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ABSTRACT 

Many application scenarios, e.g., marketing analysis, sensor 

networks, and medical and biological applications, require or can 

significantly benefit from the identification and processing of 

similarities in the data. Even though some work has been done to 

extend the semantics of some operators, e.g., join and selection, to 

be aware of data similarities; there has not been much study on the 

role, interaction, and implementation of similarity-aware operators 

as first-class database operators. The focus of the thesis work 

presented in this paper is the proposal and study of several 

similarity-aware database operators and a systematic analysis of 

their role as query operators, interactions, optimizations, and 

implementation techniques. This paper presents the core research 

questions that drive our research work and the physical database 

operators that were studied as part of this thesis work so far, i.e., 

Similarity Group-by and Similarity Join. We describe multiple 

optimization techniques for the introduced operators. Specifically, 

we present: (1) multiple non-trivial equivalence rules that enable 

similarity query transformations, (2) Eager and Lazy aggregation 

transformations for Similarity Group-by and Similarity Join to 

allow pre-aggregation before potentially expensive joins, and (3) 

techniques to use materialized views to answer similarity-based 

queries. This paper also presents the main guidelines to implement 

the presented operators as integral components of a DBMS query 

engine and some of the key performance evaluation results of this 

implementation in an open source DBMS. In addition, we present 

the way the proposed operators are efficiently exploited to answer 

more useful business questions in a decision support system. 

1. INTRODUCTION 
It is widely recognized that the move from exact semantics of data 

and Boolean semantics of queries to imprecise and approximate 

semantics of data and queries is one of the key paradigm shifts in 

data management. This shift is fueled in part by the recognition 

that many application scenarios, e.g., marketing analysis, sensor 

networks, data warehousing, data cleaning, etc., require or can 

significantly benefit from the identification and processing of 

similarities in the data. Several techniques have been proposed to  
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Figure 1. Comparison of implementation approaches 

extend some data operations, e.g., join and selection, to process 

data similarities. Unfortunately, there has not been much study on 

the role, interactions, and implementation of similarity-aware 

operators as first-class database operators. In this context, the 

research questions that drive our work are:  

1. How can DBMSs take advantage of similarities in the data 

to answer complex similarity-based queries required in 

multiple application scenarios? 

2. How can standard database operators be extended to use 

similarities on the data? 

3. How do these similarity-aware database operators interact 

among themselves and with the regular operators? 

4. Which optimization and implementation techniques can be 

used to effectively realize the similarity-aware operators? 

We argue that similarity-aware operators should be implemented 

as first-class database operators because, as shown in Figure 1, 

this approach has the following key advantages: (1) the similarity-

aware operators can be interleaved with other regular or 

similarity-aware operators and its results pipelined for further 

processing; (2) important optimization techniques, e.g., pushing 

certain filtering operators to lower levels of the execution plan, 

pre-aggregation, and the use of materialized views can be 

extended to the new operators; and (3) the implementation of 

these operators can reuse and extend other operators and 

structures to handle large datasets, and use the cost-based query 

optimizer machinery to enhance query execution time. Therefore, 

the focus of the thesis work presented in this paper is the proposal 

and study of several similarity-aware database operators and a 

systematic analysis of their role, interactions, optimizations, and 

implementation techniques. This paper presents the main results 

of the study of two key similarity-aware database operations, i.e., 

Similarity Group-by (SGB) and Similarity Join (SJ), proposed as 

part of this thesis work. The paper presents the relationships 

among these operators and with other regular operators. 

Specifically, it presents multiple equivalences rules that allow the 

transformation of query plans for query optimization. Key 
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optimization techniques proposed for regular operations are 

extended to the case of similarity-aware operators, e.g., Eager and 

Lazy aggregation transformations and using materialized views to 

answer queries, to the case of similarity-aware operators. The 

extended techniques allow for instance: (1) pushing down 

similarity predicates from a similarity join operator to a grouping 

operator, and (2) partially pushing down an aggregation or 

similarity aggregation operator below a join or a similarity join.  

The paper also presents the implementation guidelines to realize 

the proposed similarity-aware operators, key performance 

evaluation results based on their implementation in an open 

source DBMS (PostgeSQL), and the way the proposed similarity 

grouping operators are efficiently exploited to answer more useful 

and complex business questions in a decision support system. 

The remaining part of the paper is organized as follows. Section 2 

discusses the related work. Section 3 presents the main results of 

the research work already conducted as part of this thesis work; 

specifically it presents the analysis of the Similarity Group-by and 

Similarity Join database operators. Section 4 presents several 

tasks for future work, and Section 5 the conclusions. 

2. RELATED WORK 
Significant work has been carried out on the extension of certain 

common operations, i.e., Join and Selection, to make use of 

similarities in the data. This work introduced the semantics of the 

extended operations and proposed techniques to implement them 

primarily as standalone operations outside of a DBMS engine 

rather than as integrated database operators.  

Several types of similarity join and their implementation 

strategies, have been proposed in the literature, e.g., range 

distance join (retrieves all pairs whose distances are smaller than a 

pre-defined threshold) [1, 2, 3, 4], k-distance join (retrieves the k 

most-similar pairs) [5], and knn-join (retrieves, for each tuple in 

one table, the k nearest-neighbors in the other table) [6]. The 

range distance join, also known as the epsilon-join, has been the 

most studied type of similarity join. Among its most relevant 

implementation techniques, we find approaches that rely on the 

use of pre-built indices, e.g., eD-index [1]. These techniques strive 

to partition the data while clustering together similar objects. 

However, this approach may require rebuilding the index to 

support queries with different similarity parameter values, i.e., 

epsilon. Furthermore, eD-index is directly applicable only to the 

case of self-joins. Several non-index-based techniques have also 

been proposed to implement the range distance join. EGO [2], 

GESS [3], and QuickJoin [4] are three of the most relevant non-

index-based algorithms. The Epsilon Grid Order (EGO) algorithm 

[2] imposes an epsilon-sized grid over the space and uses an 

efficient schedule of reads of blocks to minimize I/O. The Generic 

External Space Sweep (GESS) algorithm [3] creates hypersquares 

centered on each data point with epsilon length sides, and joins 

these hypersquares using a spatial join on rectangles. The 

Quickjoin algorithm [4] recursively partitions the data until the 

subsets are small enough to be efficiently processed using a nested 

loop join. This algorithm makes recursive calls to process each 

partition and a separate recursive call to process the ―windows‖ 

around the partition boundary. Quickjoin outperforms EGO and 

GESS [4]. Also of importance, is the work on similarity join 

techniques that make use of relational database technology, e.g., 

[7]. These techniques are applicable only to string or set-based 

data. The general approach pre-processes the data and query, e.g., 

decomposes data and query strings into sets of q-grams, and stores 

the results of this stage on separate tables. Then, the result of the 

similarity join can be obtained using standard aggregate/group-

by/join SQL statements. Indices on the pre-processed data are 

used to improve performance.  

The special cases of similarity joins with one-tuple inner relations 

represent several types of similarity selection. Among key recent 

contributions on similarity selection we have: a quantitative cost-

based approach to build high-quality grams to support selection 

queries on strings [8], a method to find all data objects that match 

with a given query object in a low-dimensional subspace instead 

of the original full space [9], and flexible dimensionality reduction 

techniques to support similarity search [10].  

The work in [11] proposes an algebra for similarity-based queries. 

This work presents the extension of simple algebra rules, e.g., 

pushing selection into join, to the case of similarity operators. A 

framework for similarity query optimization is presented in [12]. 

This work makes use of simple equivalence rules to generate 

alternative query plans. The main difference between this body of 

work and our contribution is that we focus on analyzing in detail 

the properties among different types of similarity-aware operators, 

among different instances of the same similarity operator, and 

among regular and similarity-aware operators. Furthermore, we 

study the extension of query optimization techniques, e.g., lazy 

and eager aggregation transformations, and the use of materialized 

views to answer queries, to the case of similarity-based queries. 

The work on clustering techniques developed in various fields, 

e.g., pattern recognition, machine learning, biology; represents 

also a related area which studies ways to group together similar 

objects. Of special interest is the work on clustering of very large 

datasets. CURE [13] and BIRCH [14] are two of the most 

representative clustering algorithms. They are based on sampling 

and summaries, respectively. CURE and BIRCH use only one 

pass over the data and hence reduce notably the execution time for 

clustering. However, when compared to the execution time of the 

standard group-by operation, the execution time of CURE and 

BIRCH are significantly slower. Furthermore, the use of 

clustering is via a complex data mining model and its 

implementation is not integrated with the standard query 

processing engine. 

In the context of data reconciliation, Schallehn et al. propose SQL 

extensions to allow the use of user-defined similarity functions for 

grouping purposes [15] and similarity grouping predicates [16]. 

They focus on string similarity and similarity predicates to 

reconcile records. Although they can be used for this purpose, the 

proposed similarity group-by operators in this paper are more 

general and are designed to be part of a DBMS’s query engine. 

Some of the optimization techniques of similarity join presented 

in this paper build on previous work on optimization of regular 

non similarity queries. Larson et al. study pull-up and push-down 

techniques that allow the query optimizer to move aggregation 

operators up and down the query plan [17, 18]. These techniques 

enable complete [17] or partial [18] pre-aggregation that can 

reduce significantly the input size of a join and decrease the 

execution time of an aggregation query. The use of materialized 

views to answer aggregation queries is another technique that can 

dramatically improve the execution time of certain queries [19].  

3. OUR RESEARCH CONTRIBUTIONS  
This section presents briefly the main results of the research work 

already conducted as part of this thesis work [20, 21, 22]. 



3.1 Similarity-aware Operators 
This subsection presents the similarity-aware counterparts of two 

core database operations: Group-by and Join. 

3.1.1 Similarity Group-by 
The generic definition of the similarity group-by (SGB) operator 

is as follows [20]:  

𝛾𝐹1(𝐴1),…,𝐹𝑚 (𝐴𝑚 )(𝑅)(𝐺1 ,𝑆1),…,(𝐺𝑛 ,𝑆𝑛 )   

where R is a relation name, Gi is an attribute of R that is used to 

generate the  groups, i.e.,  a similarity grouping attribute,  Si is a  

segmentation of the domain of Gi in non-overlapping segments, Fi 

is an aggregation function, and Ai is an attribute of R.  

In addition we introduce three implementable instances of the 

previous generic definition: Unsupervised Similarity Group-by 

(SGB-U), Supervised Similarity Group Around (SGB-A), and 

Supervised SGB using Delimiters (SGB-D). SGB-U (e.g., Figure 

2.a) enables grouping tuples based on desired group properties, 

e.g., size (MAXIMUM_GROUP_DIAMETER) and compactness 

(MAXIMUM_ELEMENT_SEPARATION). SGB-A (e.g., Figure 

2.b) allows the grouping around points of interest. SGB-D (e.g., 

Figure 2.c) enables segmenting the tuples based on given limiting 

values. Several instances can be combined in the same query [20]. 

These instances represent a middle ground between the regular 

group-by and standard clustering algorithms. They are intended to 

be much faster than regular clustering algorithms and generate 

groupings that capture similarities on the data not captured by 

regular group-by. As evident from Figure 2, SGB instances are 

able to identify successfully the naturally formed groups. 

3.1.2 Similarity Join 
The generic definition of the Similarity Join (SJ) operator is as 

follows [22]: 

𝐴 ⋈𝜃𝑆
𝐵 =   𝑎, 𝑏    𝜃𝑆 𝑎, 𝑏 , 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} 

where θs represents the similarity join predicate. This predicate 

specifies the similarity-based conditions that the pairs <a,b> need 

to satisfy to be in the SJ output. The SJ predicates for the 

similarity join operators considered in our study are as follows.  

 Range Distance Join (Ɛ-Join): 𝜃𝜀 ≡ 𝑑𝑖𝑠𝑡 𝑎, 𝑏 ≤ 𝜀 

 kNN-Join: 𝜃𝑘𝑁𝑁 ≡ 𝑏 𝑖𝑠 𝑎 𝑘 − 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑟 𝑜𝑓 𝑎 

 k-Distance-Join (kD-Join): 𝜃𝑘𝐷 ≡  𝑎, 𝑏  𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡𝑕𝑒  
         𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑘 − 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑝𝑎𝑖𝑟𝑠 

 Join-Around (A-Join): 𝜃𝐴,𝑀𝐷=2𝑟 ≡ 𝑏 𝑖𝑠 𝑡𝑕𝑒 𝑐𝑙𝑜𝑠𝑒𝑠𝑡  

        𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑟 𝑜𝑓 𝑎 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡 𝑎, 𝑏 ≤ 𝑟 

The Ɛ-, kNN-, and kD-join operators are common and extensively 

used types of similarity join. The Join-Around is a new useful 

type of similarity join that combines some properties of both the 

range distance and kNN joins. Every value of the first joined set is 

assigned to its closest value in the second set. Additionally, only 

the pairs separated by a distance of at most r are part of the join 

output. Here MD stands for Maximum Diameter and r=MD/2 

represents the Maximum Radius. Figure 3 shows the extended 

SQL and examples of the four types of similarity join operators. 

3.2 Optimizing Similarity-aware Operators 
Multiple optimization techniques are studied for the proposed 

similarity-aware database operators. These optimization 

techniques are presented in detail in [20] and [22] and include: (1) 

multiple non-trivial transformation rules that exploit specific 

properties of SJ and SGB operators, (2) equivalence rules between  

Group 1 Group 2 Group 3 Group 4 Group 5

c) GROUP BY Temperature  DELIMITED BY (SELECT Value FROM Thresholds)
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b) kNN-Join: SELECT … FROM A, B WHERE B.b k NEAREST_NEIGHBOR_OF A.a

c) kD-Join: SELECT … FROM A, B WHERE A.a k TOP_CLOSEST_PAIRS B.b

Figure 3. Examples of Similarity Join 

multiple SJ operators and between SJ and SGB operators, (3) 

Eager and Lazy aggregation transformations for SGB and SJ to 

enable pre-aggregation that can significantly reduce the amount of 

data to be processed by SJs, and (4) techniques to use materialized 

views to answer similarity-based queries.  

Equivalence rules enable the transformation of queries into 

equivalent plans with potentially smaller expected execution time. 

We propose multiple non-trivial equivalence rules for introduced 

similarity-aware operators. Figure 4 presents a subset of them. 

Additional rules are presented in [22] and [20]. 

Another important query optimization approach is the use of pull-

up and push-down techniques to move the grouping operator up 

and down the query tree. The main Eager and Lazy aggregations 

theorem introduced in [17] enables several pull-up and push-down 

techniques for the regular, i.e., non-similarity, join and group-by 

operators. We have extended the main theorem to the cases of: (1) 

regular join and similarity group-by, (2) similarity join and regular 

group-by, and (3) similarity join and similarity group by. Figures 

5 and 6 illustrate the first two cases respectively. In general, the 

single aggregation operator of the Lazy approach is split into two 

parts in the Eager approach. The first part pre-evaluates some 

aggregation functions and calculates the count before the join. The 

second part uses the intermediate information to calculate the final 

results after the join. Both the eager and lazy versions of a query 

should be considered during query optimization since neither of 

them is the best approach in all scenarios. Joins with high 

selectivity tend to benefit the Lazy approach while aggregation 

that reduces considerably the number of tuples that flow in the  

pipeline  tend to  benefit the  Eager approach. Moreover, we study  



Basic Associativity of SJ Operators  

1.  𝐸1 ⋈𝜃𝜀1
𝐸2 ⋈𝜃𝜀2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝜀1∧𝜃 (𝐸2 ⋈𝜃𝜀2

𝐸3)  

2.  𝐸1 ⋈𝜃𝐴1
𝐸2 ⋈𝜃𝐴2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝐴1∧𝜃 (𝐸2 ⋈𝜃𝐴2

𝐸3)  

3.  𝐸1 ⋈𝜃𝑘𝑁𝑁 1
𝐸2 ⋈𝜃𝑘𝑁𝑁 2∧𝜃 𝐸3 ≡ 𝐸1 ⋈𝜃𝑘𝑁𝑁 1∧𝜃 (𝐸2 ⋈𝜃𝑘𝑁𝑁 2

𝐸3)  

where θƐ1, θA1, and θkNN1 involve attributes from only E1 and E2; θƐ2, θA2, 
and θkNN2 involve attributes from only E2 and E3. θ is a non-similarity 

predicate. [22] presents more rules that combine different types of SJ. 

Associativity Rule to Enable Join on Originally Unrelated Attributes 

In the case of Range Distance Join, when the attributes e1 of E1 and e2 of 

E2 are joined using Ɛ1 and the result joined with attribute e3 of E3 using Ɛ2, 
there is an implicit relationship between e1 and e3 that is exploited by the 

following equivalence rule: 

4.  𝐸1 ⋈𝑒1 𝜃𝜀1  𝑒2
𝐸2 ⋈𝑒2 𝜃𝜀2 𝑒3

𝐸3 ≡ 

     𝐸1 ⋈𝑒1 𝜃𝜀1+𝜀2 𝑒3
𝐸3 ⋈(𝑒1  𝜃𝜀1  𝑒2)∧(𝑒2  𝜃𝜀2 𝑒3) 𝐸2 

This rule enables the generation of a cheaper plan (RHS) when the 

selectivity of the first join in the RHS of the rule is small.  

Basic Distribution of Selection over SJ 

When all the attributes of the selection predicate θ involve only the 
attributes of one of the expressions being joined (E1): 

5.  𝜎𝜃 𝐸1 ⋈𝜃𝜀
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝜀

𝐸2 

6. 𝜎𝜃 𝐸1 ⋈𝜃𝑘𝑁𝑁
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝑘𝑁𝑁

𝐸2 

7. 𝜎𝜃 𝐸1 ⋈𝜃𝐴
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝐴

𝐸2  

Pushing Selection Predicate under Originally Unrelated Join Operand 

In equivalence rules 5-7 each selection predicate θ is ―pushed‖ only under 

the join operand that contains all the attributes referenced in θ. In the case 

of the Range-Join operator, the filtering benefits of pushing a selection 

predicate θ can be further improved by pushing θ under both operands of 
the join as shown in the following equivalence rule: 

8. 𝜎𝜃 𝐸1 ⋈𝜃𝜀
𝐸2 ≡ (𝜎𝜃(𝐸1)) ⋈𝜃𝜀

(𝜎𝜃±𝜀(𝐸2)) 

where all the attributes of the predicate θ involve only the attributes of E1, 
and the selection predicate θ±Ɛ represents a modified version of θ where 

each condition is ―extended‖ by Ɛ and is applied on the join attribute of 

E2. For example, if θ = 10 ≤ e1 ≤ 20, then θ±Ɛ = 10–Ɛ ≤ e2 ≤ 20+Ɛ.  

Equivalences Among Similarity-aware Operators 

Join-Around and the Similarity Group-Around are equivalent as follows: 

9. γ
F(AA )

(E1)
e1  around  E2 .e2

≡ γ
F AA  (E1 ⋈e1  θA  e2  E2)

e2

 

where F(AA) is the aggregate function on aggregation attribute AA.  

Join-Around and kNN-Join are equivalent under the following rule: 

10. E1 ⋈θA ,MD =∞
E2 ≡ E1 ⋈θkNN (k=1)

E2 

Further equivalences among different SJ operators are presented in [22]. 

Figure 4. Equivalence Rules for Similarity-aware Operators 

ways to further enhance the filtering power of the pre-aggregation 

step pushing down the similarity predicates from the SJ operator 

to the grouping one. Specifically we propose extensions that 

support (1) pushing similarity predicates from Range-Join to GB 

and (2) pushing similarity predicate from Join-Around to GB [22]. 

Using materialized views to answer queries [19] is another 

important optimization technique that can yield considerable 

query processing time improvements and can be extended to the 

case of similarity-aware operators. View matching algorithms to 

determine if a certain query can be answered using a set of 

materialized views are presented in [19]. These algorithms are 

extended to the case of queries and views with SGB in [20] and to 

the case of queries and views with SJ in [22]. 
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Figure 5. Eager/Lazy Transformation with SGB and Join 
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Figure 6. Eager/Lazy Transformation with GB and SJ 
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Figure 7. Path/Plan Trees for SGB with multiple SGAs 

3.3 Implementing Similarity-aware Operators 
The detailed algorithms and data structures to implement all three 

instances of SGB as well as the Range-Join and Join-Around 

inside the query engine of standard RDBMSs are presented in [20] 

and [22]. This subsection briefly presents the main 

implementation guidelines. This implementation considers the 

support of multiple independent numeric grouping attributes for 

SGB and multiple join predicates over numeric attributes for SJ.  

One of the goals of the implementation is to reuse and extend 

already available routines and structures to minimize the effort 

needed to realize these operators. 

To add support for SGB and SJ in the parser, the raw-parsing 

grammar rules, e.g., the yacc rules in the case of PostgreSQL, are 

extended to recognize the syntax of the different new grouping 

approaches, and join predicates. The parse-tree and query-tree 

data structures are extended to include the information about the 

type and parameters of the similarity-based operations.  

In the planning stage, when multiple similarity grouping attributes 

(SGAs) or SJ predicates are used, they are processed one at the 

time. Figure 7 gives the structure of the plan trees generated when 

two SGAs a1 and a2 are used. The bottom aggregation node 

applies  similarity grouping on  a1 and  regular aggregation on  a2. 



 

Figure 8. Performance of SGB while 

increasing dataset size 

 

Figure 9. Performance of generating 

similarity groups with GB vs. SGB 

 

Figure 10. Performance of Join-

Around (Nearest Neighbor Join) 

The output of this node is aggregated by the top aggregation node 

that applies similarity grouping on a2 and regular aggregation on 

a1. Notice that supervised aggregation nodes make use of their 

inner input plan tree to receive the reference points data. 

Each extended aggregation node is able to process one SGA and 

any number of regular grouping attributes. Similarly, each 

extended join node can process one SJ predicate and any number 

of regular join predicates. The implementation of the executor 

routines for the SGB operators uses a single plane sweep approach 

to form the groups. The tuples to be grouped and the reference 

points have been previously sorted and are processed 

simultaneously using a hash table to maintain information of the 

formed groups. At any time, a set of current groups is maintained 

and each time the sweeping plane reaches a tuple the system 

evaluates whether this tuple belongs to the current groups, does 

not belong to any group, or starts a new set of groups. Range-Join 

and Join-Around are implemented extending the routines that 

support the Sort Merge Join operator. This allows a fast and 

efficient implementation of both SJ operators. The sorted tuples 

received from the input plans are processed synchronously 

following also a plane sweep approach. The algorithms are coded 

in PostgreSQL in the fashion of a state machine. Both Ɛ-Join and 

Join-Around use the same set of states employed by the Sorted 

Merge Join. The main changes to implement the SJ operators are 

on the routine that evaluates if there is a match between two tuples 

and on the way the inner cursor is restored to a previous tuple to 

ensure the correct generation of SJ links.  

3.4 Performance Evaluation  
The proposed similarity-aware operators were implemented in an 

open source database (PostgreSQL), and their performance is 

studied in detail in [20] and [22]. This subsection presents some of 

the key results. The dataset used in the performance evaluation is 

based on the one specified by the TPC-H benchmark. Figure 8 

gives the execution time of several aggregation queries for 

different dataset sizes. The key result of this experiment is that the 

execution times of all the queries that use similarity group-by, i.e., 

SGB-X, are very close to the execution time of the regular 

aggregation query GB for all the dataset sizes. Even in the worst 

case scenario represented by GB(SGB)_X, i.e., SGB query 

produces the same result as GB, the execution time of GB(SGB) 

is at most only 25% bigger than the one of GB. Although in 

general it is not possible to produce the output of SGB queries 

using only regular SQL operations, this is feasible in some special 

cases, e.g., SGB-A without additional conditions. Figure 9 

compares the execution time of SGB(GB) with that of SGB-A. 

The presented results show that the execution time and scalability 

properties of the SGB query is much better than those of the query 

that uses only regular SQL operations. The execution time of 

SGB(GB) grows from being  500% bigger than that of SGB-A for  

SELECT TotalBuy as TotalBuyLevelRef, min(TotalBuy),max(TotalBuy), count(TotalBuy), avg(TotalBuy) 
FROM (SELECT c_name,c_custkey,sum(l_extendedprice) as TotalBuy FROM C, O, L WHERE c_custkey = o_custkey 
                    and o_orderkey = l_orderkey and o_orderkey IN (SELECT l_orderkey FROM L GROUP BY l_orderkey 
                                                                                                   HAVING sum(l_quantity) > A)
            GROUP BY c_name,c_custkey)
GROUP BY TotalBuy MAXIMUM_GROUP_DIAMETER B MAXIMUM_ELEMENT_SEPARATION C

A

B

C

 

Figure 11. Exploiting SGB to identify clusters of large-volume 

customers with similar buying power 

SF(scale factor)=1 to being 1300% bigger for SF=14. Figure 10 

gives the execution time of the Join-Around query SJ-JoinAround 

compared to RegOps query that produces the same output using 

only regular database operators. For all analyzed SF values, the 

Join-Around query significantly outperforms the non-similarity-

based query. The execution time of SJ-RegOps grows from being 

about 20 times bigger than that of JoinAround for SF=1 to being 

about 200 times bigger for SF=8.   

3.5 Exploiting Similarity-aware Operators 
The proposed similarity-aware operators could be used in many 

application scenarios. In [21], we study the way the similarity 

grouping operators can be exploited to answer interesting business 

questions in a decision support system (DSS).  Two key properties 

of SGB that are of special importance for this application are: the 

fast formation of groups which allows the construction of 

dynamic dashboards, and the pipelining of results which allows 

further processing of the SGB results. One of the DSS dashboards 

is shown in Figure 11. This dashboard allows the study of groups 

of customers with similar buying power, i.e., total revenue due to 

large volume orders. The dashboard allows the dynamic 

specification of properties that describe the desired similarity 

groups: group-size (maximum buying power distance in each 

group), and compactness (maximum buying power separation 

among members of a group). Other dashboards support the study 

of profit around marketing campaigns, and the analysis of groups 

of orders around revenue levels of interest [21]. 

4. FUTURE WORK 
This section presents the future tasks of the presented thesis work.  

Other similarity-aware database operators. Our previous 

work focused on the SGB and SJ operators. We plan on studying 
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the similarity-aware counterparts of other database operators, e.g., 

selection, duplicate elimination, set intersection, and set 

difference. Similarly to the work carried out for SGB and SJ, we 

plan on studying optimization techniques for these operators, e.g., 

we expect to identify new equivalence rules over these operators.  

Similarity-aware data warehousing operators. The CUBE 

and ROLLUP operators, which are extensively used in data 

warehousing applications, can be extended to use similarity 

grouping mechanisms like the ones used in SGB. Different 

similarity grouping strategies can be used to group the values in 

different dimensions. These extended CUBE and ROLLUP 

operators will be able to generate more meaningful and useful 

summaries of large datasets.  

Benchmark for Similarity-based Query Processing. We plan 

on building a benchmark to evaluate the similarity-aware query 

processing capabilities of database systems. This benchmark is 

expected to extend the TPC-H benchmark with data and queries 

that allow answering multiple complex business questions. The 

queries are expected to exploit similarities in the data and have 

broad industry-wide relevance. 

Further practical application of the proposed similarity-

aware operators. We intend to exploit all the proposed 

similarity-aware operators to enable more useful and complex 

business analysis extending the DSS presented in Section 3.5. 

Furthermore, we plan on studying the use of similarity-aware 

operators in the problem of phenomena detection in sensor 

networks, where phenomenon can be defined as a persistent 

condition observed in a set of sensors. Similarity-based queries 

are especially useful in sensor data processing given the 

approximate nature of sensor data. Similarity-based queries can be 

actively used to specify and detect phenomena. 

5. CONCLUSIONS 
Many application scenarios need or can benefit tremendously 

from database operators that exploit similarities in the data and 

allow the pipelining of the results for further processing. Related 

previous work has focused on the extension of the semantics of 

some operations and has proposed mainly standalone 

implementation techniques that are not fully integrated with the 

query processing engine of DBMSs. The focus of this thesis work 

is the proposal and study of several similarity-aware database 

operators and the analysis of their role as query operators, 

interactions, optimizations, and implementation techniques. This 

paper presents the main results for the operators studied so far: 

Similarity Group-by and Similarity Join. This presentation 

includes: (1) the generic definition and several instances of each 

operator, (2) multiple optimization techniques for the introduced 

operators, (3) guidelines to implement them as integral 

components of a DBMS query engine, (4) performance evaluation 

results, and (5) the practical usage of the proposed similarity 

grouping operators to answer more useful and complex business 

questions in a decision support system. The paper describes also 

the future tasks of the presented thesis work.  
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