm in Fig. 13.a operates as

follows. Lines 1 and 2 initialize the outer and inner tuples.

Lines 4-9 advance the current inner and outer tuples until a

match is found. When a match is found, Line 10 marks the

inner tuple. Marking a tuple allows repositioning the inner

cursor to the marked tuple later in the process. This key

feature is already supported by the access method interface of

PostgreSQL. Lines 13-18 join the current outer tuple with the

current and following inner tuples as long as there is a match

between outer and inner. Once an inner tuple that fails the

match is found, the outer tuple is advanced (Line 19). Lines

20 to 24 test if the new outer tuple matches the marked tuple.

If this is the case the inner cursor is restored to the marked

Join-Around (a,b), or

Epsilon-JoinƐ (a,b)

1. SELECT … FROM T1, T2

 WHERE T1.a AROUND T2.b

Sort (a)

T1 T2

2. SELECT … FROM T1, T2

 WHERE T1.a WITHIN Ɛ T2.b

Join-Around (c,d), or

Epsilon-JoinƐ2 (c,d)

1. SELECT … FROM T1, T2, T3 WHERE

 T1.a AROUND T2.b AND T2.c AROUND T3.d

Sort (c)

T3

2. SELECT … FROM T1, T2, T3 WHERE T1.a

 WITHIN Ɛ1 OF T2.b AND T2.c WITHIN Ɛ1 OF T3.d

Join-Around (a,b), or

Epsilon-JoinƐ1 (a,b)

Sort (a)

T1 T2

a) One similarity join predicate b) Multiple similarity join predicates

Sort (b)

Sort (d)

Sort (b)

Fig. 12 Path/Plan trees for Join-Around and Ɛ-Join

tuple and the new match is processed, otherwise the process

continues looking for a new match.

In the presentation of the algorithms, we assume that there

is only one join predicate, i.e., the similarity predicate. The

algorithms can be easily extended to handle the case of

additional regular join predicates. The required changes to

support Ɛ-Join are presented in Fig. 13.b. As expected, the

function that evaluates if there is match between an outer and

an inner tuples (Lines 4, 18, and 20) needs to be extended. In

this case, the similarity predicate outer~inner is evaluated as

distance(outer,inner) ≤ Ɛ. The block that produces the join

links, in Lines 13-18, keeps track of the previous processed

input tuple, i.e., prevInner. This tuple is used in Line 20 to test

if there is a match between outer and prevInner. A positive

result of this test means that there is at least one tuple in the

range [mark, prevInner] that matches with the current outer. If

this is the case, we restore the inner cursor to mark. The break

command in Line 22 ensures that the process jumps to line 4

to look for a match. This is required since outer may not

match all the tuples in the range [mark, prevInner].

The required changes to support Join-Around are shown in

Figures 13.c and 14. At any point, the algorithm keeps track of

the current outer and inner and the next inner tuple, i.e.,

nextInner. Lines 2, 8, 16, and 22 in Fig. 13.c, and Lines 2 and

6 in Fig. 14 maintain the correct nextInner tuple. The function

that evaluates if there is match between an outer and an inner

tuples (used in Lines 5 and 20 in Fig. 13.c and Line 4 in Fig.

14) is also extended. In this case, the similarity predicate

outer~inner is evaluated as distance(outer, inner) < distance

(outer,nextInner). The function that evaluates if an inner tuple

matches another inner tuple (used in lines 4 and 18 in Fig.

13.c and in lines 1 and 3 in Fig. 14) evaluates the regular

equality operator on the join attribute values. The expression

outer>inner in line 1 of Fig. 14 ensures that the similarity join

attribute of the outer tuple is greater than the one of the inner

tuple. In contrast to the previous algorithms, when the process

reaches line 10, there is not necessarily a match. This happens

when there are consecutive inner tuples with the same join

attribute values and the similarity join attribute of outer is

greater than the one of inner. In this case, the inner cursor

needs to be advanced until it is possible to check if there is a

similarity match. This task is performed by check_match() as

presented in Fig. 14. If a match is found, then the inner cursor

is restored to mark and the process reports the join links.

Otherwise, the process starts looking for a match again in

SMJoin {

get initial outer tuple

get initial Inner tuple

do forever {

 while (outer != inner) {

 if (outer < inner)

 advance outer

 else

 advance inner

 }

 mark inner position

 do forever {

 do{

 join outer and inner

 advance inner position

 }

 while (outer == inner)

 advance outer position

 if (outer == mark)

 restore inner to mark

 else

 break

 }

}

}

INITIALIZE

SKIP_TEST

SKIPOUTER_ADVANCE

SKIPINNER_ADVANCE

SKIP_TEST

JOINTUPLES

NEXTINNER

NEXTOUTER

TESTOUTER

TESTOUTER

NEXTINNER

d. Statea. Sorted Merge Join

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

EpsilonJoin {

get initial outer tuple

get initial inner tuple

do forever {

 while (outer !~ inner) {

 if (outer < inner)

 advance outer

 else

 advance inner

 }

 mark inner position

 do forever {

 do{

 join outer and inner

 prevInner ← inner

 advance inner position

 }

 while (outer ~ inner)

 advance outer position

 if (outer ~ prevInner)

 restore inner to mark

 break

 else

 break

 }

}

}

b. Epsilon-Join

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

c. Join-Around

JoinAround {

get initial outer tuple

get initial inner and nextInner

do forever {

 while ((inner != nextInner)&&

 (outer !~ inner)) {

 advance inner and nextInner

 }

 mark inner position

 if (!check_match()) continue

 do forever {

 do{

 join outer and inner

 prevInner ← inner

 advance inner and nextInner

 }

 while (prevInner == inner)

 advance outer position

 if (outer ~ prevInner)

 restore inner to mark

 nextInner ← getNext(inner)

 else

 break

 }

}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

INITIALIZE

TESTOUTER

SKIP_TEST

Fig. 13 Main operation of Epsilon-Join and Join-Around compared to the one of Sorted Merge Join

1

2

3

4

5

6

7

8

9

10

11

check_match() {

if ((inner == nextInner) && (outer>inner)){

 do {advance inner and nextInner}

 while(inner == nextInner)

 if (outer ~ inner)

 restore inner to mark

 nextInner ← getNext(inner)

 return True //similarity match

 else return False

}

return True //no need to advance to check match

}

Fig. 14 Routine check_match

line 4. The block that reports the join links is also modified to

keep track of the previous inner, i.e., prevInner. This block

(lines 13 to 18) outputs join links for the current inner and the

consecutive inner tuples that have the same value of the join

attribute. prevInner is used in line 18 to test if two consecutive

inner tuples have the same join attribute values. prevInner is

also used in line 20 to test if the new outer is closer to

prevInner than to inner. Notice that if the result of this test is

true, the new outer matches all the tuples in the range [mark,

prevInner] and the process continues reporting the join links

directly (line 13). The presented algorithms are coded in

PostgreSQL in the fashion of a state machine. Fig. 13.d shows

the states associated to the different tasks. The implementation

of Ɛ-Join and Join-Around use the same set of states employed

by SMJ.

The cost of the proposed SJ operators is close to the one of

SMJ for reasonably small Ɛ (for Ɛ-Join) and inner datasets

without many duplicates (for Join-Around) because: (i) every

outer tuple is read once in sequential order; (ii) the inner

tuples are read in an almost sequential order, restoring the

inner cursor to a previously read inner tuple is employed to

generate the correct SJ links; (iii) in Ɛ-Join, if the inner cursor

is restored, the length of the jump, i.e., distance from previous

inner to marked tuple, is at most 2Ɛ; and (iv) in Join-Around,

if the inner cursor is restored, all the tuples in the range

Reference Points Table

AccBalLevels1(R1): 110 account balance values in the range of C_acctbal [0,11000]

SELECT * FROM CUSTOMER, AccBalLevels1
WHERE abs(C_acctbal - refpoint) <= Ɛ;

RegOps-JoinAround

SELECT * FROM CUSTOMER, AccBalLevels1

WHERE C_acctbal WITHIN Ɛ OF refpoint;
SJ-EpsJoin

RegOps-EpsJoin

AccBalLevels2(R2): 11000 account balance values in the range of C_acctbal [0,11000]

SELECT T1.c_custkey, T1.C_acctbal, T2.refpoint FROM

 (SELECT c_custkey, C_acctbal, min(dist) as mindist

 FROM (SELECT c_custkey, C_acctbal, refpoint, abs(

 C_acctbal - refpoint) as dist FROM CUSTOMER,

 AccBalLevels1) AS C1 GROUP BY c_custkey, C_acctbal) AS

 T1, AccBalLevels1 T2

WHERE R1.mindist = abs(T1.C_acctbal - T2.refpoint);

SELECT c_custkey, C_acctbal, refpoint

FROM CUSTOMER, AccBalLevels1

WHERE C_acctbal AROUND refpoint;

SJ-JoinAround

SELECT * FROM CUSTOMER, AccBalLevels1 R1 ,

AccBalLevels2 R2 WHERE C_acctbal WITHIN 11 OF

R1.refpoint AND R1.refpoint WITHIN 11 OF R2.refpoint;

AssocRule

SELECT * FROM CUSTOMER, AccBalLevels2
WHERE C_acctbal WITHIN 11 OF refpoint AND
2200<C_acctbal AND C_acctbal<=6600

PushSel

SELECT refpoint, sum(C_acctbal)
FROM CUSTOMER, AccBalLevels[N] WHERE C_acctbal
WITHIN 11 OF refpoint GROUP BY refpoint

Lazy-Eager [N]

Queries

Fig. 15 Reference Points table and queries used in performance evaluation

 [marked tuple, previous inner tuple] share the same value of

the similarity join attribute.

VI. PERFORMANCE EVALUATION

We implemented the Ɛ-Join and Join-Around, as described

in Section V inside the PostgreSQL 8.2.4 query engine. In this

section we evaluate the performance of these operators as well

as the effectiveness of several transformation rules for SJs.

A. Test Configuration

The dataset used in the performance evaluation is based on

the one specified by the TPC-H benchmark [33]. The

Reference points tables and queries used in the tests are

presented in Fig. 15. The default dataset scale factor (SF) is 5

(5GB). All the experiments are performed on an Intel Dual

Core 1.83GHz machine with 2GB RAM running Linux as OS.

 Fig. 16 Performance of Join-Around Fig. 17 Performance of Ɛ-Join Fig. 18 Effectiveness of Associativity transformation

 Fig. 19 Effectiveness of pushing selection under SJ Fig. 20 Effectiveness of Lazy and Eager aggregation transformations

B. Performance Evaluation

We study the performance of the implemented operators

comparing their execution time and scalability properties with

the ones of queries that get similar results using only regular,

i.e., non-similarity-based, operators. Notice that even though

many implementation approaches have been proposed for SJs,

e.g., [8], [9], [10], [11], [12], most of them have been

proposed as standalone implementations not integrated within

a DBMS engine and make use of specialized indices, data

structures, partitioning, and access methods. The efficient

integration of these techniques within a DBMS query engine

and evaluation of their performance is a task for future work.

1) Join-Around Performance while Increasing Dataset Size:

Fig. 16 gives the execution time of the SJ-JoinAround query

compared to the one of the RegOps-JoinAround query that

produces the same output using only regular operators. This

figure compares the performance of both queries for different

values of scale factor (SF). The number of customers is

150,000*SF while the number of central points is maintained

constant. The execution time of RegOps-JoinAround grows

from being about 20 times bigger than that of SJ-JoinAround

for SF=1 to being about 200 times bigger for SF=8. The poor

performance of RegOps-JoinAround is due to a double nested

loop join in its execution plan in addition to the use of an

aggregation operation. The Join-Around operator sorts each

set once, and processes both sets synchronously.

2) Ɛ-Join Performance while Increasing Ɛ: Fig. 17 gives the

execution time of the SJ-EpsJoin query compared to the one

of the RegOps-EpsJoin query that produces the same output.

The results are presented for various values of Ɛ. The value of

Ɛ is a fraction of the domain range. Specifically, the customer

account balance domain uses values in the range [0,11000].

This experiment uses SF=1. The key result of this experiment

is that the SJ-EpsJoin query performs significantly better than

the RegOps-EpsJoin query for small values of Ɛ. For instance,

when Ɛ=1, the execution time of RegOps-EpsJoin is 4.32 sec.

while the one of SJ-EpsJoin is 0.96 sec., i.e., RegOps-EpsJoin

is over 4 times faster. The advantage of the Ɛ-Join over the

regular query gets reduced as the value of Ɛ increases and is

almost negligible when the size of Ɛ is about 20% of the

domain range. Having a good performance for small values of

Ɛ is of key importance for the Ɛ-Join operator since similarity

join queries with small Ɛ are among the most common and

useful types of similarity-based operations. The performance

of SJ-EpsJoin is better for small values of Ɛ because it

generates shorter restorations of the inner cursor. On the other

hand, RegOps-EpsJoin calculates the distance between all the

combinations of outer and inner tuples. This requires in

general the same amount of I/O independently of the value of

Ɛ. The additional cost for high values of Ɛ is due to the

increase in the number of links to be reported.

3) Effectiveness of Associativity transformation: AssocRule_

LHS and AssocRule_RHS in Fig. 18 represent the query

AssocRule executed using plans that corresponds to the LHS

and RHS of the rule IV.A.3.a respectively. The execution time

of AssocRule_RHS is 9.2% of that of AssocRule_LHS.

AssocRule_LHS joins (Ɛ-Join) first Customer (C) and R2

generating 17,241,601 intermediate rows. The execution time

of AssocRule_RHS is much smaller because it joins the two

smaller tables (R1 and R2) first generating only 2519

intermediate rows.

4) Effectiveness of pushing selection under SJ: PushSel_LHS,

PushSel_RHS1, and PushSel_RHS2 in Fig. 19 represent the

query PushSel executed using plans that corresponds to the

LHS and RHS of rule IV.A.1.a, and the RHS of rule IV.A.2.a

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Dataset Size (SF)

SJ-JoinAround

RegOps-JoinAround

0

10

20

30

40

50

0.01 0.1 1 5 10 20

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

% of domain length used as Epsilon

SJ-EpsJoin

RegOps-EpsJoin

0
40
80
120
160
200

AssocRule_LHS AssocRule_RHS

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

0

40

80

120

160

PushSel_LHS PushSel_RHS1 PushSel_RHS2

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

0

10

20

30

Lazy1 Eager1 Lazy2 Eager2

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

C

S

R2

o

C

S

R2

o

C

S

R2

S

R1 R2

S

R1

S

C

C

S

R2

o o GB

S

C R1

GB

GB

S

C

R1

GB

S

C R2

GB

GB

S

C

R2

respectively. PushSel_LHS performs first the join (7,241,601

intermediate rows) and then the selection. In PushSel_RHS1

the selection operation has been pushed to the input

corresponding to table Customer (300,872 intermediate rows).

The execution time of PushSel_RHS1 is 73% of the one of

PushSel_LHS. In PushSel_RHS2 the filtering benefit is furher

improved by pushing selection operations on both inputs of

the join. The execution time of PushSel_RHS2 is only 55% of

the one of PushSel_LHS.

5) Effectiveness of Lazy and Eager aggregation

transformations: In Fig. 20, LazyN and EagerN represent the

query LazyEager executed using plans that corresponds to the

expressions E1 and E2 of Theorem 3 respectively. The

execution time of Eager1 is 35% of the one of Lazy1. The

advantage of the Eager approach increases when the

cardinality of the inner input grows as in Eager2 with an

execution time that is only 9% of that of Lazy2.

VII. CONCLUSIONS AND FUTURE WORK

This paper focuses on the study and implementation of the

Similarity Join (SJ) as a first-class database operator. Several

previously proposed types of similarity join are considered in

our study. In addition, a useful extension of the kNN-Join and

Ɛ-Join, named Join-Around is introduced. The paper studies

extensively the query operator properties of the Similarity Join.

It presents multiple equivalence rules that not only consider

direct extensions of known relational algebra rules but also

exploit specific properties of similarity joins to enable more

useful query transformations. The paper also studies the way

the Eager and Lazy Aggregation transformation techniques

can be applied to queries with JS and addresses the interaction

and equivalences of the previously proposed Similarity

Group-by (SGB) operators with the studied SJ operators. The

paper presents guidelines to implement Join-Around and Ɛ-

Join as core operators of a DBMS query engine and the

performance evaluation of this implementation in PostgreSQL.

The performance study shows that the SJ-based queries

perform significantly better than queries that get the same

result using only regular operators. Furthermore this section

shows the effectiveness of several studied transformation rules.

Plans for future work include the study and integration of

more complex similarity join strategies as database operators,

in particular approaches that support multi-dimensional data;

the extension of other operations, e,g., CUBE, ROLLUP,

union and selection, as similarity-aware operators and the

study of their interaction with SJ and SGB, the application of

SJ and SGB operators to the area of privacy preservation and

anonymity, and the study of similarity-based joins and

aggregations as tools in business decision support systems.

REFERENCES

[1] C. Böhm, “The Similarity Join: A powerful database primitive for high

performance data mining,” tutorial, in ICDE, 2001.

[2] C. Böhm and H. Kriegel, “A cost model and index architecture for the

similarity join,” in ICDE, 2001.

[3] C. Böhm, F. Krebs, and H. Kriegel, “Optimal Dimension Order: A

generic technique for the similarity join,” in International Conference

on Data Warehousing and Knowledge Discovery, 2002.

[4] G. Hjaltason and H. Samet, “Incremental distance join algorithms for

spatial databases,” in SIGMOD, 1998.

[5] C. Böhm and F. Krebs, “The k-Nearest Neighbour Join: Turbo

charging the KDD process,” Knowledge and Information Systems, 6(6):

728-749, 2004.

[6] C. Yu, B. Cui, S. Wang, and J. Su, “Efficient index-based KNN join

processing for high-dimensional data,” Information and Software

Technology, 49(4): 332-344, 2007.

[7] C. Xia, H. Lu, B. Chin, and O. Hu, “GORDER: An Efficient method

for KNN join processing,” in VLDB, 2004.

[8] V. Dohnal, C. Gennaro, and P. Zezula, “Similarity Join in Metric

Spaces Using eD-Index,” in DEXA, 2003.

[9] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula, “Similarity Join in

Metric Spaces,” in ECIR, 2003.

[10] C. Böhm, B. Braunmüller, F. Krebs, and H.-P. Kriegel, “Epsilon Grid

Order: An Algorithm for the Similarity Join on Massive High-

Dimensional Data,” in SIGMOD, 2001.

[11] J.-P. Dittrich and B. Seeger, “GESS: a Scalable SimilarityJoin

Algorithm for Mining Large Data Sets in High Dimensional Spaces,”

in SIGKDD, 2001.

[12] E. H. Jacox and H. Samet, “Metric Space Similarity Joins,” ACM

Trans. Database Syst., 33(2):1-38, 2008.

[13] B. Bryan, F. Eberhardt, and C. Faloutsos, “Compact Similarity Joins,”

in ICDE, 2008.

[14] C. Xiao, W. Wang, and X. Lin, “EdJoin: An Efficient Algorithm for

Similarity Joins With Edit Distance Constraints,” in VLDB, 2008.

[15] C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient Similarity Joins for

Near Duplicate Detection,” in WWW, 2008.

[16] M. D. Lieberman, J. Sankaranarayanan, and H. Samet, “A Fast

Similarity Join Algorithm Using Graphics Processing Units,” in ICDE,

2008.

[17] S. Chaudhuri, V. Ganti, and R. Kaushik, “A Primitive Operator for

Similarity Joins in Data Cleaning,” in ICDE, 2006.

[18] S. Chaudhuri, V. Ganti, and R. Kaushik, “Data Debugger: An

Operator-Centric Approach for Data Quality Solutions,” Bulletin of the

IEEE Computer Society Technical Committee on Data Engineering,

2006.

[19] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S.

Muthukrishnan, and D. Srivastava, “Approximate String Joins in a

Database (Almost) for Free,” in VLDB, 2001.

[20] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava, “Fast

Indexes and Algorithms for Set Similarity Selection Queries,” in ICDE,

2008.

[21] X. Yang, B. Wang, and C. Li, “Cost-Based Variable-Length-Gram

Selection for String Collections to Support Approximate Queries

Efficiently,” in SIGMOD, 2008.

[22] X. Lian and L. Chen, “Similarity Search in Arbitrary Subspaces under

Lp-Norm,” in ICDE, 2008.

[23] M. Wichterich, I. Assent, P. Kranen, and T. Seidl, “Efficient EMD-

based Similarity Search in Multimedia Databases via Flexible

Dimensionality Reduction,” in SIGMOD, 2008.

[24] Y. N. Silva, W. G. Aref, and M. H. Ali, “Similarity Group-by,” in

ICDE, 2009.

[25] S. Adali, P. Bonatti, M. L. Sapino, and V. S. Subrahmanian, “A Multi-

Similarity Algebra,” in SIGMOD, 1998.

[26] C. Traina, A. J. M. Traina, M. R. Vieira, A. Arantes, and C. Faloutsos,

“Efficient processing of complex similarity queries in rdbms through

query rewriting,” in CIKM, 2006.

[27] M. C. N. Barioni, H. L. Razente, A. J. M. Traina, and C. Traina,

“SIREN: A similarity retrieval engine for complex data,” In VLDB,

2006.

[28] G. B. Baioco, A. J. M. Traina, and C. Traina, “Mamcost: Global and

local estimates leading to robust cost estimation of similarity queries,”

in SSDBM, 2007.

[29] M. R. P. Ferreira, C. Traina, and A. J. M. Traina, “An Efficient

Framework for Similarity Query Optimization,” in ACM GIS, 2007.

[30] W. Yan and P. Larson, “Eager Aggregation and Lazy Aggregation,” in

VLDB, 1995.

[31] P. Larson, “Data reduction by partial preaggregation,” in ICDE, 2002.

[32] D. J. DeWitt, J. F. Naughton, and D. A. Schneider, “An Evaluation of

Non-Equijoin Algorithms,” in VLDB, 1991.

[33] TPC-H Version 2.6.1. [Online]. Available: http://www.tpc.org/tpch.

