
Similarity-aware Query Processing and Optimization
*

Yasin N. Silva
Supervised by: Walid G. Aref

Department of Computer Science, Purdue University

{ysilva,aref}@cs.purdue.edu

ABSTRACT

Many application scenarios, e.g., marketing analysis, sensor

networks, and medical and biological applications, require or can

significantly benefit from the identification and processing of

similarities in the data. Even though some work has been done to

extend the semantics of some operators, e.g., join and selection, to

be aware of data similarities; there has not been much study on the

role, interaction, and implementation of similarity-aware operators

as first-class database operators. The focus of the thesis work

presented in this paper is the proposal and study of several

similarity-aware database operators and a systematic analysis of

their role as query operators, interactions, optimizations, and

implementation techniques. This paper presents the core research

questions that drive our research work and the physical database

operators that were studied as part of this thesis work so far, i.e.,

Similarity Group-by and Similarity Join. We describe multiple

optimization techniques for the introduced operators. Specifically,

we present: (1) multiple non-trivial equivalence rules that enable

similarity query transformations, (2) Eager and Lazy aggregation

transformations for Similarity Group-by and Similarity Join to

allow pre-aggregation before potentially expensive joins, and (3)

techniques to use materialized views to answer similarity-based

queries. This paper also presents the main guidelines to implement

the presented operators as integral components of a DBMS query

engine and some of the key performance evaluation results of this

implementation in an open source DBMS. In addition, we present

the way the proposed operators are efficiently exploited to answer

more useful business questions in a decision support system.

1. INTRODUCTION
It is widely recognized that the move from exact semantics of data

and Boolean semantics of queries to imprecise and approximate

semantics of data and queries is one of the key paradigm shifts in

data management. This shift is fueled in part by the recognition

that many application scenarios, e.g., marketing analysis, sensor

networks, data warehousing, data cleaning, etc., require or can

significantly benefit from the identification and processing of

similarities in the data. Several techniques have been proposed to

———————————————
* This work was partially supported by NSF Grant IIS-0811954 and by

NIH Grant NIGMS U24 GM077905 for the EcoliHub project.

Implementation

complexity

Take

advantage of

DB optimizer

Composable

with other DB

operators

Supported

Operator

Instances

Similarity Operator Implementation Approach

As Stored

Procedures
Outside of DB

Using Basic

SQL Operators

Integrated in

DB Engine

Queries use a

complex mix of

joins and

aggregations

Can reuse

and extend

DB operators

and structures

No

NoNo

Yes (use of MVs,

pre-aggregation,

etc.)

No directly

No

Yes (full

pipelining of

results)

AllAllAll

Certain types may

be unfeasible or

require very

complex queries

Requires

specialized

structures,

spilling

mechanisms,

etc.

Requires

specialized

structures,

mechanisms to

deal with large

data sets, etc.
Yes (resulting

queries can be

highly complex)

Figure 1. Comparison of implementation approaches

extend some data operations, e.g., join and selection, to process

data similarities. Unfortunately, there has not been much study on

the role, interactions, and implementation of similarity-aware

operators as first-class database operators. In this context, the

research questions that drive our work are:

1. How can DBMSs take advantage of similarities in the data

to answer complex similarity-based queries required in

multiple application scenarios?

2. How can standard database operators be extended to use

similarities on the data?

3. How do these similarity-aware database operators interact

among themselves and with the regular operators?

4. Which optimization and implementation techniques can be

used to effectively realize the similarity-aware operators?

We argue that similarity-aware operators should be implemented

as first-class database operators because, as shown in Figure 1,

this approach has the following key advantages: (1) the similarity-

aware operators can be interleaved with other regular or

similarity-aware operators and its results pipelined for further

processing; (2) important optimization techniques, e.g., pushing

certain filtering operators to lower levels of the execution plan,

pre-aggregation, and the use of materialized views can be

extended to the new operators; and (3) the implementation of

these operators can reuse and extend other operators and

structures to handle large datasets, and use the cost-based query

optimizer machinery to enhance query execution time. Therefore,

the focus of the thesis work presented in this paper is the proposal

and study of several similarity-aware database operators and a

systematic analysis of their role, interactions, optimizations, and

implementation techniques. This paper presents the main results

of the study of two key similarity-aware database operations, i.e.,

Similarity Group-by (SGB) and Similarity Join (SJ), proposed as

part of this thesis work. The paper presents the relationships

among these operators and with other regular operators.

Specifically, it presents multiple equivalences rules that allow the

transformation of query plans for query optimization. Key

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the VLDB copyright notice and the title of the publication and its date

appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers

or to redistribute to lists, requires a fee and/or special permissions from the

publisher, ACM.

VLDB ’09, August 24-28, 2009, Lyon, France.

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

optimization techniques proposed for regular operations are

extended to the case of similarity-aware operators, e.g., Eager and

Lazy aggregation transformations and using materialized views to

answer queries, to the case of similarity-aware operators. The

extended techniques allow for instance: (1) pushing down

similarity predicates from a similarity join operator to a grouping

operator, and (2) partially pushing down an aggregation or

similarity aggregation operator below a join or a similarity join.

The paper also presents the implementation guidelines to realize

the proposed similarity-aware operators, key performance

evaluation results based on their implementation in an open

source DBMS (PostgeSQL), and the way the proposed similarity

grouping operators are efficiently exploited to answer more useful

and complex business questions in a decision support system.

The remaining part of the paper is organized as follows. Section 2

discusses the related work. Section 3 presents the main results of

the research work already conducted as part of this thesis work;

specifically it presents the analysis of the Similarity Group-by and

Similarity Join database operators. Section 4 presents several

tasks for future work, and Section 5 the conclusions.

2. RELATED WORK
Significant work has been carried out on the extension of certain

common operations, i.e., Join and Selection, to make use of

similarities in the data. This work introduced the semantics of the

extended operations and proposed techniques to implement them

primarily as standalone operations outside of a DBMS engine

rather than as integrated database operators.

Several types of similarity join and their implementation

strategies, have been proposed in the literature, e.g., range

distance join (retrieves all pairs whose distances are smaller than a

pre-defined threshold) [1, 2, 3, 4], k-distance join (retrieves the k

most-similar pairs) [5], and knn-join (retrieves, for each tuple in

one table, the k nearest-neighbors in the other table) [6]. The

range distance join, also known as the epsilon-join, has been the

most studied type of similarity join. Among its most relevant

implementation techniques, we find approaches that rely on the

use of pre-built indices, e.g., eD-index [1]. These techniques strive

to partition the data while clustering together similar objects.

However, this approach may require rebuilding the index to

support queries with different similarity parameter values, i.e.,

epsilon. Furthermore, eD-index is directly applicable only to the

case of self-joins. Several non-index-based techniques have also

been proposed to implement the range distance join. EGO [2],

GESS [3], and QuickJoin [4] are three of the most relevant non-

index-based algorithms. The Epsilon Grid Order (EGO) algorithm

[2] imposes an epsilon-sized grid over the space and uses an

efficient schedule of reads of blocks to minimize I/O. The Generic

External Space Sweep (GESS) algorithm [3] creates hypersquares

centered on each data point with epsilon length sides, and joins

these hypersquares using a spatial join on rectangles. The

Quickjoin algorithm [4] recursively partitions the data until the

subsets are small enough to be efficiently processed using a nested

loop join. This algorithm makes recursive calls to process each

partition and a separate recursive call to process the ―windows‖

around the partition boundary. Quickjoin outperforms EGO and

GESS [4]. Also of importance, is the work on similarity join

techniques that make use of relational database technology, e.g.,

[7]. These techniques are applicable only to string or set-based

data. The general approach pre-processes the data and query, e.g.,

decomposes data and query strings into sets of q-grams, and stores

the results of this stage on separate tables. Then, the result of the

similarity join can be obtained using standard aggregate/group-

by/join SQL statements. Indices on the pre-processed data are

used to improve performance.

The special cases of similarity joins with one-tuple inner relations

represent several types of similarity selection. Among key recent

contributions on similarity selection we have: a quantitative cost-

based approach to build high-quality grams to support selection

queries on strings [8], a method to find all data objects that match

with a given query object in a low-dimensional subspace instead

of the original full space [9], and flexible dimensionality reduction

techniques to support similarity search [10].

The work in [11] proposes an algebra for similarity-based queries.

This work presents the extension of simple algebra rules, e.g.,

pushing selection into join, to the case of similarity operators. A

framework for similarity query optimization is presented in [12].

This work makes use of simple equivalence rules to generate

alternative query plans. The main difference between this body of

work and our contribution is that we focus on analyzing in detail

the properties among different types of similarity-aware operators,

among different instances of the same similarity operator, and

among regular and similarity-aware operators. Furthermore, we

study the extension of query optimization techniques, e.g., lazy

and eager aggregation transformations, and the use of materialized

views to answer queries, to the case of similarity-based queries.

The work on clustering techniques developed in various fields,

e.g., pattern recognition, machine learning, biology; represents

also a related area which studies ways to group together similar

objects. Of special interest is the work on clustering of very large

datasets. CURE [13] and BIRCH [14] are two of the most

representative clustering algorithms. They are based on sampling

and summaries, respectively. CURE and BIRCH use only one

pass over the data and hence reduce notably the execution time for

clustering. However, when compared to the execution time of the

standard group-by operation, the execution time of CURE and

BIRCH are significantly slower. Furthermore, the use of

clustering is via a complex data mining model and its

implementation is not integrated with the standard query

processing engine.

In the context of data reconciliation, Schallehn et al. propose SQL

extensions to allow the use of user-defined similarity functions for

grouping purposes [15] and similarity grouping predicates [16].

They focus on string similarity and similarity predicates to

reconcile records. Although they can be used for this purpose, the

proposed similarity group-by operators in this paper are more

general and are designed to be part of a DBMS’s query engine.

Some of the optimization techniques of similarity join presented

in this paper build on previous work on optimization of regular

non similarity queries. Larson et al. study pull-up and push-down

techniques that allow the query optimizer to move aggregation

operators up and down the query plan [17, 18]. These techniques

enable complete [17] or partial [18] pre-aggregation that can

reduce significantly the input size of a join and decrease the

execution time of an aggregation query. The use of materialized

views to answer aggregation queries is another technique that can

dramatically improve the execution time of certain queries [19].

3. OUR RESEARCH CONTRIBUTIONS
This section presents briefly the main results of the research work

already conducted as part of this thesis work [20, 21, 22].

3.1 Similarity-aware Operators
This subsection presents the similarity-aware counterparts of two

core database operations: Group-by and Join.

3.1.1 Similarity Group-by
The generic definition of the similarity group-by (SGB) operator

is as follows [20]:

𝛾𝐹1(𝐴1),…,𝐹𝑚 (𝐴𝑚)(𝑅)(𝐺1 ,𝑆1),…,(𝐺𝑛 ,𝑆𝑛)

where R is a relation name, Gi is an attribute of R that is used to

generate the groups, i.e., a similarity grouping attribute, Si is a

segmentation of the domain of Gi in non-overlapping segments, Fi

is an aggregation function, and Ai is an attribute of R.

In addition we introduce three implementable instances of the

previous generic definition: Unsupervised Similarity Group-by

(SGB-U), Supervised Similarity Group Around (SGB-A), and

Supervised SGB using Delimiters (SGB-D). SGB-U (e.g., Figure

2.a) enables grouping tuples based on desired group properties,

e.g., size (MAXIMUM_GROUP_DIAMETER) and compactness

(MAXIMUM_ELEMENT_SEPARATION). SGB-A (e.g., Figure

2.b) allows the grouping around points of interest. SGB-D (e.g.,

Figure 2.c) enables segmenting the tuples based on given limiting

values. Several instances can be combined in the same query [20].

These instances represent a middle ground between the regular

group-by and standard clustering algorithms. They are intended to

be much faster than regular clustering algorithms and generate

groupings that capture similarities on the data not captured by

regular group-by. As evident from Figure 2, SGB instances are

able to identify successfully the naturally formed groups.

3.1.2 Similarity Join
The generic definition of the Similarity Join (SJ) operator is as

follows [22]:

𝐴 ⋈𝜃𝑆
𝐵 = 𝑎, 𝑏 𝜃𝑆 𝑎, 𝑏 , 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

where θs represents the similarity join predicate. This predicate

specifies the similarity-based conditions that the pairs <a,b> need

to satisfy to be in the SJ output. The SJ predicates for the

similarity join operators considered in our study are as follows.

 Range Distance Join (Ɛ-Join): 𝜃𝜀 ≡ 𝑑𝑖𝑠𝑡 𝑎, 𝑏 ≤ 𝜀

 kNN-Join: 𝜃𝑘𝑁𝑁 ≡ 𝑏 𝑖𝑠 𝑎 𝑘 − 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑟 𝑜𝑓 𝑎

 k-Distance-Join (kD-Join): 𝜃𝑘𝐷 ≡ 𝑎, 𝑏 𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡𝑕𝑒
 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑘 − 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑝𝑎𝑖𝑟𝑠

 Join-Around (A-Join): 𝜃𝐴,𝑀𝐷=2𝑟 ≡ 𝑏 𝑖𝑠 𝑡𝑕𝑒 𝑐𝑙𝑜𝑠𝑒𝑠𝑡

 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑟 𝑜𝑓 𝑎 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡 𝑎, 𝑏 ≤ 𝑟

The Ɛ-, kNN-, and kD-join operators are common and extensively

used types of similarity join. The Join-Around is a new useful

type of similarity join that combines some properties of both the

range distance and kNN joins. Every value of the first joined set is

assigned to its closest value in the second set. Additionally, only

the pairs separated by a distance of at most r are part of the join

output. Here MD stands for Maximum Diameter and r=MD/2

represents the Maximum Radius. Figure 3 shows the extended

SQL and examples of the four types of similarity join operators.

3.2 Optimizing Similarity-aware Operators
Multiple optimization techniques are studied for the proposed

similarity-aware database operators. These optimization

techniques are presented in detail in [20] and [22] and include: (1)

multiple non-trivial transformation rules that exploit specific

properties of SJ and SGB operators, (2) equivalence rules between

Group 1 Group 2 Group 3 Group 4 Group 5

c) GROUP BY Temperature DELIMITED BY (SELECT Value FROM Thresholds)

Group 1 Group 2 Group 3 Group 4 Group 5 Group 7

d
d

d

Group 6

s s ss s
d d d d

a) GROUP BY Temperature MAXIMUM_ELEMENT_SEPARATION 2

 MAXIMUM_GROUP_DIAMETER 6

b) GROUP BY Temperature AROUND {30,50}

 MAXIMUM_ELEMENT_SEPARATION 2 MAXIMUM_GROUP_DIAMETER 20

r r r
s s s

r

Group 1 Group 2

Figure 2. Examples of Similarity Group-by

A

Ɛ

k=2

a) Range Distance Join: SELECT … FROM A, B WHERE A.a WITHIN Ɛ OF B.b

B

A

B

A

B

A

B
k=2

r

d) Join-Around: SELECT … FROM A, B WHERE A.a AROUND B.b [MAX_DIAMETER 2r]

b) kNN-Join: SELECT … FROM A, B WHERE B.b k NEAREST_NEIGHBOR_OF A.a

c) kD-Join: SELECT … FROM A, B WHERE A.a k TOP_CLOSEST_PAIRS B.b

Figure 3. Examples of Similarity Join

multiple SJ operators and between SJ and SGB operators, (3)

Eager and Lazy aggregation transformations for SGB and SJ to

enable pre-aggregation that can significantly reduce the amount of

data to be processed by SJs, and (4) techniques to use materialized

views to answer similarity-based queries.

Equivalence rules enable the transformation of queries into

equivalent plans with potentially smaller expected execution time.

We propose multiple non-trivial equivalence rules for introduced

similarity-aware operators. Figure 4 presents a subset of them.

Additional rules are presented in [22] and [20].

Another important query optimization approach is the use of pull-

up and push-down techniques to move the grouping operator up

and down the query tree. The main Eager and Lazy aggregations

theorem introduced in [17] enables several pull-up and push-down

techniques for the regular, i.e., non-similarity, join and group-by

operators. We have extended the main theorem to the cases of: (1)

regular join and similarity group-by, (2) similarity join and regular

group-by, and (3) similarity join and similarity group by. Figures

5 and 6 illustrate the first two cases respectively. In general, the

single aggregation operator of the Lazy approach is split into two

parts in the Eager approach. The first part pre-evaluates some

aggregation functions and calculates the count before the join. The

second part uses the intermediate information to calculate the final

results after the join. Both the eager and lazy versions of a query

should be considered during query optimization since neither of

them is the best approach in all scenarios. Joins with high

selectivity tend to benefit the Lazy approach while aggregation

that reduces considerably the number of tuples that flow in the

pipeline tend to benefit the Eager approach. Moreover, we study

Basic Associativity of SJ Operators

1. 𝐸1 ⋈𝜃𝜀1
𝐸2 ⋈𝜃𝜀2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝜀1∧𝜃 (𝐸2 ⋈𝜃𝜀2

𝐸3)

2. 𝐸1 ⋈𝜃𝐴1
𝐸2 ⋈𝜃𝐴2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝐴1∧𝜃 (𝐸2 ⋈𝜃𝐴2

𝐸3)

3. 𝐸1 ⋈𝜃𝑘𝑁𝑁 1
𝐸2 ⋈𝜃𝑘𝑁𝑁 2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝑘𝑁𝑁 1∧𝜃 (𝐸2 ⋈𝜃𝑘𝑁𝑁 2

𝐸3)

where θƐ1, θA1, and θkNN1 involve attributes from only E1 and E2; θƐ2, θA2,
and θkNN2 involve attributes from only E2 and E3. θ is a non-similarity

predicate. [22] presents more rules that combine different types of SJ.

Associativity Rule to Enable Join on Originally Unrelated Attributes

In the case of Range Distance Join, when the attributes e1 of E1 and e2 of

E2 are joined using Ɛ1 and the result joined with attribute e3 of E3 using Ɛ2,
there is an implicit relationship between e1 and e3 that is exploited by the

following equivalence rule:

4. 𝐸1 ⋈𝑒1 𝜃𝜀1 𝑒2
𝐸2 ⋈𝑒2 𝜃𝜀2 𝑒3

𝐸3 ≡

 𝐸1 ⋈𝑒1 𝜃𝜀1+𝜀2 𝑒3
𝐸3 ⋈(𝑒1 𝜃𝜀1 𝑒2)∧(𝑒2 𝜃𝜀2 𝑒3) 𝐸2

This rule enables the generation of a cheaper plan (RHS) when the

selectivity of the first join in the RHS of the rule is small.

Basic Distribution of Selection over SJ

When all the attributes of the selection predicate θ involve only the
attributes of one of the expressions being joined (E1):

5. 𝜎𝜃 𝐸1 ⋈𝜃𝜀
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝜀

𝐸2

6. 𝜎𝜃 𝐸1 ⋈𝜃𝑘𝑁𝑁
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝑘𝑁𝑁

𝐸2

7. 𝜎𝜃 𝐸1 ⋈𝜃𝐴
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝐴

𝐸2

Pushing Selection Predicate under Originally Unrelated Join Operand

In equivalence rules 5-7 each selection predicate θ is ―pushed‖ only under

the join operand that contains all the attributes referenced in θ. In the case

of the Range-Join operator, the filtering benefits of pushing a selection

predicate θ can be further improved by pushing θ under both operands of
the join as shown in the following equivalence rule:

8. 𝜎𝜃 𝐸1 ⋈𝜃𝜀
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝜀

(𝜎𝜃±𝜀(𝐸2))

where all the attributes of the predicate θ involve only the attributes of E1,
and the selection predicate θ±Ɛ represents a modified version of θ where

each condition is ―extended‖ by Ɛ and is applied on the join attribute of

E2. For example, if θ = 10 ≤ e1 ≤ 20, then θ±Ɛ = 10–Ɛ ≤ e2 ≤ 20+Ɛ.

Equivalences Among Similarity-aware Operators

Join-Around and the Similarity Group-Around are equivalent as follows:

9. γ
F(AA)

(E1)
e1 around E2 .e2

≡ γ
F AA (E1 ⋈e1 θA e2 E2)

e2

where F(AA) is the aggregate function on aggregation attribute AA.

Join-Around and kNN-Join are equivalent under the following rule:

10. E1 ⋈θA ,MD =∞
E2 ≡ E1 ⋈θkNN (k=1)

E2

Further equivalences among different SJ operators are presented in [22].

Figure 4. Equivalence Rules for Similarity-aware Operators

ways to further enhance the filtering power of the pre-aggregation

step pushing down the similarity predicates from the SJ operator

to the grouping one. Specifically we propose extensions that

support (1) pushing similarity predicates from Range-Join to GB

and (2) pushing similarity predicate from Join-Around to GB [22].

Using materialized views to answer queries [19] is another

important optimization technique that can yield considerable

query processing time improvements and can be extended to the

case of similarity-aware operators. View matching algorithms to

determine if a certain query can be answered using a set of

materialized views are presented in [19]. These algorithms are

extended to the case of queries and views with SGB in [20] and to

the case of queries and views with SJ in [22].

SGB

Join

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1), SUM(S2)
SGB

Join

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1), SUM(S2)*CNT

SGB

SUM(S1) AS SS1, CNT

G1 on Seg1,

G2 on Seg2

G1, G2 on Seg2

G1 on Seg1, J1

J1=J2

J1=J2

b) Eager Similarity Aggregationa) Lazy Similarity Aggregation

Figure 5. Eager/Lazy Transformation with SGB and Join

GB

SJoin(J1,J2)

GB

SJoin

GB

G1, G2

b) Eager Aggregation a) Lazy Aggregation

(J1,J2)

SUM(S1) AS SS1, CNT

G1, G2

T1 T2

(G1,J1,S1) (G2,J2,S2)

T2

(G2,J2,S2)T1

(G1,J1,S1)

G1, J1

SUM(SS1), SUM(S2)*CNT
SUM(S1), SUM(S2)

Figure 6. Eager/Lazy Transformation with GB and SJ

Agg (a2 around T2, a1), or

Agg (a2 delimited by T2, a1)

1. SELECT … FROM (T)

GROUP BY a1 AROUND (T1),

a2 AROUND (T2)

Sort (a2)

T2

2. SELECT … FROM (T)

GROUP BY a1 DELIMITED BY (T1),

a2 DELIMITED BY (T2)

Sort (T2.col)

3. SELECT … FROM (T)

GROUP BY

a1 MAX_ELMT_SEPARATION s1,

a2 MAX_ELMT_SEPARATION s2

Agg (a1 around T1, a2), or

Agg (a1 delimited by T1, a2)

Sort (a1)

T T1

Sort (T1.col)

Agg (a2 Max_Elmt_Sep s2, a1)

Sort (a2)

Agg (a1 Max_Elmt_Sep s1, a2)

Sort (a1)

T
Figure 7. Path/Plan Trees for SGB with multiple SGAs

3.3 Implementing Similarity-aware Operators
The detailed algorithms and data structures to implement all three

instances of SGB as well as the Range-Join and Join-Around

inside the query engine of standard RDBMSs are presented in [20]

and [22]. This subsection briefly presents the main

implementation guidelines. This implementation considers the

support of multiple independent numeric grouping attributes for

SGB and multiple join predicates over numeric attributes for SJ.

One of the goals of the implementation is to reuse and extend

already available routines and structures to minimize the effort

needed to realize these operators.

To add support for SGB and SJ in the parser, the raw-parsing

grammar rules, e.g., the yacc rules in the case of PostgreSQL, are

extended to recognize the syntax of the different new grouping

approaches, and join predicates. The parse-tree and query-tree

data structures are extended to include the information about the

type and parameters of the similarity-based operations.

In the planning stage, when multiple similarity grouping attributes

(SGAs) or SJ predicates are used, they are processed one at the

time. Figure 7 gives the structure of the plan trees generated when

two SGAs a1 and a2 are used. The bottom aggregation node

applies similarity grouping on a1 and regular aggregation on a2.

Figure 8. Performance of SGB while

increasing dataset size

Figure 9. Performance of generating

similarity groups with GB vs. SGB

Figure 10. Performance of Join-

Around (Nearest Neighbor Join)

The output of this node is aggregated by the top aggregation node

that applies similarity grouping on a2 and regular aggregation on

a1. Notice that supervised aggregation nodes make use of their

inner input plan tree to receive the reference points data.

Each extended aggregation node is able to process one SGA and

any number of regular grouping attributes. Similarly, each

extended join node can process one SJ predicate and any number

of regular join predicates. The implementation of the executor

routines for the SGB operators uses a single plane sweep approach

to form the groups. The tuples to be grouped and the reference

points have been previously sorted and are processed

simultaneously using a hash table to maintain information of the

formed groups. At any time, a set of current groups is maintained

and each time the sweeping plane reaches a tuple the system

evaluates whether this tuple belongs to the current groups, does

not belong to any group, or starts a new set of groups. Range-Join

and Join-Around are implemented extending the routines that

support the Sort Merge Join operator. This allows a fast and

efficient implementation of both SJ operators. The sorted tuples

received from the input plans are processed synchronously

following also a plane sweep approach. The algorithms are coded

in PostgreSQL in the fashion of a state machine. Both Ɛ-Join and

Join-Around use the same set of states employed by the Sorted

Merge Join. The main changes to implement the SJ operators are

on the routine that evaluates if there is a match between two tuples

and on the way the inner cursor is restored to a previous tuple to

ensure the correct generation of SJ links.

3.4 Performance Evaluation
The proposed similarity-aware operators were implemented in an

open source database (PostgreSQL), and their performance is

studied in detail in [20] and [22]. This subsection presents some of

the key results. The dataset used in the performance evaluation is

based on the one specified by the TPC-H benchmark. Figure 8

gives the execution time of several aggregation queries for

different dataset sizes. The key result of this experiment is that the

execution times of all the queries that use similarity group-by, i.e.,

SGB-X, are very close to the execution time of the regular

aggregation query GB for all the dataset sizes. Even in the worst

case scenario represented by GB(SGB)_X, i.e., SGB query

produces the same result as GB, the execution time of GB(SGB)

is at most only 25% bigger than the one of GB. Although in

general it is not possible to produce the output of SGB queries

using only regular SQL operations, this is feasible in some special

cases, e.g., SGB-A without additional conditions. Figure 9

compares the execution time of SGB(GB) with that of SGB-A.

The presented results show that the execution time and scalability

properties of the SGB query is much better than those of the query

that uses only regular SQL operations. The execution time of

SGB(GB) grows from being 500% bigger than that of SGB-A for

SELECT TotalBuy as TotalBuyLevelRef, min(TotalBuy),max(TotalBuy), count(TotalBuy), avg(TotalBuy)
FROM (SELECT c_name,c_custkey,sum(l_extendedprice) as TotalBuy FROM C, O, L WHERE c_custkey = o_custkey
 and o_orderkey = l_orderkey and o_orderkey IN (SELECT l_orderkey FROM L GROUP BY l_orderkey
 HAVING sum(l_quantity) > A)
 GROUP BY c_name,c_custkey)
GROUP BY TotalBuy MAXIMUM_GROUP_DIAMETER B MAXIMUM_ELEMENT_SEPARATION C

A

B

C

Figure 11. Exploiting SGB to identify clusters of large-volume

customers with similar buying power

SF(scale factor)=1 to being 1300% bigger for SF=14. Figure 10

gives the execution time of the Join-Around query SJ-JoinAround

compared to RegOps query that produces the same output using

only regular database operators. For all analyzed SF values, the

Join-Around query significantly outperforms the non-similarity-

based query. The execution time of SJ-RegOps grows from being

about 20 times bigger than that of JoinAround for SF=1 to being

about 200 times bigger for SF=8.

3.5 Exploiting Similarity-aware Operators
The proposed similarity-aware operators could be used in many

application scenarios. In [21], we study the way the similarity

grouping operators can be exploited to answer interesting business

questions in a decision support system (DSS). Two key properties

of SGB that are of special importance for this application are: the

fast formation of groups which allows the construction of

dynamic dashboards, and the pipelining of results which allows

further processing of the SGB results. One of the DSS dashboards

is shown in Figure 11. This dashboard allows the study of groups

of customers with similar buying power, i.e., total revenue due to

large volume orders. The dashboard allows the dynamic

specification of properties that describe the desired similarity

groups: group-size (maximum buying power distance in each

group), and compactness (maximum buying power separation

among members of a group). Other dashboards support the study

of profit around marketing campaigns, and the analysis of groups

of orders around revenue levels of interest [21].

4. FUTURE WORK
This section presents the future tasks of the presented thesis work.

Other similarity-aware database operators. Our previous

work focused on the SGB and SJ operators. We plan on studying

0

50

100

150

200

2 6 10 14

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Dataset Size (SF)

GB
GB(SGB)_H
GB(SGB)_S
SGB-A_H
SGB-A_S
SGB-A_MD
SGB-A_MS
SGB-D
SGB-U_MD
SGB-U_MS

0

500

1000

1500

2000

2500

3000

0 5 10 15

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Dataset Size (SF)

SGB-A_H

SGB-A_S

SGB(GB)

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Dataset Size (SF)

SJ-JoinAround

RegOps

the similarity-aware counterparts of other database operators, e.g.,

selection, duplicate elimination, set intersection, and set

difference. Similarly to the work carried out for SGB and SJ, we

plan on studying optimization techniques for these operators, e.g.,

we expect to identify new equivalence rules over these operators.

Similarity-aware data warehousing operators. The CUBE

and ROLLUP operators, which are extensively used in data

warehousing applications, can be extended to use similarity

grouping mechanisms like the ones used in SGB. Different

similarity grouping strategies can be used to group the values in

different dimensions. These extended CUBE and ROLLUP

operators will be able to generate more meaningful and useful

summaries of large datasets.

Benchmark for Similarity-based Query Processing. We plan

on building a benchmark to evaluate the similarity-aware query

processing capabilities of database systems. This benchmark is

expected to extend the TPC-H benchmark with data and queries

that allow answering multiple complex business questions. The

queries are expected to exploit similarities in the data and have

broad industry-wide relevance.

Further practical application of the proposed similarity-

aware operators. We intend to exploit all the proposed

similarity-aware operators to enable more useful and complex

business analysis extending the DSS presented in Section 3.5.

Furthermore, we plan on studying the use of similarity-aware

operators in the problem of phenomena detection in sensor

networks, where phenomenon can be defined as a persistent

condition observed in a set of sensors. Similarity-based queries

are especially useful in sensor data processing given the

approximate nature of sensor data. Similarity-based queries can be

actively used to specify and detect phenomena.

5. CONCLUSIONS
Many application scenarios need or can benefit tremendously

from database operators that exploit similarities in the data and

allow the pipelining of the results for further processing. Related

previous work has focused on the extension of the semantics of

some operations and has proposed mainly standalone

implementation techniques that are not fully integrated with the

query processing engine of DBMSs. The focus of this thesis work

is the proposal and study of several similarity-aware database

operators and the analysis of their role as query operators,

interactions, optimizations, and implementation techniques. This

paper presents the main results for the operators studied so far:

Similarity Group-by and Similarity Join. This presentation

includes: (1) the generic definition and several instances of each

operator, (2) multiple optimization techniques for the introduced

operators, (3) guidelines to implement them as integral

components of a DBMS query engine, (4) performance evaluation

results, and (5) the practical usage of the proposed similarity

grouping operators to answer more useful and complex business

questions in a decision support system. The paper describes also

the future tasks of the presented thesis work.

6. ACKNOWLEDGMENTS
Our thanks to Mohamed H. Ali and Muhammad U. Arshad for

their valuable ideas and help to realize the SGB-based DSS.

7. REFERENCES
[1] V. Dohnal, C. Gennaro, and P. Zezula. Similarity Join in

Metric Spaces Using eD-Index. In DEXA, 2003.

[2] C. Böhm, B. Braunmüller, F. Krebs, and H. P. Kriegel.

Epsilon Grid Order: An Algorithm for the Similarity Join on

Massive High-Dimensional Data. In SIGMOD, 2001.

[3] J. P. Dittrich and B. Seeger. GESS: a Scalable SimilarityJoin

Algorithm for Mining Large Data Sets in High Dimensional

Spaces. In SIGKDD 2001.

[4] E. H. Jacox and H. Samet. Metric Space Similarity Joins.

ACM Trans. Database Syst, 33(2): 1-38, 2008.

[5] G. Hjaltason, and H. Samet. Incremental distance join

algorithms for spatial databases. In SIGMOD, 1998.

[6] C. Böhm and F. Krebs. The k-Nearest Neighbour Join: Turbo

charging the KDD process. Knowledge and Information

Systems, 6(6): 728-749, 2004.

[7] S. Chaudhuri, V. Ganti, and R. Kaushik. A Primitive

Operator for Similarity Joins in Data Cleaning. In ICDE,

2006.

[8] X. Yang, B. Wang, and C. Li. Cost-Based Variable-Length-

Gram Selection for String Collections to Support

Approximate Queries Efficiently. In SIGMOD, 2008.

[9] Xiang Lian and Lei Chen. Similarity Search in Arbitrary

Subspaces Under Lp-Norm. In ICDE, 2008.

[10] M. Wichterich, I. Assent, P. Kranen, and T. Seidl. Efficient

EMD-based Similarity Search in Multimedia Databases via

Flexible Dimensionality Reduction. In SIGMOD, 2008.

[11] S. Adali, P. Bonatti, M. L. Sapino, and V. S. Subrahmanian.

A Multi-Similarity Algebra. In SIGMOD, 1998.

[12] M. R. Ferreira, C. Traina, and A. J. Traina. An Efficient

Framework for Similarity Query Optimization. In GIS, 2007.

[13] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient

clustering algorithm for large datasets. In SIGMOD, 1998.

[14] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An

efficient data clustering method for very large databases.

ACM SIGMOD Record, 25(2): 103-114, 1996.

[15] E. Schallehn, K. Sattler, and G. Saake. Extensible Grouping

and Aggregation for Data Reconciliation. In EFIS, 2001.

[16] E. Schallehn, K. Sattler, and G. Saake. Efficient similarity-

based operations for data integration. Data & Knowledge

Engineering, 48(3): 361-387, 2004.

[17] W. Yan and P. Larson. Eager Aggregation and Lazy

Aggregation. In VLDB, 1995.

[18] P. Larson. Data reduction by partial preaggregation. In

ICDE, 2002.

[19] J. Goldstein and P. Larson. Optimizing queries using

materialized views: a practical, scalable solution. In

SIGMOD, 2001.

[20] Y. N. Silva, W. G. Aref, and Mohamed H. Ali. Similarity

Group-by. In ICDE, 2009.

[21] Y. N. Silva, M. U. Arshad, and W. G. Aref. Exploiting

Similarity-aware Grouping in Decision Support Systems. In

EDBT, 2009.

[22] Y. N. Silva, W. G. Aref, and Mohamed H. Ali. Similarity

Join Database Operators. Technical Report, Department of

Computer Science, Purdue University, 2009.

