
An Experimental Survey of MapReduce-based Similarity Joins, p. 1, 2016.

© Springer-Verlag Berlin Heidelberg 2016

An Experimental Survey of MapReduce-based Similarity

Joins*

Yasin N. Silva, Jason Reed, Kyle Brown, Adelbert Wadsworth, Chuitian Rong

Arizona State University

{ysilva, jmreed3, kabrow17, ajwadswo, crong5}@asu.edu

Abstract. In recent years, Big Data systems and their main data processing

framework - MapReduce, have been introduced to efficiently process and analyze

massive amounts of data. One of the key data processing and analysis operations

is the Similarity Join (SJ), which finds similar pairs of objects between two da-

tasets. The study of SJ techniques for Big Data systems has emerged as a key

topic in the database community and several research teams have published tech-

niques to solve the SJ problem on Big Data systems. However, many of these

techniques were not experimentally compared against alternative approaches.

This was the case in part because some of these techniques were developed in

parallel while others were not implemented even as part of their original publi-

cations. Consequently, there is not a clear understanding of how these techniques

compare to each other and which technique to use in specific scenarios. This pa-

per addresses this problem by focusing on the study, classification and compari-

son of previously proposed MapReduce-based SJ algorithms. The contributions

of this paper include the classification of SJs based on the supported data types

and distance functions, and an extensive set of experimental results. Furthermore,

the authors have made available their open-source implementation of many SJ

algorithms to enable other researchers and practitioners to apply and extend these

algorithms.

Keywords: Similarity Joins, Big Data Systems, Performance Evaluation,

MapReduce.

1 Introduction

The processing and analysis of massive amounts of data is a crucial requirement in

many commercial and scientific applications. Internet companies, for instance, collect

large amounts of data such as content produced by web crawlers, service logs and click

streams generated by web services. Analyzing these datasets may require processing

tens or hundreds of terabytes of data. Big Data systems and MapReduce, their main

data processing framework, constitute an answer to the requirements of processing mas-

sive datasets in a highly scalable and distributed fashion. These systems are composed

* This work was supported by Arizona State University’s SRCA and NCUIRE awards, the

NSFC (No.61402329), and the China Scholarship Council.

mailto:ajwadswo,%20crong5%7d@asu.edu

of large clusters of commodity machines and are often dynamically scalable, i.e., cluster

nodes can easily be added or removed depending on the workload. Important examples

of these Big Data systems are: Apache Hadoop [26]; Google’s File System [10],

MapReduce [9] and Bigtable [8]; and Microsoft’s Dryad [11] and SCOPE/Cosmos [7].

 The Similarity Join is one of the most useful operations for data processing and

analysis. This operation retrieves all data pairs from two datasets (R and S) whose dis-

tances are smaller than or equal to a predefined threshold ε. Similarity Joins have been

extensively used in domains like record linkage, data cleaning, sensor networks, mar-

keting analysis, multimedia applications, recommendation systems, etc. A significant

amount of work has been focused on the study of non-distributed implementations.

Particularly, Similarity Joins have been studied as standalone operations [12, 13, 14,

15, 30], as operations that use standard database operators [16, 17, 18], and as physical

database operators [1, 2, 3, 4, 5, 29, 31].

 The study of Similarity Join techniques for Big Data systems has recently emerged

as a key topic in the data management systems community. Several research teams have

proposed and published different techniques to solve the Similarity Join problem on

Big Data systems (e.g., [19, 20, 21, 22, 23, 24, 25]). Unfortunately, however, many of

these techniques were not experimentally compared against alternative approaches.

This was the case in part because some of these techniques were developed in parallel

while others were not implemented even as part of their original publications. Conse-

quently, while there are many techniques to solve the Similarity Join problem, there is

not a clear understanding of: (1) how these techniques compare to each other, and (2)

which technique to use in real-world scenarios with specific requirements for data

types, distance functions, dataset sizes, etc. Furthermore, the need for comparative work

in the area of data management was recently highlighted by the editors of a top journal

in this area [6].

 This paper addresses this problem by focusing on the study, classification and com-

parison of the Similarity Join techniques proposed for Big Data systems (using the

MapReduce framework). The main contributions of this paper are:

 The classification of Similarity Join techniques based on the supported data types

and distance functions.

 An extensive set of experimental results. These results include tests that compare the

performance of alternative approaches (based on supported data type and distance

function) under various dataset sizes and distance thresholds.

 The availability of the authors’ open-source implementation of many Similarity Join

algorithms [27]. Our goal is to enable other researchers and practitioners to apply

and extend these algorithms.

 The remaining part of this paper is organized as follows. Section 2 presents the de-

scription of all the algorithms considered in our study and a classification of the algo-

rithms based on the supported data types and distance functions. Section 3 presents the

experimental evaluation results and discussions (this section is divided into subsections

that focus on specific data types and distance functions). Finally, Section 4 presents the

conclusions.

2 MapReduce-based Similarity Join Algorithms

2.1 Classification of the Algorithms

Table 1 presents the MapReduce-based Similarity Join algorithms considered in our

study. For each algorithm, the table shows the supported data types and distance func-

tions (DFs), and the data types that could be supported by extending the original algo-

rithms. In order to systematically evaluate the different algorithms, we classify them

based on the supported data types. The experimental section of this paper, compares all

the algorithms that support a given data type and its associated distance functions.

Table 1. Similarity Join algorithms and supported distance functions and data types.

2.2 Description of the Studied Similarity-Join Algorithms

Naïve Join. The Naïve Join algorithm [22] is compatible with all data types and dis-

tance functions, and works in a single MapReduce job. The algorithm uses a key space

defined by a parameter J, which is proportional to the square root of the number of

reducers (reduce tasks) to be used. During the Map phase, pairs of input data elements

are assigned to a key pair with the form (i, j) where 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝐽. For each input record

X, the mapper (map task) outputs key-value pairs with the form ((i, j), X), such that any

two records are mapped to at least one common key. The reducer receives all of the

Algorithm
Supported Distance/

Similarity Functions

Supported Data Types

Text/String Numeric Vector Set

Naïve Join Any DF ● ● * ●

Ball Hashing 1 Hamming Distance

 Edit Distance

●

Ball Hashing 2 Hamming Distance

 Edit Distance

●

Subsequence Edit Distance ●

Splitting Hamming Distance

Edit Distance

●

Hamming Code Hamming Distance ●

Anchor Points Hamming Distance

Edit Distance

● * *

MRThetaJoin Any DF ● ● ● ●

MRSimJoin Any metric DF ● ● ● ●

MRSetJoin JS, TC, CC,

Edit Distance*

* ●

Online Aggregation JS, RS, DS, SC, VC ●

Lookup JS, RS, DS, SC, VC ●

Sharding JS, RS, DS, SC, VC ●

● Natively Supported

* Can be extended to support this data type or distance function

JS=Jaccard Similarity, TC=Tanimoto Coefficient, CC=Cosine Coefficient, RS=Ruzicka Sim-

ilarity, DS=Dice Similarity, SC=Set Cosine Sim., VC=Vector Cosine Sim.

records for a given key and compares each pair of records outputting the pairs with

distance smaller than or equal to ε (distance threshold). The algorithm proposed in [22]

does not consider the case where two records are mapped to more than one common

key. In this case, we solved the problem by outputting only when i=j.

Ball Hashing 1. The Ball Hashing 1 algorithm [22] takes a brute force approach to

solving the Similarity Join problem. This algorithm assumes that the alphabet of the

input value is finite and known. The Map phase takes in a given input record r and

generates a ball of radius ε. In effect, for a given join attribute vr, it will generate a set

Vr composed of every possible value within ε of vr. For each value Vri in Vr that is not

equal to vr, the Map will emit the key-value pair < Vri, r>. The Map will additionally

output the key-value pair <vr, r>. As vr is the join attribute in r, this ensures a collision

in the Reduce phase with any matching pairs (links). Any Reduce group that contains

such a record (<vr, r>) should be considered an active group and the record r should be

considered native to that group. Any Reduce group that does not have a native record

within it should be considered inactive and does not need to be processed further. In the

active groups, the join matches are generated by combining the native members with

each of the non-native members in the group. The original paper does not consider the

possibility of multiple input records having the same join value. If this is the case, there

is the additional need to join native members among each other as well as all native

records against all non-native records. This algorithm supports string data with the Edit

and Hamming distance functions.

Ball Hashing 2. Ball Hashing 2 [22] is an extension of the Ball Hashing 1 algorithm.

The difference is that in the Map phase, it generates balls of size ε/2. Because of this, it

is necessary to process every Reduce group. A brute force comparison is performed in

each Reduce group to find any matches and eliminate the possibility of duplicate out-

puts. The algorithm supports string data with Edit and Hamming distance metrics.

Subsequence. Subsequence [22] is an algorithm proposed for string data and the Edit

Distance. The Map phase generates all the (b-ε/2)-subsequences of each input string (b

is the string length) and outputs pairs of the form <subsequence, input_string>. The

Reduce phase compares all the records sharing the same subsequence to identify the

Similarity Join matches. The key idea behind this algorithm is that if two strings are

within ε, they will share at least one identical subsequence.

Splitting. The Splitting algorithm [22] is composed of a single MapReduce job and is

based on splitting strings into substrings. These substrings are then compared to other

substrings generated from the input dataset. In order to be considered a Similarity Join

match, a pair of strings only needs to share one common substring. In the Map task,

each input string (with length b) is split into substrings of length b/(ε+1). The result

will be composed of b/(b/(ε+1)) substrings. Each substring will be outputted with a key

consisting of its position (i) in the parent string, and the substring that was generated,

si. The value that will be attached to the key is the parent string. Each reducer will

compare (pair wise) all the substrings that have a matching key and output the pairs that

are separated by a distance smaller than or equal to ε. To avoid the generation of dupli-

cate pairs at multiple reducers, a match is generated only within the Reduce group as-

sociated with the position of the first common substring between two matching strings.

This distance functions supported by this algorithm are Hamming and Edit Distance.

Anchor Points. This algorithm distributes the input data into groups where all the

members of a group are within a certain distance of an anchor point [22]. The technique

supports the Hamming and Edit Distance functions. In the case of Hamming Distance,

the algorithm finds first a set of anchor points such that every input record is within ε

from at least one anchor. This set is stored in a distributed cache and used at each map-

per. For each input record s, the mapper outputs key-value pairs for every anchor point

that is within 2ε of s. The mapper marks the closest anchor point to s as its home group.

In the Reduce phase, the strings of a given home group will be compared to other strings

from other groups that were sent to the same reducer. All strings in the home group will

be compared as well. In the case of Edit Distance, the anchor points are a subset of the

data such that every input record is within ε deletions from at least one anchor. This

modified algorithm only works with fixed-length strings. This fact is not directly stated

in the paper but was confirmed by the authors.

Hamming Code. The Hamming Code algorithm [22] is a SJ technique proposed for

string data and the Hamming Distance. Since this algorithm only works when ε=1 and

the strings’ length is one less than a power of 2, it is not included in our evaluation.

MRThetaJoin. MRThetaJoin [23] is a randomized Theta Join algorithm that supports

arbitrary join predicates (including Similarity Join conditions). This approach uses a

single MapReduce job and requires some basic statistics (input cardinality). The ap-

proach uses a model that partitions the input relations using a matrix that considers all

the combinations of records that would be required to answer a cross product. The ma-

trix cells are then assigned to reducers in a way that minimizes job completion time. A

memory-aware variant is also proposed for the common scenario where partitions do

not fit in memory. Since any Theta Join or Similarity Join is a subset of the cross-

product, the matrix used in this approach can represent any join condition. Thus, this

approach can be used to supports Similarity Joins with any distance function and data

type. For the performance evaluation of Similarity Joins presented in this paper, we

implemented an adaptation of the memory-aware 1-Bucket-Theta algorithm proposed

in [25] that uses the single-node QuickJoin algorithm [15] in the reduce function.

MRSimJoin. The MRSimJoin algorithm [20, 21, 32] iteratively partitions the data into

smaller partitions, until each partition is small enough to be processed in a single node.

The process is divided into a sequence of rounds, and each round corresponds to a

MapReduce job. Partitioning is achieved by using a set of pivots, which are a subset of

the records to be partitioned. There are two types of partitions, base partitions and

window-pair partitions. Base partitions hold all of the records closest to a given pivot,

rather than any other pivot. Window-pair partitions hold records within the boundary

between two base partitions. If possible, e.g., Euclidean Distance, the window-pair par-

titions should only include the points within ε from the hyperplane separating adjacent

base partitions. If this is not possible, a distance is computed to a generalized hyper-

plane boundary (lower bound of the distance). This algorithm can be used with any data

type and metric. The experimental section in [20] shows that in most cases the number

of pivots can be adjusted to ensure the algorithm runs in a single MapReduce job.

MRSetJoin. MapReduce Set-Similarity Join [19] is a Similarity Join algorithm that

consists of three stages made up of various MapReduce jobs. In the first stage, data

statistics are generated in order to select good signatures, or tokens, that will be used

by later MapReduce jobs. In the second stage, each record has its record-ID and join-

attribute value assigned to the previously generated tokens, the similarity between rec-

ords associated with the same token is computed, and record-ID pairs of similar records

are outputted. In the third stage, pairs of joined records are generated from the output

of the second stage and the original input data. MRSetJoin supports set-based distance

functions like Jaccard Distance and Cosine Coefficient. There are multiple options pre-

sented for each stage, however, the paper states that BTO-PK-BRJ is the most robust

and reliable option. Thus, this option is used in this survey as the representative of this

technique.

V-Smart-Online Aggregation. Online Aggregation [24] is a Similarity Join algorithm

under the V-SMART-Join framework, which can be used for set and multiset data and

set-based distance functions like Jaccard and Dice. In general, the V-SMART-Join

framework consists of two phases, joining and similarity. Although the framework in-

cludes three different joining phase algorithms, Online Aggregation, Lookup, and Shar-

ding, only one of the three was selected to participate in the survey. According to the

experimental results in [24], Online Aggregation generally outperforms the Sharding

and Lookup algorithms, and as such it was selected to represent this approach. The

algorithm is based on the computation of Uni(Mi) for each multiset Mi. Uni(Mi) is the

partial result of a unilateral function (e.g., Uni(Mi)=|Mi|). During the joining phase (one

MapReduce job), the Uni(Mi) of a given multiset Mi is joined to all the elements of Mi.

The similarity phase, composed of two MapReduce jobs, builds an inverted index, com-

putes the similarity between all candidate pairs, and outputs the Similarity Join matches.

3 Experimental Comparison

This section presents the experimental comparison of previously proposed MapReduce-

based Similarity Join algorithms. One of the key tasks for this survey work was the

implementation of the studied algorithms. While in some cases, the source code was

provided by the original authors (MRSetJoin, MRSimJoin), in most cases, the source

code was not available and consequently had to be implemented as part of our work

(e.g., Ball Hashing 1, Ball Hashing 2, Naïve Join, Splitting, Online Aggregation,

MRThetaJoin). We have made available the source code of all the evaluated algorithms

in [27]. All the algorithms were implemented and evaluated using Hadoop (0.20.2), the

most popular open-source MapReduce framework. The experiments were performed

using a Hadoop cluster running on the Amazon Elastic Compute Cloud (EC2). Unless

otherwise stated, we used a cluster of 10 nodes (1 master + 9 worker nodes) with the

following specifications: 15 GB of memory, 4 virtual cores with 2 EC2 Compute Units

each, 1,690 GB of local instance storage, 64-bit platform. The number of reducers was

computed as: 0.95×⟨no. worker nodes⟩×⟨max reduce tasks per node⟩ = 25. Table 2

shows configurations details for individual algorithms.

The experiments used a slightly modified version of the Harvard bibliographic da-

taset [28]. Specifically, we used a subset of the original dataset and augmented the rec-

ord structure with a vector attribute to perform the tests with vector data. Each record

contains the following attributes: unique ID, title, date issued, record change date, rec-

ord creation date, Harvard record-ID, first author, all author names, and vector. The

vector attribute is a 10D vector that was generated based on the characters of the title

(multiplied against prime numbers). The vector components are in the range [0 - 999].

The minimum and maximum length (number of characters) of each attribute are as fol-

lows: unique ID (9, 9), title (6, 996), date issued (4, 4), record change date (15, 15),

record creation date (6, 6), Harvard record-ID (10, 10), first author (6, 94), and all au-

thor names (6, 2462). The dataset for scale factor 1 (SF1) contains 200K records. The

records of each dataset are equally divided between tables R and S.

The datasets for SF greater than 1 were generated in such a way that the number of

matches of any Similarity Join operation in SFN is N times the number of matches in

SF1. For vector data, the datasets for higher SF were obtained adding shifted copies of

the SF1 dataset where the distance between copies were greater than the maximum

value of ε. For string data, the datasets for higher SF were obtained adding a copy of

the SF1 data where characters are shifted similarly to the process in [19].

We evaluate the performance of the algorithms by independently analyzing their ex-

ecution time while increasing the dataset size (SF) and the distance threshold (ε). We

did not include the execution time when an algorithms took a relatively long time (more

than 3 hours). We performed four sets of experiments for the following combinations

of data types and distance functions: (1) vector data and Euclidean Distance, (2) varia-

ble-length string (text) data and Edit Distance, (3) fixed-length string data and Ham-

ming Distance, and (4) set data and Jaccard Distance. Each algorithm was executed

multiple times; we report the average execution times.

Table 2. Additional configuration details.

Algorithm Configuration Details

Naïve Join J = √Number of Reduce Tasks

MRThetaJoin K = ((|R|+|S|) x b)/m, where |R| and |S| are the cardinalities of R and

S, b = size in bytes per record, m = memory threshold (64 MB).

MRSimJoin Memory limit for in-memory SJ algorithm = 64 MB.

Number of Pivots = SF x 100.

3.1 Comparison of Algorithms for Vector Data – Euclidean Distance

This section compares the performance of the algorithms that support vector data,

namely MRSimJoin and MRThetaJoin. We use the Euclidean Distance function and

perform the distance computations over the 10D vector attribute of the Harvard dataset.

Increasing Scale factor. Figures 1 and 2 compare the way MRSimJoin and MRThe-

taJoin scale when the data size increases (SF1-SF4). The experiments use 10D vectors.

The experiments in Fig. 1 use a relatively small value of ε (5% of the maximum possible

distance) while the ones in Fig. 2 a relatively large value (15%). Fig. 1 shows that, for

small values of ε (5%), MRSimJoin performs significantly better than MRThetaJoin

when the data size increases. Specifically, the execution time of MRThetaJoin grows

from being 2 times the one of MRSimJoin for SF1 to 7 times for SF4. The execution

time of MRThetaJoin is significantly higher than that of MRSimJoin because the total

size of all the partitions of MRThetaJoin is significantly larger than that of MRSimJoin.

Fig. 2 shows that, for larger values of ε (15%), MRSimJoin still performs better than

MRThetaJoin in the case of larger datasets but is outperformed by MRThetaJoin for

small datasets. Specifically, the execution time of MRThetaJoin is 0.7 times the one of

MRSimJoin for SF1 and SF2; and 1.2 and 1.9 times for SF3 and SF4, respectively.

Increasing ε. Figures 3 and 4 show how the execution time of MRSimJoin and MRThe-

taJoin increase when ε increases (1%-20%). Fig. 3 considers relatively smaller values

of ε (1%-5%) while Fig. 4 considers larger values (5%-20%). The results in both figures

show that the performance of MRSimJoin is better than the one of MRThetaJoin for all

the evaluated values of ε. Specifically, in Fig. 3 the execution time of MRThetaJoin is

between 7 (ε=5%) to 11 (ε=1%) times the one of MRSimJoin while in Fig. 4, the exe-

cution time of MRThetaJoin is between 1.6 (ε=20%) to 9.2 (ε=5%) times the one of

MRSimJoin. We can observe that the performance of MRSimJoin tends to get closer to

the one of MRThetaJoin for very large values of ε. In general, the execution time of

both algorithms grows when ε grows. The increase in execution time is due to a higher

number of distance computations in both algorithms and slightly larger sizes of win-

dow-pair partitions in the case of MRSimJoin.

From the results presented in this section, we can conclude that MRSimJoin is in

general the best approach to perform Similarity Joins with vector data unless the dataset

size is very small and the distance threshold is extremely large.

3.2 Comparison of Algorithms for Variable-length String Data – Edit Distance

This section compares the performance of the Similarity Join algorithms using string

data and the Edit Distance. The tests use the first author name (variable-length: 6-94,

alphabet size: 27) as the join attribute. The evaluated algorithms are: MRSimJoin, Na-

ïve Join, MRThetaJoin, and Ball Hashing 1. For this last algorithm, we were only able

to obtain results for the test with ε=1. Even using SF1, this algorithm took significantly

longer than the other algorithms. Ball Hashing 2 and Anchor Points are not included

since they do not support variable-length strings. Splitting and Subsequence were not

included since the brief information included in [22] to support variable-length strings

 Fig. 1. Euclidean - Increasing SF (ε=5%) Fig. 2. Euclidean - Increasing SF (ε=15%)

was not sufficient to implement this feature. Ball Hashing 2 and Splitting are evaluated

in Sec. 3.2 with fixed-length strings. Regarding the Edit Distance metric, we consider

the edit operations of insertion and deletion of a character. Both operations have a cost

of 1. This is a common case of the Edit Distance and it is used in the specification of

Naïve Join, Ball Hashing 1, and Ball Hashing 2. MRSimJoin and MRThetaJoin, which

also support the Edit Distance with the character substitution operation, were adapted

to support the metric with insertion and deletion. The maximum value of ε is 100.

Increasing Scale factor. Fig. 5 compares the performance of the algorithms when the

dataset is incrementally scaled from SF1 to SF4. Naïve Join is the best performing al-

gorithm for SF1 while MRSimJoin performs the best in all the other cases. For SF1,

Naïve Join completed execution within 75% of the execution time of MRThetaJoin,

and 89% of that of MRSimJoin. However, as the data size increased, MRSimJoin out-

performed both Naïve Join and MRThetaJoin for SF2-SF4. For these values of SF,

MRSimJoin’s execution time is at most 74% of that of MRThetaJoin, and at most 76%

of that of Naïve Join. Also, we observed that as the scale factor increased, the relative

advantage of MRSimJoin improved too, and at SF4, MRSimJoin completed within 54%

of the execution time of MRThetaJoin and within 56% of that of Naïve Join.

Increasing ε. Fig. 6 compares the algorithms when the value of ε (distance threshold)

increases from 1 to 4. For ε values of 1 and 2, MRSimJoin outperformed the other

algorithms, completing always within 68% of the execution time of MRThetaJoin and

within 77% of that of Naïve Join. The outlier on these tests was Ball Hashing 1. Spe-

cifically, its execution time was nine times the one of MRSimJoin for ε=1. The Ball

Hashing 1 tests using higher values of ε were cancelled after they took significantly

longer than the other algorithms. For larger values of ε (3 and 4), Naïve Join outper-

formed the other algorithms. Specifically, Naïve Join completed within 78% of

MRSimJoin’s execution time, and 89% of MRThetaJoin’s execution time for these

larger values of ε.

From these results, it can be concluded that MRSimJoin is, in general, the best ap-

proach to perform similarity joins with the Edit Distance (text data) when the dataset is

0

0.5

1

1.5

2

0

50

100

150

200

250

300

1 2 3 4

O
u

tp
u

t
Si

ze
 (

o

f
R

ec
o

rd
s)

 x
 1

0
8

R
u

n
ti

m
e(

m
in

u
te

s)

Scale Factor

Euclidean Distance, ε:5%

Output

MR SimJoin

MR ThetaJoin

0

5

10

15

20

25

0

50

100

150

200

1 2 3 4

O
u

tp
u

t
Si

ze
 (

o

f
R

ec
o

rd
s)

 x
 1

0
7

R
u

n
ti

m
e

(m
in

u
te

s)

Scale Factor

Euclidean Distance, ε:15%

Output

MRSimJoin

MRThetaJoin

 Fig. 3. Euclidean - Increasing ε (small) Fig. 4. Euclidean - Increasing ε (large)

 Fig. 5. Edit Dist. - Increasing SF Fig. 6. Edit Dist. - Increasing ε

large (greater than SF1 in our tests) or the distance threshold is relatively small (1 or 2

in our tests). For smaller datasets or larger distance thresholds, Naïve Join is the best

approach among the evaluated algorithms.

3.3 Comparison of Algorithms for Fixed-length Strings – Hamming Distance

The tests in this section perform Similarity Joins using Hamming Distance over the first

6 characters of the first author name (fixed-length: 6, alphabet: 27). The evaluated al-

gorithms are: MRSimJoin, MRThetaJoin, Naïve Join, Splitting, Ball Hashing 1, and

Ball Hashing 2. Anchor Points it is not included since the paper that introduced it

showed that it is outperformed by other algorithms [22]. The maximum value of ε is 6.

Increasing Scale Factor. The results of the experiments using increasing scale factors

(SF1-SF4) are represented in Fig. 7. This figure shows that the Splitting algorithm out-

performs all of the other algorithms for all the values of scale factor. Specifically, Split-

ting’s execution time is at most 71% of the one of MRThetaJoin, 60% of Naïve Join,

and 24% of MRSimJoin. MRThetaJoin and Naïve Join have very similar results, with

MRThetaJoin slightly outperforming Naïve Join for SF1, SF3 and SF4. The execution

0

0.5

1

1.5

2

0

50

100

150

200

250

300

1% 2% 3% 4% 5%

O
u

tp
u

t
Si

ze
 (

 #
 o

f
R

ec
o

rd
s)

 x
1

0
8

R
u

n
ti

m
e(

m
in

u
te

s)

Distance Threshold (ε)

Euclidean Distance, SF:4

Output
MR SimJoin
MR ThetaJoin

0

1

2

3

4

5

6

0

50

100

150

200

250

300

5% 10% 15% 20%

O
u

tp
u

t
Si

ze
 (

 #
o

f
R

ec
o

rd
s)

 x
1

0
8

R
u

n
ti

m
e

 (
m

in
u

te
s)

Distance Threshold (ε)

Output

MRSimJoin

MRThetaJoin

Euclidean Distance, SF4

0

500

1000

1 2 3 4

0

5

10

R
u

n
ti

m
e

(m
in

u
te

s)

Scale Factor

O
u

tp
u

t
Si

ze
 (

o

f
R

ec
o

rd
s)

 x
 1

0
5

Edit Distance, ε:3

Output

MRSimJoin

NaïveJoin

MRThetaJoin

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4

0

50

100

150

200

250

300

O
u

tp
u

t
Si

ze
 (

o

f
R

ec
o

rd
s)

 x
 1

0
5

Distance Threshold (ε)

R
u

n
ti

m
e

(m
in

u
te

s)
Edit Distance, SF1Output

MRSimJoin
NaïveJoin
MRThetaJoin
Ballhashing 1

 Fig. 7. Hamming Dist. - Increasing SF Fig. 8. Hamming Dist. - Increasing ε

 Fig. 9. Hamming Dist. - Increasing ε (1k) Fig. 10. Jaccard - Increasing SF

time of MRSimJoin is larger than the ones of the other algorithms compared in Fig. 7.

Ball Hashing 1 and Ball Hashing 2 were excluded from the comparison as they did not

complete within a reasonable amount of time.

Increasing ε. Fig. 8 shows the results of comparing the algorithms with increasing

values of the distance threshold. In these tests, the Splitting algorithm outperforms all

other algorithms with the exception of ε=3 where MRThetaJoin slightly outperforms it.

Splitting’s execution times are between 11% (ε=1) and 106% (ε=3) of those of MRThe-

taJoin. Splitting’s execution times are also between 15% and 92% of the ones of Naïve

Join, between 3% and 90% of MRSimJoin, and less than 4% of the execution time of

Ball Hashing 1 and Ball Hashing 2. Ball Hashing 1 and 2 are not reported in Fig. 7 (and

only have some data points in Fig. 8) because they did not return a result under a sig-

nificantly long time (3 hours). Fig. 9 presents the execution time of these algorithms

with a significantly smaller dataset (1K records) under multiple values of ε. Observe

that even for this small dataset, the execution time of Ball Hashing 1 is not only signif-

icantly larger than that of Ball Hashing 2, but also increases rapidly. The execution time

of Ball Hashing 1 increases from being 2 times the execution time of Ball Hashing 2

0

100

200

300

400

500

1 2 3 4

0

2

4

6

8

R
u

n
ti

m
e

(m
in

u
te

s)

Scale Factor

O
u

tp
u

t
Si

ze
 (

o

f
R

ec
o

rd
S)

 x
 1

0
8

Hamming, ε:3

Output

MRSimJoin

NaïveJoin

Splitting

MRThetaJoin

0

50

100

150

200

1 2 3 4

0

2

4

6

8

R
u

n
ti

m
e

(m
in

u
te

s)
Distance Threshold (ε)

O
u

tp
u

t
Si

ze
 (

o

f
R

ec
o

rd
s)

 x
 1

0
8

Hamming, SF1Output
MRSimJoin
NaïveJoin
Splitting
MRThetaJoin
Ball Hashing 1
Ball Hashing 2

0

10

20

30

40

1 2 3 4

0

5

10

15

20

25

R
u

n
ti

m
e

(m
in

u
te

s)

Distance Threshold (ε)

O
u

tp
u

t
Si

ze
 (

 o

f
R

ec
o

rd
S)

 x
1

0
3

Hamming, 1K Dataset

Output

Ball Hashing 2

Ball Hashing 1

0

200

400

1 2 3 4

0

5

10

R
u

n
ti

m
e

(m
in

u
te

s)

Scale Factor
O

u
tp

u
t

Si
ze

 (

 o
f

R
ec

o
rd

s)
 x

 1
0

6

Jaccard Distance, ε:12%

Output
MRSimJoin
NaïveJoin
MRSetJoin
MRThetaJoin

for ε=1 to be 31 times for ε=2. While Ball Hashing 2 clearly outperforms Ball Hashing

1, it is still significantly slower than other algorithms as shown in Fig. 8.

The results of this section show that in the case of Hamming Distance, the Splitting

algorithm is the best choice for various values of dataset size and distance threshold. In

most of the cases, Naïve Join and MRThetaJoin are the next best performing options.

3.4 Comparison of Algorithms for Set Data – Jaccard Distance

This section compares the performance of the algorithms that support set data, namely

Naïve Join, MRThetaJoin, MRSimJoin, MRSetJoin, and Online Aggregation. The

Lookup and Sharding algorithms were not included in our analysis since they were

found to be generally outperformed by Online Aggregation [24]. We use the Jaccard

Distance function and perform the distance computations over the First Author Name

attribute. To this end, we first converted the author name into a proper set by deleting

spaces and removing duplicates. For instance, the name “John Smith” is converted into

the set {j, o, h, n, s, m, i, t}. The alphabet size and the maximum set size are 26. In this

case, the range of ε is: 0 (0%) – 1 (100%).

Increasing Scale factor. Fig. 10 compares the way the algorithms scale when the da-

taset size increases (SF1-SF4). Naïve Join is the slowest algorithm, having a SF1

runtime that is at least four times the ones of the other algorithms in this figure. It is

also too slow to be executed with any of the higher scale factor values. MRThetaJoin

was executed with SF1 and SF2 but its runtime was too long to be included for larger

datasets. MRSimJoin and MRSetJoin have fairly similar execution times. MRSetJoin

performs better with SF1-SF3 but its relative advantage decreases as the dataset size

increases. Specifically, MRSetJoin’s execution time is 33%, 50% and 73% of those of

MRSimJoin for SF1, SF2 and SF3, respectively. MRSimJoin outperforms MRSetJoin

for SF4, where MRSimJoin’s execution time is 89% of the one of MRSetJoin. The

results of the Online Aggregation algorithm were not included because these tests took

too long and were cancelled or did not complete properly. We were able to successfully

run this algorithm only with very small datasets (~1K).

Increasing ε. Fig. 11 shows how the execution time of the evaluated algorithms in-

creases when ε increases (4%-16%). Naïve Join was the slowest algorithm and its

runtime was at least 3.5 times of the ones of the other algorithms. MRSetJoin and

MRSimJoin are the best performing algorithms. MRSetJoin’s advantage over MRSim-

Join tends to increase when ε increases. Specifically, MRSimJoin’s execution time is

1.8 times the one of MRSetJoin for SF1 and 4.7 for SF4. Fig. 12 provides additional

details of the two best performing algorithms (MRSetJoin and MRSimJoin). This figure

compares the algorithms’ performance using SF4. Fig. 12 shows that for a larger dataset

(SF4), the relative advantage of MRSetJoin over MRSimJoin decreases. In this case,

the execution time of MRSimJoin is between 0.8 and 1.8 of those of MRSetJoin.

The results presented in this section indicate that MRSetJoin is, in general, the best

algorithm for set data and Jaccard Distance. MRSimJoin, which performed second in

Fig. 11. Jaccard - Increasing ε (SF1) Fig. 12. Jaccard - Increasing ε (SF4)

most tests, should be considered as an alternative particularly for very large datasets

where it could, in fact, outperform MRSetJoin.

4 Conclusions

MapReduce is widely considered one of the key processing frameworks for Big Data

and the Similarity Join is one of the key operations for analyzing large datasets in many

application scenarios. While many MapReduce-based Similarity Join algorithms have

been proposed, many of these techniques were not experimentally compared against

alternative approaches and some of them were not even implemented as part of the

original publications. This paper aims to shed light on how the proposed algorithms

compare to each other qualitatively (supported data types and distance functions) and

quantitatively (execution time trends). The paper compares the performance of the al-

gorithms when the dataset size and the distance threshold increase. Furthermore, the

paper evaluates the algorithms under different combinations of data type (vectors,

same-length strings, variable-length strings, and sets) and distance functions (Euclidean

Distance, Hamming Distance, Edit Distance, and Jaccard Distance). One of the key

findings of our study is that the proposed algorithms vary significantly in terms of the

supported distance functions, e.g., algorithms like MRSimJoin and MRThetaJoin sup-

port multiple metrics while Subsequence and Hamming Code support only one. There

is also not a single algorithm that outperforms all the others for all the evaluated data

types and distance functions. Instead, in some cases, an algorithm performs consistently

better than the others for a given data type and metric, while in others, the identification

of the best algorithm depends on the dataset size and distance threshold. The authors

have made available the source code of all the implemented algorithms to enable other

researchers and practitioners to apply and extend these algorithms.

References

1. Y. N. Silva, W. G. Aref, M. Ali. The Similarity Join Database Operator. In ICDE, 2010.

0

200

400

4% 8% 12% 16%

0

20

40

R
u

n
ti

m
e(

m
in

u
te

s)

Distance Threshold (ε)
O

u
tp

u
t

Si
ze

(#
 o

f
R

ec
o

rd
s)

 x
 1

0
5

Jaccard Distance, SF1

Output
MRSimJoin
NaïveJoin
MRSetJoin

0

2

4

6

8

10

0

50

100

150

200

250

300

350

4% 8% 12% 16%

O
u

tp
u

t
Si

ze
 (

o

f
R

ec
o

rd
s)

 x
1

0
6

R
u

n
ti

m
e

(m
in

u
te

s)

Distance Threshold (ε)

Jaccard Distance, SF4

Output

MRSimJoin

MRSetJoin

2. Y. N. Silva and S. Pearson. Exploiting database similarity joins for metric spaces. In VLDB,

2012.

3. Y. N. Silva, A. M. Aly, W. G. Aref, P. -A. Larson. SimDB: A Similarity-aware Database

System. In SIGMOD, 2010.

4. Y. N. Silva, W. G. Aref, P. -A. Larson, S. Pearson, M. Ali. Similarity Queries: Their Con-

ceptual Evaluation, Transformations, and Processing. VLDB Journal, 22(3):395–420, 2013.

5. Y. N. Silva, W. G. Aref. Similarity-aware Query Processing and Optimization. VLDB PhD

Workshop, France, 2009.

6. P. A. Bernstein, C. S. Jensen, K.-L. Tan. A Call for Surveys. SIGMOD Record, 41(2): 47,

June 2012.

7. R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. Scope:

easy and efficient parallel processing of massive data sets. In VLDB, 2008.

8. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A.

Fikes, and R. E. Gruber. Bigtable: A distributed storage system for structured data. ACM

Trans. Comput. Syst., 26(2):1–26, 2008.

9. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. In OSDI,

2004.

10. S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In SOSP, 2003.

11. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel pro-

grams from sequential building blocks. In EuroSys, 2007.

12. V. Dohnal, C. Gennaro, and P. Zezula. Similarity Join in Metric Spaces Using eD-Index. In

DEXA, 2003.

13. C. Böhm, B. Braunmüller, F. Krebs, and H.-P. Kriegel. Epsilon Grid Order: An Algorithm

for the Similarity Join on Massive High-Dimensional Data. In SIGMOD, 2001.

14. J.-P. Dittrich and B. Seeger. GESS: a Scalable SimilarityJoin Algorithm for Mining Large

Data Sets in High Dimensional Spaces. In SIGKDD 2001.

15. E. H. Jacox and H. Samet. Metric Space Similarity Joins. TODS 33, 7:1–7:38 (2008).

16. S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in data

cleaning. In ICDE, 2006.

17. S. Chaudhuri, V. Ganti, and R. Kaushik. Data debugger: An operator-centric approach for

data quality solutions. IEEE Data Eng. Bull., 29(2):60–66, 2006.

18. L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivastava.

Approximate string joins in a database (almost) for free. In VLDB, 2001.

19. R. Vernica, M. J. Carey, and C. Li. 2010. Efficient Parallel Set-similarity Joins using

MapReduce. In SIGMOD, 2010.

20. Y. N. Silva, J. M. Reed, L. M. Tsosie. MapReduce-based Similarity Join for Metric Spaces.

In VLDB/Cloud-I, 2012.

21. Y. N. Silva, J. M. Reed. Exploiting MapReduce-based Similarity Joins. In SIGMOD, 2012.

22. F. N. Afrati, A. D. Sarma, D. Menestrina, A. Parameswaran, and J. D. Ullman. Fuzzy Joins

Using MapReduce. In ICDE, 2012.

23. A. Okcan and M. Riedewald. Processing Theta-joins using Mapreduce. In SIGMOD, 2011.

24. A. Metwally and C. Faloutsos. V-SMART-join: a Scalable MapReduce Framework for All-

pair Similarity Joins of Multisets and Vectors. In VLDB, 2012.

25. C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient Similarity Joins for Near Duplicate De-

tection. In WWW, 2008.

26. Apache. Hadoop. http://hadoop.apache.org/.

27. SimCloud Project. MapReduce-based Similarity Join Survey. http://www.pub-

lic.asu.edu/~ynsilva/SimCloud/SJSurvey.

28. Harvard Library. Harvard bibliographic dataset. http://library.harvard.edu/open-metadata.

http://hadoop.apache.org/
http://www.public.asu.edu/~ynsilva/SimCloud/SJSurvey
http://www.public.asu.edu/~ynsilva/SimCloud/SJSurvey
http://library.harvard.edu/open-metadata

29. Y. N. Silva, S. Pearson, J. Chon, R. Roberts. Similarity Joins: Their Implementation and

Interactions with Other Database Operators. Information Systems, 52:149-162, 2015.

30. S. Pearson, Y. N. Silva. Index-based R-S Similarity Joins. In SISAP, 2014.

31. Y. N. Silva, S. Pearson, J. A. Cheney. Database Similarity Join for Metric Spaces. In SISAP,

2013.

32. Y. N. Silva, J. M. Reed, L. M. Tsosie, T. Matti. Similarity Join for Big Geographic Data. In

Geographical Information Systems: Trends and Technologies, E. Pourabbas (Ed.), pp 20-

49, CRC Press, 2014.

