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Abstract— Similarity joins have been studied as key operations in 

multiple application domains, e.g., record linkage, data cleaning, 

multimedia and video applications, and phenomena detection on 

sensor networks. Multiple similarity join algorithms and 

implementation techniques have been proposed. They range 

from out-of-database approaches for only in-memory and 

external memory data to techniques that make use of standard 

database operators to answer similarity joins. Unfortunately, 

there has not been much study on the role and implementation of 

similarity joins as database physical operators. In this paper, we 

focus on the study of similarity joins as first-class database 

operators. We present the definition of several similarity join 

operators and study the way they interact among themselves, 

with other standard database operators, and with other 

previously proposed similarity-aware operators. In particular, 

we present multiple transformation rules that enable similarity 

query optimization through the generation of equivalent 

similarity query execution plans. We then describe an efficient 

implementation of two similarity join operators, Ɛ-Join and Join-

Around, as core DBMS operators. The performance evaluation 

of the implemented operators in PostgreSQL shows that they 

have good execution time and scalability properties. The 

execution time of Join-Around is less than 5% of the one of the 

equivalent query that uses only regular operators while Ɛ-Join’s 

execution time is 20 to 90% of the one of its equivalent regular 

operators based query for the useful case of small Ɛ (0.01% to 

10% of the domain range). We also show experimentally that the 

proposed transformation rules can generate plans with execution 

times that are only 10% to 70% of the ones of the initial query 

plans. 

I. INTRODUCTION 

The shift from systems that focus on exact semantics of 

data and queries to systems that focus on approximate and 

imprecise semantics is recognized as one of the main current 

paradigm transitions in data management systems. Different 

areas have made important contributions to this paradigm shift, 

among them: similarity-aware query processing in database 

systems, integration of information retrieval and database 

operations, and uncertain or probabilistic databases. The study 

of the similarity-aware counterparts of common database 

operations, i.e., selection, join, and grouping is a central goal 

of the work on similarity query processing. Similarity joins 

(SJ) are operations that combine two sets of data using 

similarity join predicates that match tuples with similar or 

approximate values. Similarity joins have been studied as key 

components to solve multiple problems, e.g., record linkage, 

data   cleaning,   phenomena   detection  on  sensor   networks, 
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Fig. 1  Comparison of similarity join implementation approaches  

marketing analysis, multimedia and video applications, etc. 

Multiple SJ algorithms and implementation techniques have 

been proposed. They range from out-of-database approaches 

for only in-memory or external memory data, to techniques 

that use standard database operators to answer SJs. However, 

there has not been much study on the role and implementation 

of similarity joins as database operators. Fig. 1 compares 

several approaches to implement Similarity Joins. The 

implementation of SJ as integrated database operators has the 

following key advantages: (i) SJ database operators can be 

interleaved with other regular and similarity-aware operators 

and their results pipelined for further processing; (ii) 

important optimization techniques, e.g., pushing certain 

filtering operators to lower levels of the execution plan, pre-

aggregation, and the use of materialized views can be 

extended to the new operators; and (iii) the implementation of 

these operators can reuse and extend other operators and 

structures to handle large datasets, and use the cost-based 

query optimizer machinery to enhance query execution time. 

This paper focuses on the study of similarity joins as first-

class database operators. Its main contributions are:  

 We study the similarity join as a first-class database 

operator, its interaction with other non-similarity and 

similarity-based operators, and its implementation as 

integrated component of the DBMS query processing and 

optimization engine. 

 We present the different types of similarity joins, 

introduce a new useful similarity join type, the Join-

Around, and propose SQL syntax to express similarity 

join predicates. 

 We analyze multiple transformation rules for the SJ 

operators. These rules enable query optimization through 

the generation of equivalent query execution plans. We 



study: (i) multiple core equivalence rules for SJ operators; 

(ii) the main theorem of Eager and Lazy aggregation for 

queries with similarity join and similarity group-by; (iii) 

the scenarios in which similarity predicates can be pushed 

from similarity join to similarity group-by; and (iv) 

equivalence rules between different SJ operators and 

between SJ and the similarity group-by operator. 

 We describe an efficient implementation of two SJ 

operators, the Epsilon-Join and Join-Around, as core 

DBMS operators. We consider the case of multiple SJ 

predicates and one-dimensional (1D) attributes.  

 We evaluate the performance and scalability properties of 

our implementation of the Epsilon-Join and Join-Around 

operators in PostgreSQL. The execution time of Join-

Around is less than 5% of the one of the equivalent query 

that uses only regular operators while Ɛ-Join’s execution 

time is 20 to 90% of the one of its equivalent regular 

operators based query for the useful case of small Ɛ    

(0.01% to 10% of the domain range). 

 We also evaluate experimentally the effectiveness of the 

proposed transformation rules and show they can generate 

plans with execution times that are only 10% to 70% of 

the ones of the initial query plans. 

The rest of this paper is organized as follows. Section II 

discusses the related work. Section III presents the different 

types of SJ and the proposed syntax to specify their similarity 

predicates. Section IV studies the equivalence rules among SJ 

and other regular and similarity-aware operators. Section V 

presents implementation guidelines based on a prototype 

realization of two SJ operators within PostgreSQL. Section VI 

reports the performance evaluation of the implemented 

operators and Section VII presents the conclusions and 

directions for future research. 

II. RELATED WORK 

Several types of similarity join, and corresponding 

implementation strategies, have been proposed in the literature, 

e.g., range distance join (retrieves all pairs whose distances 

are smaller than a pre-defined threshold) [1], [2], [3], [8], [9], 

[10], k-Distance join (retrieves the k most-similar pairs) [4], 

and kNN-join (retrieves, for each tuple in one table, the k 

nearest-neighbors in the other table) [5], [6], [7]. The range 

distance join, also known as the Ɛ-Join, has been the most 

studied type of similarity join. Among its most relevant 

implementation techniques, we find approaches that rely on 

the use of pre-built indices, e. g., eD-index [8] and D-index 

[9]. These techniques strive to partition the data while 

clustering together similar objects. However, this approach 

may require rebuilding the index to support queries with 

different similarity parameter values, i.e., epsilon. 

Furthermore, eD-index and D-index are directly applicable 

only to the case of self-joins. Several non-index-based 

techniques have also been proposed to implement the Ɛ-Join. 

EGO [10], GESS [11], and QuickJoin [12] are three of the 

most relevant non-index-based algorithms. The Epsilon Grid 

Order (EGO) algorithm [10] imposes an epsilon-sized grid 

over the space and uses an efficient schedule of reads of 

blocks to minimize I/O. The Generic External Space Sweep 

(GESS) algorithm [11] creates hypersquares centered on each 

data point with epsilon length sides, and joins these 

hypersquares using a spatial join on rectangles. The Quickjoin 

algorithm [12] recursively partitions the data until the subsets 

are small enough to be efficiently processed using a nested 

loop join. The algorithm makes recursive calls to process each 

partition and a separate recursive call to process the “windows” 

around the partition boundary. Quickjoin has been shown to 

perform better than EGO and GESS [12]. 

Also, of importance is the work on similarity join 

techniques that make use of relational database technology 

[17], [18], [19]. These techniques are applicable only to string 

or set-based data. The general approach pre-processes the data 

and query, e.g., decomposes data and query strings into sets of 

q-grams, and stores the results of this stage on separate 

relational tables. Then, the result of the similarity join can be 

obtained using standard aggregate/group-by/join SQL 

statements. Indices on the pre-processed data are used to 

improve performance. A key difference of this work with our 

contributions in this paper is that we focus on studying the 

properties, optimization techniques, e.g., pre-aggregation and 

query transformation rules, and implementation techniques of 

several types of similarity joins as database operators 

themselves rather than studying the way a SJ can be answered 

using standard operators. In fact, several of the discussed 

properties for epsilon-join in this paper are also applicable to 

the operators proposed in [17] and [18]. Moreover, the 

implementation section of our work focuses on SJ on 

numerical data rather than string data. 

A related type of join is the band join introduced in [32]. 

The join predicate of this join type has the form S.s-Ɛ1≤R.r≤ 

S.s+Ɛ2. A key difference of our work with the work on band 

joins is that band joins represent only a special case of one of 

the four types of joins considered in our study. Specifically, a 

band join where Ɛ1=Ɛ2 is a special case of Ɛ-Join for the case 

of 1D data. We propose transformation rules and properties 

for similarity joins that apply in general to multi-dimensional 

data. Moreover, a key goal of our implementation is to take 

advantage of the mechanisms and data structures already 

available in most DBMS’ engines to facilitate the integration 

of similarity joins into real world DBMSs. The 

implementation of band joins in [32] makes use of specialized 

sampling, partitioning, and page replacement mechanisms.  

Some recent work in the area of similarity joins has focused 

on: proposing a compact way to represent the output of an 

epsilon join [11], i.e., reporting groups of nearby points 

instead of every join link; efficient algorithms for in-memory 

similarity join with edit distance constraints [14]; algorithms 

for near duplicate detection that exploit the ordering of tokens 

in a record to reduce the number of required distance 

computations [15]; and similarity join algorithms that exploit 

sorting and searching capabilities of GPUs [16].  

The extension of other standard operations to their 

similarity-based counterparts, e. g., similarity selection [20], 

[21], [22], [23], and similarity grouping [24], has been studied 

previously. Among the important recent contributions in this 



area are: the study of fast indices and algorithms for set 

similarity selection using semantic properties that allow 

pruning large percentages of the search space [20], a 

quantitative cost-based approach to build high-quality grams 

to support selection queries on strings [21], a method that 

finds all data objects that match with a given query object in a 

low-dimensional subspace instead of the original full space 

[22], and flexible dimensionality reduction techniques to 

support similarity search using the Earth Mover’s Distance 

[23]. Of special interest is the work on Similarity Group-by 

(SGB) presented in [24]. SGB is an extension of the group-by 

database operator that supports the formation of groups of 

similar objects. Three SGB instances are introduced, i.e., 

group-around, unsupervised group-by, and group-by with 

delimiters; and are shown to have good execution time and 

scalability properties with at most only 25% increase in 

execution time over the regular group-by [24]. We study the 

interaction and equivalences between SJ and SGB. 

Furthermore, we discuss scenarios in which the similarity 

predicate of SJ can be pushed partially or totally to SGB.    

The work in [25] proposes an algebra for similarity-based 

queries. This work presents the extension of simple algebra 

rules, e.g., pushing selection into join, to the case of similarity 

operators. The work in [26] proposes an extension to the 

relational algebra to support similarity queries with several 

similarity predicates combined using the Boolean operators 

and, or, and not. However, [26] does not consider similarity 

joins or queries that combine non-similarity and similarity 

predicates. [27] proposes an extended SQL syntax to express 

queries that use both non-similarity and similarity predicates. 

The work in [28] presents a cost model to estimate the number 

of I/O accesses and distance calculations to answer similarity 

queries over data indexed using metric access methods. Both 

[27] and [28] only consider range distance and knn-joins. A 

framework for similarity query optimization is presented in 

[29]. This work makes use of simple equivalence rules to 

generate multiple alternative query plans. The main difference 

between [25], [26], [27] and our work is that we focus on 

analyzing in detail the properties and equivalence rules that 

involve the different kinds of similarity join. Our study 

considers four types of SJ, the equivalences among them and 

with the similarity group-by operator. Furthermore, we study 

extensions of the important Lazy and Eager aggregation 

transformations to the case of similarity join queries. 

Some of the optimization techniques of SJ presented in this 

paper build on previous work on optimization of regular non 

similarity queries. Larson et al. study pull-up and push-down 

techniques that allow the query optimizer to move aggregation 

operators up and down the query plan [30], [31]. These 

techniques enable complete [30] or partial [31] pre-

aggregation that can reduce significantly the input size of a 

join and decrease the execution time of an aggregation query.  

III. SIMILARITY JOIN OPERATORS 

The generic definition of the Similarity Join (SJ) operator is 

as follows: 

𝐴 ⋈𝜃𝑆
𝐵 =   𝑎, 𝑏    𝜃𝑆 𝑎, 𝑏 , 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} 

ε-Join:  SELECT … FROM A, B

 WHERE A.a WITHIN ε OF B.b

Around-Join: SELECT … FROM A, B

      WHERE A.a AROUND B.b [MAX_DIAMETER 2r]

kNN-Join:  SELECT ... FROM A, B

      WHERE B.b k NEAREST_NEIGHBOR_OF A.a

kD-Join:  SELECT ... FROM A, B

      WHERE A.a k TOP_CLOSEST_PAIRS B.b
 

Fig. 2 Extended SQL syntax for similarity join predicates  
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Fig. 3 Types of Similarity Join  

where θs represents the similarity join predicate. This 

predicate specifies the similarity-based conditions that the 

pairs <a,b> need to satisfy to be in the similarity join output. 

The similarity join predicates for the similarity join operators 

considered in our study are as follows.  

 Range Distance Join (Ɛ-Join): 

          𝜃𝜀 ≡ 𝑑𝑖𝑠𝑡 𝑎, 𝑏 ≤ 𝜀 
 kNN-Join: 

         𝜃𝑘𝑁𝑁 ≡ 𝑏 𝑖𝑠 𝑎 𝑘 − 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑛𝑒𝑖𝑔𝑏𝑜𝑟 𝑜𝑓 𝑎 
 k-Distance-Join (kD-Join): 

𝜃𝑘𝐷 ≡  𝑎, 𝑏  𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑘 − 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑝𝑎𝑖𝑟𝑠 
 Join-Around (A-Join):  

         𝜃𝐴,𝑀𝐷=2𝑟 ≡ 𝑏 𝑖𝑠 𝑡𝑒 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑛𝑒𝑖𝑔𝑏𝑜𝑟 𝑜𝑓 𝑎 𝑎𝑛𝑑  
                  𝑑𝑖𝑠𝑡 𝑎, 𝑏 ≤ 𝑟 

The range distance, kNN, and k-Distance join operators are 

common and extensively used types of similarity join. The 

Join-Around is a new useful type of similarity join that 

combines some properties of both the range distance and kNN 

joins. Every value of the first joined set is assigned to its 

closest value in the second set. Additionally, only the pairs 

separated by a distance of at most r are part of the join output. 

MD stands for Maximum Diameter and r=MD/2 represents 

the Maximum Radius.  As presented in Section IV, the Join-

Around operator with MD=∞ is equivalent to the kNN-Join 

for k=1. Some queries that show the usefulness of this new 

type of similarity join are presented later in this section. 

Fig. 2 shows an extension of SQL syntax to express the 

different types of similarity join predicates. Fig. 3 shows 

examples of the four types of similarity join operators when 

they are applied to two numerical datasets. 

Similarity joins are core operations in multiple application 

domains, e.g., data cleaning, pattern recognition, 

bioinformatics, multimedia, phenomena detection on sensor 

networks, marketing analysis, etc. Many of these scenarios, 

e.g., pattern recognition and bioinformatics, inherently need 

the support of similarity joins on multidimensional data.  

However, there are also many application scenarios, e.g., 

marketing analysis and phenomena detection on sensor 



networks, that can greatly benefit from the use of similarity 

joins on one dimensional data. Fig. 4 gives four similarity 

queries that use similarity joins to answer business-oriented 

questions in a decision support system. The presented 

similarity queries are extensions of several non-similarity-

based TPC-H queries [33]. The similarity queries in Fig. 4 

illustrate that the use of similarity joins allows answering 

more complex and interesting business questions.   

IV. OPTIMIZING SIMILARITY JOINS 

This section presents the study of similarity join properties 

and techniques that enable the optimization of similarity join 

queries through the generation of alternative execution plans. 

This section introduces: (i) core equivalence rules that exploit 

specific properties of SJs, (ii) equivalence rules between 

multiple SJ operators and between SJ and similarity group-by 

(SGB) operators, and (iii) the study of Eager and Lazy 

transformation techniques that exploit pre-aggregation using 

group-by and similarity group-by to significantly reduce the 

amount of data to be processed by SJs. 

A. Core Equivalence Rules 

This section presents multiple equivalence rules that 

involve the different SJ operators. This section not only 

considers the extension of common equivalence rules to the 

case of similarity joins, but particularly also studies scenarios 

that exploit certain specific properties of SJs to enable more 

effective query transformations. The rules in this section and 

in section IV.B use the notation presented in Fig. 5. The 

examples assume the following relations’ content: 

E1=E2=E3={1,2,...,100}, and E4={21,22,...,25}. 

1)  Basic Distribution of Selection over SJ: The regular 

selection operation distributes over the similarity join 

operations according to the following rules. 

When all the attributes of the selection predicate θ involve 

only the attributes of one of the expressions being joined (E1): 

a.  𝜎𝜃 𝐸1 ⋈𝜃𝜀
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝜀

𝐸2 

b. 𝜎𝜃 𝐸1 ⋈𝜃𝑘𝑁𝑁
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝑘𝑁𝑁

𝐸2 

c. 𝜎𝜃 𝐸1 ⋈𝜃𝐴
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝐴

𝐸2  

When the selection predicates θ1 and θ2 involve only the 

attributes of E1, and E2, respectively: 

d. 𝜎𝜃1∧𝜃2 𝐸1 ⋈𝜃𝜀
𝐸2 ≡ (𝜎𝜃1(𝐸1)) ⋈𝜃𝜀

(𝜎𝜃2(𝐸2)) 

Usage: In the RHS of these rules, the selection operator is 

pushed under the SJ operators to reduce the number of tuples 

to be processed by the join. The transformation from the LHS 

expression to the RHS one can generate low cost plans 

because in general SJ operators are expected to be more costly 

than selection filters. Fig. 6.a presents an example of rule 1.a. 

The numbers next to the arrows represent the number of 

flowing tuples in the query pipeline. The SJ operator of the 

LHS expression processes a total of 200 tuples while the one 

of the RHS expression only processes a total of 105 tuples.  

2)  Pushing Selection Predicate under Originally Unrelated 

Join Operand:  In the  equivalence rules  presented in  Section  

Business Question: Study how well the order priority system works around 

dates of interest (holydays, marketing campaigns, etc.)
Select d_refdate, o_orderpriority, count(*) as order_count from orders, DatesOfInterest

Where o_orderdate AROUND d_refdate 

           and exists (Select * from lineitem

    Where l_orderkey = o_orderkey and l_commitdate < l_receiptdate)

group by o_orderpriority, d_refdate order by o_orderpriority, d_refdate

Original TPC-H Query

Q4 – Business Question: Study how well the order priority system is 

working in a given quarter

Similarity-aware Query

Business Question: Study the revenue volume done between local 

(nearby) suppliers and customers (Revenue of “short distance”orders)
Select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue

From customer, orders, lineitem, supplier, nationSupp NS, nationCust NC, region

Where c_custkey = o_custkey and l_orderkey = o_orderkey

         and l_suppkey = s_suppkey and c_location WITHIN Ɛ TO s_location            

         and c_nationkey = NC.n_nationkey and s_nationkey = NS.n_nationkey

         and NC.n_regionkey = NS.n_regionkey and NC.n_regionkey = r_regionkey

         and r_name = '[REGION]' and o_orderdate >= date '[DATE]'

         and o_orderdate<date '[DATE]'+interval '1' year

group by n_name order by revenue desc

Original TPC-H Query

Q5 – Business Question: Study the revenue volume done between 

suppliers and customers of the same country

Similarity-aware Query

Business Question: Forecast revenue change that would have resulted 

from eliminating certain discounts on certain date ranges of interest 

(holydays, marketing campaigns, etc.)
Select d_refdate, sum(l_extendedprice*l_discount) as revenue

From lineitem, DatesOfInterest

Where l_shipdate AROUND d_refdate MAX_SIZE 'D' day

           and l_discount between [DISCOUNT] - 0.01 and [DISCOUNT] + 0.01

           and l_quantity < [QUANTITY]

Group by d_refdate;

Original TPC-H Query
Q6 – Business Question: Forecast revenue change that would have 

resulted from eliminating certain discounts in a given year
Similarity-aware Query

Business Question: Classify customers based on their buying power
Select c_name, c_custkey, r_refRevlevel

From (Select c_name, c_custkey, sum(l_extendedprice) as TotalBuy

           From customer, orders, lineitem

           Where o_orderkey in (Select l_orderkey From lineitem

                                          Group by l_orderkey Having sum(l_quantity) > [QUANTITY])

           and c_custkey = o_custkey and o_orderkey = l_orderkey

           Group by c_name, c_custkey), RevenueLevelsOfInterest 

Where TotalBuy AROUND r_refRevlevel Order by r_refRevlevel

Original TPC-H Query
Q18 – Business Question: Find large volume(quantity) customers. Large 

volume orders are the ones with a total quantity greater than a given level.
Similarity-aware Query

Similarity Query Example 1

Similarity Query Example 2

Similarity Query Example 3

Similarity Query Example 4

 

Fig. 4 Examples of the use of Similarity Join 

Ei a relation

ei an attribute of Ei

σ and the selection and join operators respectively

θ a non similarity predicate
θƐ, θkNN, θkD, θA the different similarity join predicates as defined in section III

GAγF(AA)(R)

the aggregation operator
is the relation being aggregatedR 
 the aggregation attributesAA
 the aggregation functionsF
the grouping attributes. It can be a simple attribute in the 
case of regular grouping, or an expression like E1.e1 
around E2.e2 in the case of Similarity Group Around 
(SGB-A), a type of similarity grouping that groups the 
tuples of E1 around a set of central points (tuples of E2) 
assigning every tuple of E1 to the group of the central 
point with the minimum dist (E1.e1, E2.e2) [24]

GA

 

Fig. 5 Notation for equivalence rules 

IV.A.1, each selection predicate θ is pushed only under the 

join operand that contains all the attributes referenced in θ. In 

the case of the Ɛ-Join operator, the filtering benefits of 

pushing a selection predicate θ can be further improved by 



pushing θ under both operands of the join as shown in the 

following equivalence rule. 

a.   𝜎𝜃 𝐸1 ⋈𝜃𝜀
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝜀

(𝜎𝜃±𝜀(𝐸2)) 

where all the attributes of the selection predicate θ involve 

only the attributes of E1, and the selection predicate θ±Ɛ 

represents a modified version of θ where each condition is 

“extended” by Ɛ and is applied on the join attribute of E2. For 

example, if θ = 10 ≤ e1 ≤ 20, then θ±Ɛ = 10–Ɛ ≤ e2 ≤ 20+Ɛ.  

Usage: The single selection operator of the LHS expression is 

used to filter both inputs of the join in the RHS expression. 

The transformation from the LHS expression to the RHS one 

can generate a plan with even lower cost than the one 

generated applying rule 1.a. Fig. 6.b presents an example 

where the SJ operator of the LHS expression processes a total 

of 200 tuples while the one of the RHS expression only 

processes a total of 20 tuples. 

3)  Basic Associativity of SJ Operators: Similarity Join 

operators are associative using the following rules.  

Rules with the same type of similarity join: 

a.  𝐸1 ⋈𝜃𝜀1
𝐸2 ⋈𝜃𝜀2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝜀1∧𝜃 (𝐸2 ⋈𝜃𝜀2

𝐸3)  

b.  𝐸1 ⋈𝜃𝐴1
𝐸2 ⋈𝜃𝐴2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝐴1∧𝜃 (𝐸2 ⋈𝜃𝐴2

𝐸3)  

c.  𝐸1 ⋈𝜃𝑘𝑁𝑁 1
𝐸2 ⋈𝜃𝑘𝑁𝑁 2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝑘𝑁𝑁 1∧𝜃 (𝐸2 ⋈𝜃𝑘𝑁𝑁 2

𝐸3) 

Rules that combine different types of similarity and regular 

join: 

d.  𝐸1 ⋈𝜃𝐴1
𝐸2 ⋈𝜃𝑘𝑁𝑁 2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝐴1∧𝜃 (𝐸2 ⋈𝜃𝑘𝑁𝑁 2

𝐸3)  

e.  𝐸1 ⋈𝜃𝑘𝑁𝑁 1
𝐸2 ⋈𝜃𝐴2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝑘𝑁𝑁 1∧𝜃 (𝐸2 ⋈𝜃𝐴2

𝐸3)  

f.  𝐸1 ⋈𝜃𝜀1
𝐸2 ⋈𝜃2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝜀1∧𝜃 (𝐸2 ⋈𝜃2 𝐸3)  

g.  𝐸1 ⋈𝜃1 𝐸2 ⋈𝜃𝐴2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃1∧𝜃 (𝐸2 ⋈𝜃𝐴2
𝐸3)  

h.  𝐸1 ⋈𝜃1 𝐸2 ⋈𝜃𝑘𝑁𝑁 2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃1∧𝜃 (𝐸2 ⋈𝜃𝑘𝑁𝑁 2
𝐸3)  

where θ1, θƐ1, θA1, and θkNN1 involve attributes from only E1 

and E2; θ2, θƐ2, θA2, and θkNN2 involve attributes from only E2 

and E3.  

Usage: Given an expression with several SJ operations, the 

plan cost depends on how many tuples need to be processed 

by each SJ operator and the processing cost of each specific 

type of SJ. Thus, the cost depends on which SJ operation is 

computed first. This will determine the number of flowing 

tuples to be processed by the remaining SJ operators. Fig. 6.c 

presents an example of rule 3.a. The LHS expression 

computes first the less selective SJ and processes a total of 

1158 tuples in the second one. The RHS expression computes 

first the most selective SJ and processes only 200 tuples in the 

second one. The optimizer will probably select the RHS plan.  

4)  Associativity Rule that Enables Join on Originally 

Unrelated Attributes: In the equivalence rules presented in 

Section IV.A.3, each join predicates involves the same 

attributes in both sides of the rule. In the case of Ɛ-Join, when 

the attributes e1 of E1 and e2 of E2 are joined using Ɛ1 and the 

result joined with attribute e3 of E3 using Ɛ2, there is an 

implicit relationship between e1 and e3 that is exploited by the 

following equivalence rule.   

σ

E1

a) Distribution of selection over 

SJ

S

E2

e1 within 

5 of e2

20<e1≤25

100 100

1058

55

Q1: SELECT e1, e2 FROM E1, E2 

WHERE e1 within 5 of e2 and 20<e1<=25
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100

55
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b) Pushing selection predicate under 
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S
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Q2: SELECT e1, e2, e2 FROM E1, 
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Q3: SELECT e1, e2, e4 FROM E1, 

E2, E4 WHERE e1 within 5 of e2 
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Fig. 6 Extended SQL syntax for Similarity Join predicates 

a.  𝐸1 ⋈𝑒1 𝜃𝜀1  𝑒2
𝐸2 ⋈𝑒2  𝜃𝜀2  𝑒3

𝐸3 ≡ 

      𝐸1 ⋈𝑒1  𝜃𝜀1+𝜀2  𝑒3
𝐸3 ⋈(𝑒1   𝜃𝜀1  𝑒2)∧(𝑒2  𝜃𝜀2  𝑒3) 𝐸2 

Notice that this rule is expressed using an extended notation 

that specifies explicitly the attributes being joined.  

Usage: The RHS expression of this rule produces a bottom 

join that joins attributes that are not joined in the LHS 

expression. The transformation from the LHS expression to 

the RHS one has the potential to generate a lower cost plan 

when the RHS’ bottom join outputs a low number of tuples. 

Fig. 6.d presents an example of rule 4.a. The LHS expression 

processes a total of 200 tuples in the first SJ and 1063 tuples 

in the second one. The LHS expression processes 105 tuples 

in the first SJ and 155 tuples in the second one. Notice that the 

top RHS’ SJ has a slightly more complex SJ predicate.  

5)  Commutativity of SJ Operators: Some similarity Join 

operations are commutative: 

a. 𝐸1 ⋈𝜃𝜀
𝐸2 ≡ 𝐸2 ⋈𝜃𝜀

𝐸1                                                     

b. 𝐸1 ⋈𝜃𝑘𝐷
𝐸2 ≡ 𝐸2 ⋈𝜃𝑘𝐷

𝐸1                                                

kNN-Join and Join-Around operators are not commutative. 

Usage: Similarly to the case of regular join, the cost of a given 

implementation of a SJ operator can be different when 

considering the larger relation to be joined as the inner or 

outer input of the operator. This rule is used to consider both 

cases during cost-based optimization.  

Additionally, other rules like the distribution of projection 

over SJ and the combination of selection predicates with SJ 

predicates apply to the case of SJs in a similar way they do to 

the case of non-similarity joins. 

B. Equivalence Among Similarity Operators 

The Join-Around and the Similarity Group Around (SGB-A) 

operators are equivalent in the following way: 



a. 𝛾𝐹(𝐴𝐴)(𝐸1)𝑒1  𝑎𝑟𝑜𝑢𝑛𝑑  𝐸2 .𝑒2
≡ 𝛾𝐹 𝐴𝐴 (𝐸1 ⋈𝑒1  𝜃𝐴  𝑒2  𝐸2)𝑒2

 

i.e., a SGB-A operation can be transformed into a regular 

Group-by applied to the result of a Join-Around operation. 

Usage: This rule can be used to support a similarity grouping 

operation using the implementation of the Join-Around. 

The following rules describe the special cases in which 

different similarity join operators are equivalent.   

b. 𝐸1 ⋈𝜃𝐴 ,𝑀𝐷 =∞
𝐸2 ≡ 𝐸1 ⋈𝜃𝑘𝑁𝑁 (𝑘=1)

𝐸2 

c. 𝐸1 ⋈𝜃𝐴 ,𝑀𝐷 =2𝜀
𝐸2 ≡ 𝐸1 ⋈𝜃𝜀

𝐸2,  

if the joins operate on one-dimensional data and 2Ɛ < 

minimum distance of consecutive points in E2 , i.e., there 

is no overlap in the MD ranges. 
d. 𝐸1 ⋈𝜃𝑘𝐷

𝐸2 ≡ 𝐸1 ⋈𝜃𝜀
𝐸2,  

if Ɛ = distance of the k-th (longest) link in LHS. 

C. Eager and Lazy Transformations with SJ and SGB 

An important query optimization approach is the use of 

pull-up and push-down techniques to move the grouping 

operator up and down the query tree. The main Eager and 

Lazy aggregations theorem introduced in [30] enables several 

pull-up and push-down techniques for the regular, i.e., non-

similarity, join and group-by operators. This theorem allows 

the pre-aggregation of data before the join operator to reduce 

its input size. The main theorem is extended in [24] to the case 

of regular join and similarity group-by (SGB). This subsection 

presents the extension of the main theorem to the case of 

similarity join and (regular or similarity) group-by. 

Furthermore, we study scenarios in which the similarity 

predicate of SJ operators can be pushed totally or partially to 

the grouping operator.  

General usage: Figures 8, 9, 10, and 11 illustrate several 

cases of the eager and lazy transformations that will be studied 

in detail later in this section. In general, the single aggregation 

operator of the Lazy approach is split into two parts in the 

Eager approach. The first part pre-evaluates some aggregation 

functions and calculates the count before the join. The second 

part uses the intermediate information to calculate the final 

results after the join. Both the eager and lazy versions of a 

query should be considered during query optimization since 

neither of them is the best approach in all scenarios. Joins with 

high selectivity tend to benefit the Lazy approach while 

aggregations that reduce considerably the number of tuples 

that flow in the pipeline tend to benefit the Eager approach.  

The presentation of the theorems and proofs in this section 

use the notation presented in Fig. 7. This notation is used 

because: (i) it allows a direct comparison with analogous 

theorems for regular operators [30] and for similarity grouping 

[24] that use a similar notation, and (ii) it uses a convenient 

representation of operators’ arguments that facilitates the 

presentation of the theorems and proofs. The Eager and Lazy 

aggregation theorems for the case of (i) regular join and 

group-by [30], and (ii) regular join and similarity group-by 

[24] are presented next. These theorems are referenced in the 

new extensions of the theorem studied later in this section. 

Theorem 1 Eager/Lazy Aggregation Main Theorem for 

Group-by and Join: The following two expressions 

g[GA]R regular grouping of relation R on grouping attributes GA

g[GA; Seg]R
similarity grouping of relation R on grouping attributes GA 
using segmentations Seg. The domain of the nth element of GA 
is partitioned by the nth element of Seg

F[AA]R aggregation operation of a previously grouped table R

F and AA sets of aggregation functions and columns, respectively

σ, πD, πA, UA       

and 

selection, projection with and without duplicate elimination, set 
union without duplicate elimination, theta-join, and similarity 
join respectively

Rd a table that always contains aggregation attributes
Ru a table that may or may not contain aggregation attributes

GAd and GAu  the grouping columns of Rd and Ru, respectively
AA all the aggregation columns

AAd and AAu the subsets of AA that belong to Rd and  Ru, respectively
Cd and Cu the conjunctive predicates on columns of Rd and Ru, respectively

C0 the conjunctive predicates involving columns in both Ru and Rd

α(C0) the columns involved in C0

GAd
+ = GAd U α(C0)-Rd, columns that participate in join and grouping

F the set of all aggregation functions
Fd and Fu the members of F applied on AAd and AAu, respectively

FAA 
the resulting columns of the application of F on AA in the first 
grouping operation of the eager strategy

Seg the set of segmentation of the attributes in GA
Segd and Segu the subsets of Seg for the attributes in GAd and GAu, respectively

NGAd a set of columns in Rd

CNT 
the column with the result of Count(*) in the first aggregation 
operation of the eager approach

FAAd
the set of columns, other than CNT, produced in the first 
aggregation operation of the eager approach

Fua
the duplicated aggregation function of Fu, e.g., if Fu=(SUM, 
MAX), then Fua=(SUM, MAX, count) = (SUM*count, MAX)

 

Fig. 7 Algebraic notation for Eager and Lazy transformation theorems  

 E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] 

       g [GAd, GAu]σ[Cd ^ Cu] (Rd ⋈𝐶0 Ru) 

  E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 

       πA[GAd, GAu, AAu, FAAd, CNT] 

      g [GAd, GAu]σ[Cu] 

       (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd] 

       g [NGAd]σ[Cd]Rd) ⋈𝐶0 Ru) 

are equivalent if (1) Fd can be decomposed into Fd1 and Fd2, (2) 

Fu contains only class C or D aggregation functions [30], (3) 

NGAd → GAd
+ holds in σ[Cd]Rd, and (4) α(C0) ∩ GAd = Ø. 

Expression E1 represents the Lazy approach while 

expression E2 represents the Eager approach. 

Theorem 2 Eager/Lazy Aggregation Main Theorem for 

Similarity Group-by and Join: The following expressions 

  E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] 

       g [GAd, GAu; Seg]σ[Cd ^ Cu] (Rd ⋈𝐶0 Ru) 

  E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 

       πA[GAd, GAu, AAu, FAAd, CNT] 

      g [GAd, GAu; Segu]σ[Cu] 

       (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd] 

       g [NGAd; Segd]σ[Cd]Rd) ⋈𝐶0 Ru) 

are equivalent under the same conditions as Theorem 1.  

1)  Eager and Lazy Transformations with GB and SJ: The 

Eager and Lazy aggregation transformations can be extended 

to the case of similarity joins as shown in Theorem 3.  

Theorem 3 Eager/Lazy Aggregation Main Theorem for 

Group-by and Similarity Join: The following expressions 

E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] 

       g [GAd, GAu]σ[Cd ^ Cu] (Rd ⋈ 𝐶0 Ru) 

E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 



       πA[GAd, GAu, AAu, FAAd, CNT] 

      g [GAd, GAu]σ[Cu]  

      (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]  

      g [NGAd]σ[Cd]Rd) ⋈ 𝐶0 Ru) 

where ⋈ C0  is kNN-Join, Ɛ-Join, or A-Join; are equivalent 

under the same conditions as Theorem 1.  

Usage: Fig. 8 illustrates an example of the application of this 

theorem. The SJ of the Lazy aggregation expression processes 

a total of 7 tuples while the grouping node processes 5 tuples. 

In the Eager aggregation expression all the tuples of T1 get 

combined into one tuple in the bottom grouping node and the 

SJ and top grouping operators only need to process 3 and 1 

tuples respectively. In scenarios where T1 has a significant 

number of tuples with the same value of (G1, J1) the 

optimizer will probably favor the Eager approach; otherwise 

the Lazy approach will probably be selected.  

Proof sketch: The validity of this theorem relies on the 

following properties. 

Given Rd' and Ru' instances of Rd and Ru respectively, the 

result of (Rd' ⋈ 𝐶0 Ru') is equivalent to the result of (Rd' ⋈𝜃  Ru') 

where θ = disjunction of (Rd.C0d=x ^ Ru.C0u=y) for every 

different link (x,y) of the result of (Rd'  ⋈ 𝐶0 Ru').                  (1)  

θ, as defined in (1), remains unchanged and valid when Rd' is 

augmented with tuples that have already present values of 

Rd'.C0d, i.e., duplicates, or when such tuples are removed from 

Rd'.                                                                                          (2) 

The validity of Theorem 3 can be shown by following these 

steps:  

For every Rd’ and Ru’ instances of Rd and Ru, respectively,  

1.   E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]  

       g [GAd, GAu]σ[Cd ^ Cu] (Rd’  ⋈ 𝐶0 Ru’) 

 is equivalent to  

     E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] 

            g [GAd, GAu]σ[Cd ^ Cu] (Rd’  ⋈𝜃  Ru’), 

     where θ is defined as in (1). 

2.   E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] 

             g [GAd, GAu]σ[Cd ^ Cu] (Rd’ ⋈𝜃  Ru’) 

      is equivalent to  

 E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 

        πA[GAd, GAu, AAu, FAAd, CNT] 

        g [GAd, GAu]σ[Cu]  

        (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd] 

        g [NGAd]σ[Cd]Rd’) ⋈𝜃  Ru’) 

      because of Theorem 1. 

3.  E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 

       πA[GAd, GAu, AAu, FAAd, CNT] 

       g [GAd, GAu]σ[Cu]  

       (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]  

       g [NGAd]σ[Cd]Rd’) ⋈𝜃  Ru’) 

     is equivalent to 

     E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 

      πA[GAd, GAu, AAu, FAAd, CNT] 

      g [GAd, GAu]σ[Cu]  

      (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]  

      g [NGAd]σ[Cd]Rd’) ⋈ 𝐶0 Ru’) 

since the grouping operation before the join merges only 

tuples that share the same value of Rd’.C0d, and (2). 
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Fig. 8 Eager/Lazy transformation with GB and SJ 
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Fig. 9 Eager/Lazy transformation with SGB and SJ 

2)  Eager and Lazy Transformations with SGB and SJ: The 

Eager and Lazy Aggregation transformations can be extended 

to the case of similarity join and similarity group-by as shown 

in Theorem 4.  

Theorem 4 Eager/Lazy Aggregation Main Theorem for 

Similarity Group-by and Similarity Join: The following 

two expressions 

  E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] 

       g [GAd, GAu; Seg]σ[Cd ^ C0 ^ Cu] (Rd  ⋈ 𝐶0 Ru) 

  E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 

       πA[GAd, GAu, AAu, FAAd, CNT] 

      g [GAd, GAu; Segu]σ[C0 ^ Cu] 

       (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd] 

       g [NGAd; Segd]σ[Cd]Rd) ⋈ 𝐶0 Ru) 

where ⋈ 𝐶0  is kNN-Join, Ɛ-Join, or A-Join; are equivalent 

under the same conditions as Theorem 1.  

Usage: An example of the use of this theorem is presented in 

Fig. 9. The number of tuples flowing in the pipelines is similar 

to the one of the previous example. The bottom grouping node 

of the Eager approach merges tuples that have: (i) the same 

value of J1 and (ii) values of G2 that belong to the same 

similarity group. In the example all the tuples of T1 are 

merged even though they have different values of G1.  

Proof sketch: The validity of this theorem relies on the 

validity of theorems 2 and 3. 

3)  Pushing Similarity Predicate from Ɛ-Join to GB: This 

subsection and the following one explore ways to further 

enhance the filtering power of the pre-aggregation step of the 

Eager approach pushing down the similarity predicates from 

the SJ operator to the grouping one. The equivalences 



described in these subsections are enhancements over the one 

presented in Section IV.C.1. 

The similarity predicate of the Ɛ-Join can be (partially) 

pushed down to a grouping operator as shown in Fig. 10. The 

bottom aggregation of the Eager approach performs regular 

aggregation on G1 and similarity aggregation SGB-A' on J1 

around J2 with MAX_GROUP_DIAMETER = 2Ɛ. SGB-A' is a 

variation of similarity group around (SGB-A) [24] that only 

merges tuples that are linked to only one central point (J2) by 

the Ɛ-Join. The value of J1 in a resulting tuple of SGB-A' can 

be the value of the central point, i.e., J2, or any of the values 

of J1 of the grouped tuples. In both cases, the Ɛ-Join of the 

Eager approach will generate the correct join links. SGB-A' 

generates at most one group per different value of J2, i.e., 

tuples with the same value of J2 in T2 are treated as a single 

central point. The goal of pushing the similarity predicate 

from SJ to the aggregation operator is to increase the number 

of pre-aggregated tuples while maintaining a grouping 

operator that can be executed quickly. SGB-A has been shown 

to have an execution time not higher than 25% of that of the 

regular group-by for one dimensional data. SGB-A' is 

expected to perform similarly. 

Usage: In the example presented in Fig. 10, the bottom 

grouping node of the Eager approach merges all the tuples of 

T1 even though they have different J1 values. Notice that 

applying the transformation of Section IV.C.1 to this case 

would generate five tuples rather than one as the result of the 

bottom grouping node of the Eager approach. 

The validity of this equivalence relies on the following 

properties: (i) if two tuples t1a and t1b are grouped by the 

bottom aggregation of the Eager approach around a center 

point tuple, say t2, then t1a and t1b will always be matched 

with t2 by the Ɛ-Join of the Lazy approach; and (ii) tuples that 

are not merged with others at the bottom aggregation of the 

Eager approach, are always processed in the same way in both 

approaches. 

4)  Pushing Similarity Predicate from Join-Around to GB: 

The similarity predicate of the Join-Around can be 

(completely) pushed down to a grouping operator as shown in 

Fig. 11. The bottom aggregation of the Eager approach 

performs regular aggregation on G1 and similarity 

aggregation SGB-A [24] on J1 around J2 with 

MAX_GROUP_DIAMETER = 2Ɛ.  The value of J1 in a 

resulting tuple of SGB-A is the value of the central point, i.e., 

J2. This will enable generating the correct links using only a 

regular join in the Eager approach. This regular join is still 

required to obtain the values of G2 and S2. SGB-A generates 

at most one group per different value of J2, i.e., tuples with 

the same value of J2 in T2 are treated as a single central point.  

Usage: As illustrated in Fig. 11, the Eager approach avoids 

completely the use of the SJ operator, using instead a fast 

similarity group-by operator and a regular join. In the example 

shown in Fig. 11, the bottom grouping node of the Eager 

approach merges all the tuples of T1 even though they have 

different values of J1; applying the transformation of Section 

IV.C.1 would produce five tuples instead. 
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Fig. 10 Pushing similarity predicate from Ɛ-Join to GB 
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Fig. 11 Pushing similarity predicate from Join-Around to GB 

The validity of this equivalence relies on the following 

properties: (i) if two tuples t1a and t1b are grouped by the 

bottom aggregation of the Eager approach around a center 

point tuple t2, t1a and t1b are always matched with t2 by the 

Join-Around of the Lazy approach; and (ii) if two tuples t1a 

and t1b share the same value of G1 and are linked to tuple t2 

in the Lazy approach, then t1a and t1b will always be grouped 

by the bottom aggregation of the Eager approach. 

V. IMPLEMENTING SIMILARITY JOIN 

This section presents the guidelines to implement two 

similarity join operators, Ɛ-Join and Join-Around, inside the 

query engine of standard RDBMSs. Although the presentation 

is intended to be applicable to any RDBMS, some specific 

details refer to our implementation in PostgreSQL. One of the 

goals of the implementation is to reuse and extend already 

available routines and structures to minimize the effort needed 

to realize these operators. The Ɛ-Join and Join-Around 

operators are implemented as extensions of the Sort Merge 

Join (SMJ) operator and consider the case of one dimensional 

numeric data and multiple similarity join predicates. 

To add support for SJs in the parser, the raw-parsing 

grammar rules, e.g., yacc rules in the case of PostgreSQL, are 

extended to recognize the syntax of the various new similarity 

join predicates presented in Section III. The parse-tree and 

query-tree data structures are extended to include the type and 

parameters, e.g., Ɛ, MD, of SJ predicates. The routines in 

charge of transforming the parse tree into the query tree are 

updated accordingly to process the new fields in the parse tree.  

A. The Optimizer 

Fig. 12.a presents the structure of the plan tree when one 

similarity join predicate is used. Given that the 



implementation is based on Sorted Merge Join, sort nodes that 

order by the similarity join attributes are added on top of the 

input plan trees. This order is assumed by the routines that 

find the similarity matches, i.e., links. When multiple 

similarity join predicates are used, they are processed one at a 

time. Fig. 12.b gives the structure of the plan tree generated 

when two similarity join predicates, a~b and c~d, are used. 

The bottom similarity join makes use of a~b while the top one 

uses c~d. The routines that find the similarity matches are 

presented in Section V.B. Another important change in the 

optimizer is in the way the number of tuples generated by a 

similarity aggregation node is estimated. This important 

estimation is used to compare the cost of different query 

execution plans. In the case of Join-Around, the number of 

resulting tuples can be estimated as the number of tuples in 

the inner input dataset. In the case of Ɛ-Join, more complex 

techniques, e.g., employing histograms of the density of 

elements in metric space [28], can be employed. The number 

of output tuples of the kNN-Join can be estimated as (# of 

tuples of outer input)*min(k, # of tuples of inner input) while 

the one of  the kD-Join can be estimated as min(# of tuples of 

outer input * # of tuples of inner input, k). The estimated 

number of output tuples can be used to reduce the cost of 

queries with several similarity join predicates. Since the order 

of processing these predicates does not change the final result, 

they can be arranged to minimize the overall cost of the query. 

B. The Executor 

When several similarity join predicates are used, the 

constructed query plan uses several similarity join nodes 

where the result of each node is pipelined to the next one as 

illustrated in Section V.A.  The executor routines that produce 

the similarity links in a SJ node are expected to handle one 

similarity join predicate. Additionally, they could be extended 

to handle any number of regular join predicates. The tuples 

received from the input plans have been previously sorted as 

explained in Section V.A. The executor routines process the 

input tuples synchronously following a plane sweep approach.  

Fig. 13 presents the algorithms of the main operation of the 

regular Sort Merge Join (13.a), Join-Around (13.b), and Ɛ-Join 

(13.c). The sections that were modified to support the SJ 

operators are shown in bold. It is clear from Fig. 13 that the 

use of the already implemented machinery that supports 

Sorted Merge Join as the basis to support similarity joins, 

allows a fast and efficient implementation of both SJ operators.  

The Sorted Merge Join algorithm in Fig. 13.a operates as 

follows. Lines 1 and 2 initialize the outer and inner tuples. 

Lines 4-9 advance the current inner and outer tuples until a 

match is found. When a match is found, Line 10 marks the 

inner tuple. Marking a tuple allows repositioning the inner 

cursor to the marked tuple later in the process. This key 

feature is already supported by the access method interface of 

PostgreSQL. Lines 13-18 join the current outer tuple with the 

current and following inner tuples as long as there is a match 

between outer and inner. Once an inner tuple that fails the 

match is found, the outer tuple is advanced (Line 19). Lines 

20 to 24 test if the new outer tuple matches the marked tuple. 

If  this is the case  the  inner cursor  is  restored to the  marked  

Join-Around (a,b), or

Epsilon-JoinƐ (a,b)

1. SELECT … FROM T1, T2   

    WHERE T1.a AROUND T2.b
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T1 T2
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    WHERE T1.a WITHIN Ɛ T2.b

Join-Around (c,d), or

Epsilon-JoinƐ2 (c,d)

1. SELECT … FROM T1, T2, T3 WHERE   

    T1.a AROUND T2.b AND T2.c AROUND T3.d

Sort (c)

T3

2. SELECT … FROM T1, T2, T3 WHERE   T1.a   

    WITHIN Ɛ1 OF T2.b AND T2.c WITHIN Ɛ1 OF T3.d

Join-Around (a,b), or

Epsilon-JoinƐ1 (a,b)

Sort (a)

T1 T2

a) One similarity join predicate b) Multiple similarity join predicates

Sort (b)

Sort (d)

Sort (b)

 

Fig. 12 Path/Plan trees for Join-Around and Ɛ-Join 

tuple and the new match is processed, otherwise the process 

continues looking for a new match. 

In the presentation of the algorithms, we assume that there 

is only one join predicate, i.e., the similarity predicate. The 

algorithms can be easily extended to handle the case of 

additional regular join predicates. The required changes to 

support Ɛ-Join are presented in Fig. 13.b. As expected, the 

function that evaluates if there is match between an outer and 

an inner tuples (Lines 4, 18, and 20) needs to be extended. In 

this case, the similarity predicate outer~inner is evaluated as 

distance(outer,inner) ≤ Ɛ. The block that produces the join 

links, in Lines 13-18, keeps track of the previous processed 

input tuple, i.e., prevInner. This tuple is used in Line 20 to test 

if there is a match between outer and prevInner. A positive 

result of this test means that there is at least one tuple in the 

range [mark, prevInner] that matches with the current outer. If 

this is the case, we restore the inner cursor to mark. The break 

command in Line 22 ensures that the process jumps to line 4 

to look for a match. This is required since outer may not 

match all the tuples in the range [mark, prevInner]. 

The required changes to support Join-Around are shown in 

Figures 13.c and 14. At any point, the algorithm keeps track of 

the current outer and inner and the next inner tuple, i.e., 

nextInner. Lines 2, 8, 16, and 22 in Fig. 13.c, and Lines 2 and 

6 in Fig. 14 maintain the correct nextInner tuple. The function 

that evaluates if there is match between an outer and an inner 

tuples (used in Lines 5 and 20 in Fig. 13.c and Line 4 in Fig. 

14) is also extended. In this case, the similarity predicate 

outer~inner is evaluated as distance(outer, inner) < distance 

(outer,nextInner). The function that evaluates if an inner tuple 

matches another inner tuple (used in lines 4 and 18 in Fig. 

13.c and in lines 1 and 3 in Fig. 14) evaluates the regular 

equality operator on the join attribute values. The expression 

outer>inner in line 1 of Fig. 14 ensures that the similarity join 

attribute of the outer tuple is greater than the one of the inner 

tuple. In contrast to the previous algorithms, when the process 

reaches line 10, there is not necessarily a match. This happens 

when there are consecutive inner tuples with the same join 

attribute values and the similarity join attribute of outer is 

greater than the one of inner. In this case, the inner cursor 

needs to be advanced until it is possible to check if there is a 

similarity match. This task is performed by check_match() as 

presented in Fig. 14. If a match is found, then the inner cursor 

is restored to mark and the process reports the join links. 

Otherwise,  the process  starts  looking  for  a  match  again  in 



 

SMJoin {

get initial outer tuple
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do forever {

  while (outer != inner) {

    if (outer < inner)
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      advance inner

  }
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      join outer and inner 
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}
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}
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Fig. 13 Main operation of Epsilon-Join and Join-Around compared to the one of Sorted Merge Join 
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check_match() { 

if ((inner == nextInner) && (outer>inner)){

    do {advance inner and nextInner}

    while(inner == nextInner)

    if (outer ~ inner)

       restore inner to mark

       nextInner ← getNext(inner)

       return True //similarity match

    else return False

}

return True //no need to advance to check match

}  

Fig. 14 Routine check_match 

line 4. The block that reports the join links is also modified to 

keep track of the previous inner, i.e., prevInner. This block 

(lines 13 to 18) outputs join links for the current inner and the 

consecutive inner tuples that have the same value of the join 

attribute. prevInner is used in line 18 to test if two consecutive 

inner tuples have the same join attribute values. prevInner is 

also used in line 20 to test if the new outer is closer to 

prevInner than to inner. Notice that if the result of this test is 

true, the new outer matches all the tuples in the range [mark, 

prevInner] and the process continues reporting the join links 

directly (line 13). The presented algorithms are coded in 

PostgreSQL in the fashion of a state machine. Fig. 13.d shows 

the states associated to the different tasks. The implementation 

of Ɛ-Join and Join-Around use the same set of states employed 

by SMJ. 

The cost of the proposed SJ operators is close to the one of 

SMJ for reasonably small Ɛ (for Ɛ-Join) and inner datasets 

without many duplicates (for Join-Around) because: (i) every 

outer tuple is read once in sequential order; (ii) the inner 

tuples are read in an almost sequential order, restoring the 

inner cursor to a previously read inner tuple is employed to 

generate the correct SJ links; (iii) in Ɛ-Join, if the inner cursor 

is restored, the length of the jump, i.e., distance from previous 

inner to marked tuple, is at most 2Ɛ; and (iv) in Join-Around, 

if  the  inner  cursor  is  restored,  all  the  tuples  in  the  range 

Reference Points Table

AccBalLevels1(R1): 110 account balance values in the range of C_acctbal [0,11000] 

SELECT * FROM CUSTOMER, AccBalLevels1
WHERE abs(C_acctbal - refpoint) <= Ɛ;

RegOps-JoinAround

SELECT * FROM CUSTOMER, AccBalLevels1

WHERE C_acctbal WITHIN Ɛ OF refpoint;
SJ-EpsJoin

RegOps-EpsJoin

AccBalLevels2(R2): 11000 account balance values in the range of C_acctbal [0,11000] 

SELECT T1.c_custkey, T1.C_acctbal, T2.refpoint FROM    

  (SELECT c_custkey, C_acctbal, min(dist) as mindist  

    FROM (SELECT c_custkey, C_acctbal, refpoint, abs(    

    C_acctbal - refpoint) as dist FROM CUSTOMER, 

    AccBalLevels1) AS C1 GROUP BY c_custkey, C_acctbal) AS  

   T1, AccBalLevels1 T2

WHERE R1.mindist = abs(T1.C_acctbal - T2.refpoint);

SELECT c_custkey, C_acctbal, refpoint 

FROM CUSTOMER, AccBalLevels1

WHERE C_acctbal AROUND refpoint; 

SJ-JoinAround

SELECT * FROM CUSTOMER, AccBalLevels1 R1 , 

AccBalLevels2 R2 WHERE C_acctbal WITHIN 11 OF 

R1.refpoint AND R1.refpoint WITHIN 11 OF R2.refpoint;

AssocRule

SELECT * FROM CUSTOMER, AccBalLevels2 
WHERE C_acctbal WITHIN 11 OF refpoint AND 
2200<C_acctbal AND C_acctbal<=6600

PushSel

SELECT refpoint, sum(C_acctbal) 
FROM CUSTOMER, AccBalLevels[N] WHERE C_acctbal 
WITHIN 11 OF refpoint GROUP BY refpoint

Lazy-Eager [N]

Queries

 

Fig. 15 Reference Points table and queries used in performance evaluation 

 [marked tuple, previous inner tuple] share the same value of 

the similarity join attribute. 

VI. PERFORMANCE EVALUATION 

We implemented the Ɛ-Join and Join-Around, as described 

in Section V inside the PostgreSQL 8.2.4 query engine. In this 

section we evaluate the performance of these operators as well 

as the effectiveness of several transformation rules for SJs. 

A. Test Configuration 

The dataset used in the performance evaluation is based on 

the one specified by the TPC-H benchmark [33]. The 

Reference points tables and queries used in the tests are 

presented in Fig. 15. The default dataset scale factor (SF) is 5 

(5GB). All the experiments are performed on an Intel Dual 

Core 1.83GHz machine with 2GB RAM running Linux as OS. 
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B. Performance Evaluation 

We study the performance of the implemented operators 

comparing their execution time and scalability properties with 

the ones of queries that get similar results using only regular, 

i.e., non-similarity-based, operators. Notice that even though 

many implementation approaches have been proposed for SJs, 

e.g., [8], [9], [10], [11], [12], most of them have been 

proposed as standalone implementations not integrated within 

a DBMS engine and make use of specialized indices, data 

structures, partitioning, and access methods. The efficient 

integration of these techniques within a DBMS query engine 

and evaluation of their performance is a task for future work. 

1)  Join-Around Performance while Increasing Dataset Size: 

Fig. 16 gives the execution time of the SJ-JoinAround query 

compared to the one of the RegOps-JoinAround query that 

produces the same output using only regular operators.  This 

figure compares the performance of both queries for different 

values of scale factor (SF). The number of customers is 

150,000*SF while the number of central points is maintained 

constant. The execution time of RegOps-JoinAround grows 

from being about 20 times bigger than that of SJ-JoinAround 

for SF=1 to being about 200 times bigger for SF=8.  The poor 

performance of RegOps-JoinAround is due to a double nested 

loop join in its execution plan in addition to the use of an 

aggregation operation.  The Join-Around operator sorts each 

set once, and processes both sets synchronously. 

2)  Ɛ-Join Performance while Increasing Ɛ: Fig. 17 gives the 

execution time of the SJ-EpsJoin query compared to the one 

of the RegOps-EpsJoin query that produces the same output. 

The results are presented for various values of Ɛ. The value of 

Ɛ is a fraction of the domain range. Specifically, the customer 

account balance domain uses values in the range [0,11000]. 

This experiment uses SF=1. The key result of this experiment 

is that the SJ-EpsJoin query performs significantly better than 

the RegOps-EpsJoin query for small values of Ɛ. For instance, 

when Ɛ=1, the execution time of RegOps-EpsJoin is 4.32 sec. 

while the one of SJ-EpsJoin is 0.96 sec., i.e., RegOps-EpsJoin 

is over 4 times faster. The advantage of the Ɛ-Join over the 

regular query gets reduced as the value of Ɛ increases and is 

almost negligible when the size of Ɛ is about 20% of the 

domain range. Having a good performance for small values of 

Ɛ is of key importance for the Ɛ-Join operator since similarity 

join queries with small Ɛ are among the most common and 

useful types of similarity-based operations. The performance 

of SJ-EpsJoin is better for small values of Ɛ because it 

generates shorter restorations of the inner cursor. On the other 

hand, RegOps-EpsJoin calculates the distance between all the 

combinations of outer and inner tuples. This requires in 

general the same amount of I/O independently of the value of 

Ɛ. The additional cost for high values of Ɛ is due to the 

increase in the number of links to be reported. 

3)  Effectiveness of Associativity transformation: AssocRule_ 

LHS and AssocRule_RHS in Fig. 18 represent the query 

AssocRule executed using plans that corresponds to the LHS 

and RHS of the rule IV.A.3.a respectively. The execution time 

of AssocRule_RHS is 9.2% of that of AssocRule_LHS. 

AssocRule_LHS joins (Ɛ-Join) first Customer (C) and R2 

generating 17,241,601 intermediate rows.  The execution time 

of AssocRule_RHS is much smaller because it joins the two 

smaller tables (R1 and R2) first generating only 2519 

intermediate rows. 

4)  Effectiveness of pushing selection under SJ: PushSel_LHS, 

PushSel_RHS1, and PushSel_RHS2 in Fig. 19 represent the 

query PushSel executed using plans that corresponds to the 

LHS and RHS of rule IV.A.1.a, and the RHS of rule IV.A.2.a 
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respectively. PushSel_LHS performs first the join (7,241,601 

intermediate rows) and then the selection. In PushSel_RHS1 

the selection operation has been pushed to the input 

corresponding to table Customer (300,872 intermediate rows). 

The execution time of PushSel_RHS1 is 73% of the one of 

PushSel_LHS. In PushSel_RHS2 the filtering benefit is furher 

improved by pushing selection operations on both inputs of 

the join. The execution time of PushSel_RHS2 is only 55% of 

the one of PushSel_LHS. 

5)  Effectiveness of Lazy and Eager aggregation 

transformations: In Fig. 20, LazyN and EagerN represent the 

query LazyEager executed using plans that corresponds to the 

expressions E1 and E2 of Theorem 3 respectively. The 

execution time of Eager1 is 35% of the one of Lazy1. The 

advantage of the Eager approach increases when the 

cardinality of the inner input grows as in Eager2 with an 

execution time that is only 9% of that of Lazy2.  

VII. CONCLUSIONS AND FUTURE WORK  

This paper focuses on the study and implementation of the 

Similarity Join (SJ) as a first-class database operator. Several 

previously proposed types of similarity join are considered in 

our study. In addition, a useful extension of the kNN-Join and 

Ɛ-Join, named Join-Around is introduced. The paper studies 

extensively the query operator properties of the Similarity Join. 

It presents multiple equivalence rules that not only consider 

direct extensions of known relational algebra rules but also 

exploit specific properties of similarity joins to enable more 

useful query transformations. The paper also studies the way 

the Eager and Lazy Aggregation transformation techniques 

can be applied to queries with JS and addresses the interaction 

and equivalences of the previously proposed Similarity 

Group-by (SGB) operators with the studied SJ operators. The 

paper presents guidelines to implement Join-Around and Ɛ-

Join as core operators of a DBMS query engine and the 

performance evaluation of this implementation in PostgreSQL. 

The performance study shows that the SJ-based queries 

perform significantly better than queries that get the same 

result using only regular operators. Furthermore this section 

shows the effectiveness of several studied transformation rules. 

Plans for future work include the study and integration of 

more complex similarity join strategies as database operators, 

in particular approaches that support multi-dimensional data; 

the extension of other operations, e,g., CUBE, ROLLUP, 

union and selection, as similarity-aware operators and the 

study of their interaction with SJ and SGB, the application of 

SJ and SGB operators to the area of privacy preservation and 

anonymity, and the study of similarity-based joins and 

aggregations as tools in business decision support systems. 
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