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Abstract. In recent years, Big Data systems and their main data processing 

framework - MapReduce, have been introduced to efficiently process and analyze 

massive amounts of data. One of the key data processing and analysis operations 

is the Similarity Join (SJ), which finds similar pairs of objects between two da-

tasets. The study of SJ techniques for Big Data systems has emerged as a key 

topic in the database community and several research teams have published tech-

niques to solve the SJ problem on Big Data systems. However, many of these 

techniques were not experimentally compared against alternative approaches. 

This was the case in part because some of these techniques were developed in 

parallel while others were not implemented even as part of their original publi-

cations. Consequently, there is not a clear understanding of how these techniques 

compare to each other and which technique to use in specific scenarios. This pa-

per addresses this problem by focusing on the study, classification and compari-

son of previously proposed MapReduce-based SJ algorithms. The contributions 

of this paper include the classification of SJs based on the supported data types 

and distance functions, and an extensive set of experimental results. Furthermore, 

the authors have made available their open-source implementation of many SJ 

algorithms to enable other researchers and practitioners to apply and extend these 

algorithms.  

Keywords: Similarity Joins, Big Data Systems, Performance Evaluation, 

MapReduce. 

1 Introduction 

The processing and analysis of massive amounts of data is a crucial requirement in 

many commercial and scientific applications. Internet companies, for instance, collect 

large amounts of data such as content produced by web crawlers, service logs and click 

streams generated by web services. Analyzing these datasets may require processing 

tens or hundreds of terabytes of data. Big Data systems and MapReduce, their main 

data processing framework, constitute an answer to the requirements of processing mas-

sive datasets in a highly scalable and distributed fashion. These systems are composed 
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of large clusters of commodity machines and are often dynamically scalable, i.e., cluster 

nodes can easily be added or removed depending on the workload. Important examples 

of these Big Data systems are: Apache Hadoop [26]; Google’s File System [10], 

MapReduce [9] and Bigtable [8]; and Microsoft’s Dryad [11] and SCOPE/Cosmos [7]. 

     The Similarity Join is one of the most useful operations for data processing and 

analysis. This operation retrieves all data pairs from two datasets (R and S) whose dis-

tances are smaller than or equal to a predefined threshold ε. Similarity Joins have been 

extensively used in domains like record linkage, data cleaning, sensor networks, mar-

keting analysis, multimedia applications, recommendation systems, etc. A significant 

amount of work has been focused on the study of non-distributed implementations. 

Particularly, Similarity Joins have been studied as standalone operations [12, 13, 14, 

15, 30], as operations that use standard database operators [16, 17, 18], and as physical 

database operators [1, 2, 3, 4, 5, 29, 31]. 

     The study of Similarity Join techniques for Big Data systems has recently emerged 

as a key topic in the data management systems community. Several research teams have 

proposed and published different techniques to solve the Similarity Join problem on 

Big Data systems (e.g., [19, 20, 21, 22, 23, 24, 25]). Unfortunately, however, many of 

these techniques were not experimentally compared against alternative approaches. 

This was the case in part because some of these techniques were developed in parallel 

while others were not implemented even as part of their original publications. Conse-

quently, while there are many techniques to solve the Similarity Join problem, there is 

not a clear understanding of: (1) how these techniques compare to each other, and (2) 

which technique to use in real-world scenarios with specific requirements for data 

types, distance functions, dataset sizes, etc. Furthermore, the need for comparative work 

in the area of data management was recently highlighted by the editors of a top journal 

in this area [6].  

     This paper addresses this problem by focusing on the study, classification and com-

parison of the Similarity Join techniques proposed for Big Data systems (using the 

MapReduce framework). The main contributions of this paper are: 

 The classification of Similarity Join techniques based on the supported data types 

and distance functions. 

 An extensive set of experimental results. These results include tests that compare the 

performance of alternative approaches (based on supported data type and distance 

function) under various dataset sizes and distance thresholds.   

 The availability of the authors’ open-source implementation of many Similarity Join 

algorithms [27]. Our goal is to enable other researchers and practitioners to apply 

and extend these algorithms. 

     The remaining part of this paper is organized as follows. Section 2 presents the de-

scription of all the algorithms considered in our study and a classification of the algo-

rithms based on the supported data types and distance functions. Section 3 presents the 

experimental evaluation results and discussions (this section is divided into subsections 

that focus on specific data types and distance functions). Finally, Section 4 presents the 

conclusions. 



2 MapReduce-based Similarity Join Algorithms 

2.1 Classification of the Algorithms 

Table 1 presents the MapReduce-based Similarity Join algorithms considered in our 

study. For each algorithm, the table shows the supported data types and distance func-

tions (DFs), and the data types that could be supported by extending the original algo-

rithms. In order to systematically evaluate the different algorithms, we classify them 

based on the supported data types. The experimental section of this paper, compares all 

the algorithms that support a given data type and its associated distance functions. 

Table 1. Similarity Join algorithms and supported distance functions and data types. 

2.2 Description of the Studied Similarity-Join Algorithms 

Naïve Join. The Naïve Join algorithm [22] is compatible with all data types and dis-

tance functions, and works in a single MapReduce job. The algorithm uses a key space 

defined by a parameter J, which is proportional to the square root of the number of 

reducers (reduce tasks) to be used. During the Map phase, pairs of input data elements 

are assigned to a key pair with the form (i, j) where 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝐽. For each input record 

X, the mapper (map task) outputs key-value pairs with the form ((i, j), X), such that any 

two records are mapped to at least one common key. The reducer receives all of the 

Algorithm 
Supported Distance/ 

Similarity Functions 

Supported Data Types 

Text/String Numeric Vector Set 

Naïve Join  Any DF ● ● * ● 

Ball Hashing 1  Hamming Distance 

 Edit Distance 

●    

Ball Hashing 2  Hamming Distance 

 Edit Distance 

●    

Subsequence Edit Distance ●    

Splitting Hamming Distance 

Edit Distance 

●    

Hamming Code Hamming Distance ●    

Anchor Points Hamming Distance 

Edit Distance 

● * *  

MRThetaJoin Any DF ● ● ● ● 

MRSimJoin Any metric DF ● ● ● ● 

MRSetJoin JS, TC, CC, 

Edit Distance* 

*   ● 

Online Aggregation JS, RS, DS, SC, VC    ● 

Lookup JS, RS, DS, SC, VC    ● 

Sharding JS, RS, DS, SC, VC    ● 

●    Natively Supported  

*    Can be extended to support this data type or distance function 

JS=Jaccard Similarity, TC=Tanimoto Coefficient, CC=Cosine Coefficient, RS=Ruzicka Sim-

ilarity, DS=Dice Similarity, SC=Set Cosine Sim., VC=Vector Cosine Sim. 



records for a given key and compares each pair of records outputting the pairs with 

distance smaller than or equal to ε (distance threshold). The algorithm proposed in [22] 

does not consider the case where two records are mapped to more than one common 

key.  In this case, we solved the problem by outputting only when i=j. 

Ball Hashing 1. The Ball Hashing 1 algorithm [22] takes a brute force approach to 

solving the Similarity Join problem. This algorithm assumes that the alphabet of the 

input value is finite and known. The Map phase takes in a given input record r and 

generates a ball of radius ε. In effect, for a given join attribute vr, it will generate a set 

Vr composed of every possible value within ε of vr. For each value Vri in Vr that is not 

equal to vr, the Map will emit the key-value pair < Vri, r>. The Map will additionally 

output the key-value pair <vr, r>. As vr is the join attribute in r, this ensures a collision 

in the Reduce phase with any matching pairs (links). Any Reduce group that contains 

such a record (<vr, r>) should be considered an active group and the record r should be 

considered native to that group. Any Reduce group that does not have a native record 

within it should be considered inactive and does not need to be processed further. In the 

active groups, the join matches are generated by combining the native members with 

each of the non-native members in the group. The original paper does not consider the 

possibility of multiple input records having the same join value. If this is the case, there 

is the additional need to join native members among each other as well as all native 

records against all non-native records. This algorithm supports string data with the Edit 

and Hamming distance functions. 

Ball Hashing 2. Ball Hashing 2 [22] is an extension of the Ball Hashing 1 algorithm. 

The difference is that in the Map phase, it generates balls of size ε/2. Because of this, it 

is necessary to process every Reduce group. A brute force comparison is performed in 

each Reduce group to find any matches and eliminate the possibility of duplicate out-

puts. The algorithm supports string data with Edit and Hamming distance metrics. 

Subsequence. Subsequence [22] is an algorithm proposed for string data and the Edit 

Distance. The Map phase generates all the (b-ε/2)-subsequences of each input string (b 

is the string length) and outputs pairs of the form <subsequence, input_string>. The 

Reduce phase compares all the records sharing the same subsequence to identify the 

Similarity Join matches. The key idea behind this algorithm is that if two strings are 

within ε, they will share at least one identical subsequence.   

Splitting. The Splitting algorithm [22] is composed of a single MapReduce job and is 

based on splitting strings into substrings. These substrings are then compared to other 

substrings generated from the input dataset. In order to be considered a Similarity Join 

match, a pair of strings only needs to share one common substring. In the Map task, 

each input string (with length b) is split into substrings of length b/(ε+1). The result 

will be composed of b/(b/(ε+1)) substrings. Each substring will be outputted with a key 

consisting of its position (i) in the parent string, and the substring that was generated, 



si. The value that will be attached to the key is the parent string. Each reducer will 

compare (pair wise) all the substrings that have a matching key and output the pairs that 

are separated by a distance smaller than or equal to ε. To avoid the generation of dupli-

cate pairs at multiple reducers, a match is generated only within the Reduce group as-

sociated with the position of the first common substring between two matching strings. 

This distance functions supported by this algorithm are Hamming and Edit Distance.  

Anchor Points. This algorithm distributes the input data into groups where all the 

members of a group are within a certain distance of an anchor point [22]. The technique 

supports the Hamming and Edit Distance functions. In the case of Hamming Distance, 

the algorithm finds first a set of anchor points such that every input record is within ε 

from at least one anchor. This set is stored in a distributed cache and used at each map-

per. For each input record s, the mapper outputs key-value pairs for every anchor point 

that is within 2ε of s. The mapper marks the closest anchor point to s as its home group. 

In the Reduce phase, the strings of a given home group will be compared to other strings 

from other groups that were sent to the same reducer. All strings in the home group will 

be compared as well. In the case of Edit Distance, the anchor points are a subset of the 

data such that every input record is within ε deletions from at least one anchor. This 

modified algorithm only works with fixed-length strings. This fact is not directly stated 

in the paper but was confirmed by the authors.  

Hamming Code. The Hamming Code algorithm [22] is a SJ technique proposed for 

string data and the Hamming Distance. Since this algorithm only works when ε=1 and 

the strings’ length is one less than a power of 2, it is not included in our evaluation.  

MRThetaJoin. MRThetaJoin [23] is a randomized Theta Join algorithm that supports 

arbitrary join predicates (including Similarity Join conditions). This approach uses a 

single MapReduce job and requires some basic statistics (input cardinality). The ap-

proach uses a model that partitions the input relations using a matrix that considers all 

the combinations of records that would be required to answer a cross product. The ma-

trix cells are then assigned to reducers in a way that minimizes job completion time. A 

memory-aware variant is also proposed for the common scenario where partitions do 

not fit in memory. Since any Theta Join or Similarity Join is a subset of the cross-

product, the matrix used in this approach can represent any join condition. Thus, this 

approach can be used to supports Similarity Joins with any distance function and data 

type. For the performance evaluation of Similarity Joins presented in this paper, we 

implemented an adaptation of the memory-aware 1-Bucket-Theta algorithm proposed 

in [25] that uses the single-node QuickJoin algorithm [15] in the reduce function. 

MRSimJoin. The MRSimJoin algorithm [20, 21, 32] iteratively partitions the data into 

smaller partitions, until each partition is small enough to be processed in a single node. 

The process is divided into a sequence of rounds, and each round corresponds to a 

MapReduce job. Partitioning is achieved by using a set of pivots, which are a subset of 



the records to be partitioned.  There are two types of partitions, base partitions and 

window-pair partitions. Base partitions hold all of the records closest to a given pivot, 

rather than any other pivot. Window-pair partitions hold records within the boundary 

between two base partitions. If possible, e.g., Euclidean Distance, the window-pair par-

titions should only include the points within ε from the hyperplane separating adjacent 

base partitions. If this is not possible, a distance is computed to a generalized hyper-

plane boundary (lower bound of the distance). This algorithm can be used with any data 

type and metric. The experimental section in [20] shows that in most cases the number 

of pivots can be adjusted to ensure the algorithm runs in a single MapReduce job. 

MRSetJoin. MapReduce Set-Similarity Join [19] is a Similarity Join algorithm that 

consists of three stages made up of various MapReduce jobs. In the first stage, data 

statistics are generated in order to select good signatures, or tokens, that will be used 

by later MapReduce jobs. In the second stage, each record has its record-ID and join-

attribute value assigned to the previously generated tokens, the similarity between rec-

ords associated with the same token is computed, and record-ID pairs of similar records 

are outputted. In the third stage, pairs of joined records are generated from the output 

of the second stage and the original input data. MRSetJoin supports set-based distance 

functions like Jaccard Distance and Cosine Coefficient. There are multiple options pre-

sented for each stage, however, the paper states that BTO-PK-BRJ is the most robust 

and reliable option. Thus, this option is used in this survey as the representative of this 

technique. 

V-Smart-Online Aggregation. Online Aggregation [24] is a Similarity Join algorithm 

under the V-SMART-Join framework, which can be used for set and multiset data and 

set-based distance functions like Jaccard and Dice. In general, the V-SMART-Join 

framework consists of two phases, joining and similarity. Although the framework in-

cludes three different joining phase algorithms, Online Aggregation, Lookup, and Shar-

ding, only one of the three was selected to participate in the survey. According to the 

experimental results in [24], Online Aggregation generally outperforms the Sharding 

and Lookup algorithms, and as such it was selected to represent this approach. The 

algorithm is based on the computation of Uni(Mi) for each multiset Mi. Uni(Mi) is the 

partial result of a unilateral function (e.g., Uni(Mi)=|Mi|). During the joining phase (one 

MapReduce job), the Uni(Mi) of a given multiset Mi is joined to all the elements of Mi. 

The similarity phase, composed of two MapReduce jobs, builds an inverted index, com-

putes the similarity between all candidate pairs, and outputs the Similarity Join matches. 

3 Experimental Comparison 

This section presents the experimental comparison of previously proposed MapReduce-

based Similarity Join algorithms. One of the key tasks for this survey work was the 

implementation of the studied algorithms. While in some cases, the source code was 

provided by the original authors (MRSetJoin, MRSimJoin), in most cases, the source 



code was not available and consequently had to be implemented as part of our work 

(e.g., Ball Hashing 1, Ball Hashing 2, Naïve Join, Splitting, Online Aggregation, 

MRThetaJoin). We have made available the source code of all the evaluated algorithms 

in [27]. All the algorithms were implemented and evaluated using Hadoop (0.20.2), the 

most popular open-source MapReduce framework. The experiments were performed 

using a Hadoop cluster running on the Amazon Elastic Compute Cloud (EC2). Unless 

otherwise stated, we used a cluster of 10 nodes (1 master + 9 worker nodes) with the 

following specifications: 15 GB of memory, 4 virtual cores with 2 EC2 Compute Units 

each, 1,690 GB of local instance storage, 64-bit platform. The number of reducers was 

computed as: 0.95×⟨no. worker nodes⟩×⟨max reduce tasks per node⟩ = 25. Table 2 

shows configurations details for individual algorithms. 

The experiments used a slightly modified version of the Harvard bibliographic da-

taset [28]. Specifically, we used a subset of the original dataset and augmented the rec-

ord structure with a vector attribute to perform the tests with vector data. Each record 

contains the following attributes: unique ID, title, date issued, record change date, rec-

ord creation date, Harvard record-ID, first author, all author names, and vector. The 

vector attribute is a 10D vector that was generated based on the characters of the title 

(multiplied against prime numbers). The vector components are in the range [0 - 999]. 

The minimum and maximum length (number of characters) of each attribute are as fol-

lows: unique ID (9, 9), title (6, 996), date issued (4, 4), record change date (15, 15), 

record creation date (6, 6), Harvard record-ID (10, 10), first author (6, 94), and all au-

thor names (6, 2462). The dataset for scale factor 1 (SF1) contains 200K records. The 

records of each dataset are equally divided between tables R and S.  

The datasets for SF greater than 1 were generated in such a way that the number of 

matches of any Similarity Join operation in SFN is N times the number of matches in 

SF1. For vector data, the datasets for higher SF were obtained adding shifted copies of 

the SF1 dataset where the distance between copies were greater than the maximum 

value of ε. For string data, the datasets for higher SF were obtained adding a copy of 

the SF1 data where characters are shifted similarly to the process in [19]. 

We evaluate the performance of the algorithms by independently analyzing their ex-

ecution time while increasing the dataset size (SF) and the distance threshold (ε). We 

did not include the execution time when an algorithms took a relatively long time (more 

than 3 hours). We performed four sets of experiments for the following combinations 

of data types and distance functions: (1) vector data and Euclidean Distance, (2) varia-

ble-length string (text) data and Edit Distance, (3) fixed-length string data and Ham-

ming Distance, and (4) set data and Jaccard Distance. Each algorithm was executed 

multiple times; we report the average execution times. 

Table 2. Additional configuration details. 

Algorithm Configuration Details 

Naïve Join J = √Number of Reduce Tasks 

MRThetaJoin K = ((|R|+|S|) x b)/m, where |R| and |S| are the cardinalities of R and 

S, b = size in bytes per record, m = memory threshold (64 MB). 

MRSimJoin Memory limit for in-memory SJ algorithm = 64 MB. 

Number of Pivots = SF x 100. 



3.1 Comparison of Algorithms for Vector Data – Euclidean Distance 

This section compares the performance of the algorithms that support vector data, 

namely MRSimJoin and MRThetaJoin. We use the Euclidean Distance function and 

perform the distance computations over the 10D vector attribute of the Harvard dataset.  

 

Increasing Scale factor. Figures 1 and 2 compare the way MRSimJoin and MRThe-

taJoin scale when the data size increases (SF1-SF4). The experiments use 10D vectors. 

The experiments in Fig. 1 use a relatively small value of ε (5% of the maximum possible 

distance) while the ones in Fig. 2 a relatively large value (15%). Fig. 1 shows that, for 

small values of ε (5%), MRSimJoin performs significantly better than MRThetaJoin 

when the data size increases.  Specifically, the execution time of MRThetaJoin grows 

from being 2 times the one of MRSimJoin for SF1 to 7 times for SF4. The execution 

time of MRThetaJoin is significantly higher than that of MRSimJoin because the total 

size of all the partitions of MRThetaJoin is significantly larger than that of MRSimJoin. 

Fig. 2 shows that, for larger values of ε (15%), MRSimJoin still performs better than 

MRThetaJoin in the case of larger datasets but is outperformed by MRThetaJoin for 

small datasets. Specifically, the execution time of MRThetaJoin is 0.7 times the one of 

MRSimJoin for SF1 and SF2; and 1.2 and 1.9 times for SF3 and SF4, respectively. 

 

Increasing ε. Figures 3 and 4 show how the execution time of MRSimJoin and MRThe-

taJoin increase when ε increases (1%-20%). Fig. 3 considers relatively smaller values 

of ε (1%-5%) while Fig. 4 considers larger values (5%-20%). The results in both figures 

show that the performance of MRSimJoin is better than the one of MRThetaJoin for all 

the evaluated values of ε. Specifically, in Fig. 3 the execution time of MRThetaJoin is 

between 7 (ε=5%) to 11 (ε=1%) times the one of MRSimJoin while in Fig. 4, the exe-

cution time of MRThetaJoin is between 1.6 (ε=20%) to 9.2 (ε=5%) times the one of 

MRSimJoin. We can observe that the performance of MRSimJoin tends to get closer to 

the one of MRThetaJoin for very large values of ε. In general, the execution time of 

both algorithms grows when ε grows. The increase in execution time is due to a higher 

number of distance computations in both algorithms and slightly larger sizes of win-

dow-pair partitions in the case of MRSimJoin. 

From the results presented in this section, we can conclude that MRSimJoin is in 

general the best approach to perform Similarity Joins with vector data unless the dataset 

size is very small and the distance threshold is extremely large.  

 

3.2 Comparison of Algorithms for Variable-length String Data – Edit Distance 

This section compares the performance of the Similarity Join algorithms using string 

data and the Edit Distance. The tests use the first author name (variable-length: 6-94, 

alphabet size: 27) as the join attribute. The evaluated algorithms are: MRSimJoin, Na-

ïve Join, MRThetaJoin, and Ball Hashing 1. For this last algorithm, we were only able 

to obtain results for the test with ε=1. Even using SF1, this algorithm took significantly 

longer than the other algorithms. Ball Hashing 2 and Anchor Points are not included 

since they do not support variable-length strings. Splitting and Subsequence were not 

included since the brief information  included in [22] to support variable-length strings 



     
 Fig. 1. Euclidean - Increasing SF (ε=5%)      Fig. 2. Euclidean - Increasing SF (ε=15%) 

 

was not sufficient to implement this feature. Ball Hashing 2 and Splitting are evaluated 

in Sec. 3.2 with fixed-length strings. Regarding the Edit Distance metric, we consider 

the edit operations of insertion and deletion of a character. Both operations have a cost 

of 1. This is a common case of the Edit Distance and it is used in the specification of 

Naïve Join, Ball Hashing 1, and Ball Hashing 2. MRSimJoin and MRThetaJoin, which 

also support the Edit Distance with the character substitution operation, were adapted 

to support the metric with insertion and deletion. The maximum value of ε is 100. 

 

Increasing Scale factor. Fig. 5 compares the performance of the algorithms when the 

dataset is incrementally scaled from SF1 to SF4. Naïve Join is the best performing al-

gorithm for SF1 while MRSimJoin performs the best in all the other cases. For SF1, 

Naïve Join completed execution within 75% of the execution time of MRThetaJoin, 

and 89% of that of MRSimJoin. However, as the data size increased, MRSimJoin out-

performed both Naïve Join and MRThetaJoin for SF2-SF4. For these values of SF, 

MRSimJoin’s execution time is at most 74% of that of MRThetaJoin, and at most 76% 

of that of Naïve Join. Also, we observed that as the scale factor increased, the relative 

advantage of MRSimJoin improved too, and at SF4, MRSimJoin completed within 54% 

of the execution time of MRThetaJoin and within 56% of that of Naïve Join.   

 

Increasing ε. Fig. 6 compares the algorithms when the value of ε (distance threshold) 

increases from 1 to 4. For ε values of 1 and 2, MRSimJoin outperformed the other 

algorithms, completing always within 68% of the execution time of MRThetaJoin and 

within 77% of that of Naïve Join. The outlier on these tests was Ball Hashing 1. Spe-

cifically, its execution time was nine times the one of MRSimJoin for ε=1. The Ball 

Hashing 1 tests using higher values of ε were cancelled after they took significantly 

longer than the other algorithms. For larger values of ε (3 and 4), Naïve Join outper-

formed the other algorithms. Specifically, Naïve Join completed within 78% of 

MRSimJoin’s execution time, and 89% of MRThetaJoin’s execution time for these 

larger values of ε.  

From these results, it can be concluded that MRSimJoin is, in general, the best ap-

proach to perform similarity joins with the Edit Distance (text data) when the dataset is  
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   Fig. 3. Euclidean - Increasing ε (small)         Fig. 4. Euclidean - Increasing ε (large) 

    
        Fig. 5. Edit Dist. - Increasing SF                   Fig. 6. Edit Dist. - Increasing ε 

 

large (greater than SF1 in our tests) or the distance threshold is relatively small (1 or 2 

in our tests). For smaller datasets or larger distance thresholds, Naïve Join is the best 

approach among the evaluated algorithms. 

 

3.3 Comparison of Algorithms for Fixed-length Strings – Hamming Distance 

The tests in this section perform Similarity Joins using Hamming Distance over the first 

6 characters of the first author name (fixed-length: 6, alphabet: 27). The evaluated al-

gorithms are: MRSimJoin, MRThetaJoin, Naïve Join, Splitting, Ball Hashing 1, and 

Ball Hashing 2. Anchor Points it is not included since the paper that introduced it 

showed that it is outperformed by other algorithms [22]. The maximum value of ε is 6. 

   

Increasing Scale Factor. The results of the experiments using increasing scale factors 

(SF1-SF4) are represented in Fig. 7. This figure shows that the Splitting algorithm out-

performs all of the other algorithms for all the values of scale factor. Specifically, Split-

ting’s execution time is at most 71% of the one of MRThetaJoin, 60% of Naïve Join, 

and 24% of MRSimJoin. MRThetaJoin and Naïve Join have very similar results, with 

MRThetaJoin slightly outperforming Naïve Join for SF1, SF3 and SF4. The execution  
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   Fig. 7. Hamming Dist. - Increasing SF           Fig. 8. Hamming Dist. - Increasing ε

 
 Fig. 9. Hamming Dist. - Increasing ε (1k)         Fig. 10. Jaccard - Increasing SF 

 

time of MRSimJoin is larger than the ones of the other algorithms compared in Fig. 7. 

Ball Hashing 1 and Ball Hashing 2 were excluded from the comparison as they did not 

complete within a reasonable amount of time.  

 

Increasing ε.  Fig. 8 shows the results of comparing the algorithms with increasing 

values of the distance threshold. In these tests, the Splitting algorithm outperforms all 

other algorithms with the exception of ε=3 where MRThetaJoin slightly outperforms it. 

Splitting’s execution times are between 11% (ε=1) and 106% (ε=3) of those of MRThe-

taJoin. Splitting’s execution times are also between 15% and 92% of the ones of Naïve 

Join, between 3% and 90% of MRSimJoin, and less than 4% of the execution time of 

Ball Hashing 1 and Ball Hashing 2. Ball Hashing 1 and 2 are not reported in Fig. 7 (and 

only have some data points in Fig. 8) because they did not return a result under a sig-

nificantly long time (3 hours). Fig. 9 presents the execution time of these algorithms 

with a significantly smaller dataset (1K records) under multiple values of ε. Observe 

that even for this small dataset, the execution time of Ball Hashing 1 is not only signif-

icantly larger than that of Ball Hashing 2, but also increases rapidly. The execution time 

of Ball Hashing 1 increases from being 2 times the execution time of Ball Hashing 2 
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for ε=1 to be 31 times for ε=2. While Ball Hashing 2 clearly outperforms Ball Hashing 

1, it is still significantly slower than other algorithms as shown in Fig. 8. 

The results of this section show that in the case of Hamming Distance, the Splitting 

algorithm is the best choice for various values of dataset size and distance threshold. In 

most of the cases, Naïve Join and MRThetaJoin are the next best performing options.   

3.4 Comparison of Algorithms for Set Data – Jaccard Distance 

This section compares the performance of the algorithms that support set data, namely 

Naïve Join, MRThetaJoin, MRSimJoin, MRSetJoin, and Online Aggregation. The 

Lookup and Sharding algorithms were not included in our analysis since they were 

found to be generally outperformed by Online Aggregation [24]. We use the Jaccard 

Distance function and perform the distance computations over the First Author Name 

attribute. To this end, we first converted the author name into a proper set by deleting 

spaces and removing duplicates. For instance, the name “John Smith” is converted into 

the set {j, o, h, n, s, m, i, t}. The alphabet size and the maximum set size are 26. In this 

case, the range of ε is: 0 (0%) – 1 (100%). 

 

Increasing Scale factor. Fig. 10 compares the way the algorithms scale when the da-

taset size increases (SF1-SF4). Naïve Join is the slowest algorithm, having a SF1 

runtime that is at least four times the ones of the other algorithms in this figure. It is 

also too slow to be executed with any of the higher scale factor values. MRThetaJoin 

was executed with SF1 and SF2 but its runtime was too long to be included for larger 

datasets. MRSimJoin and MRSetJoin have fairly similar execution times. MRSetJoin 

performs better with SF1-SF3 but its relative advantage decreases as the dataset size 

increases. Specifically, MRSetJoin’s execution time is 33%, 50% and 73% of those of 

MRSimJoin for SF1, SF2 and SF3, respectively. MRSimJoin outperforms MRSetJoin 

for SF4, where MRSimJoin’s execution time is 89% of the one of MRSetJoin. The 

results of the Online Aggregation algorithm were not included because these tests took 

too long and were cancelled or did not complete properly. We were able to successfully 

run this algorithm only with very small datasets (~1K).    

 

Increasing ε. Fig. 11 shows how the execution time of the evaluated algorithms in-

creases when ε increases (4%-16%). Naïve Join was the slowest algorithm and its 

runtime was at least 3.5 times of the ones of the other algorithms. MRSetJoin and 

MRSimJoin are the best performing algorithms. MRSetJoin’s advantage over MRSim-

Join tends to increase when ε increases. Specifically, MRSimJoin’s execution time is 

1.8 times the one of MRSetJoin for SF1 and 4.7 for SF4. Fig. 12 provides additional 

details of the two best performing algorithms (MRSetJoin and MRSimJoin). This figure 

compares the algorithms’ performance using SF4. Fig. 12 shows that for a larger dataset 

(SF4), the relative advantage of MRSetJoin over MRSimJoin decreases. In this case, 

the execution time of MRSimJoin is between 0.8 and 1.8 of those of MRSetJoin. 

  

The results presented in this section indicate that MRSetJoin is, in general, the best 

algorithm for set data  and  Jaccard Distance. MRSimJoin,  which performed second in  



       
Fig. 11. Jaccard - Increasing ε (SF1)             Fig. 12. Jaccard - Increasing ε (SF4) 

 

most tests, should be considered as an alternative particularly for very large datasets 

where it could, in fact, outperform MRSetJoin. 

4 Conclusions 

MapReduce is widely considered one of the key processing frameworks for Big Data 

and the Similarity Join is one of the key operations for analyzing large datasets in many 

application scenarios. While many MapReduce-based Similarity Join algorithms have 

been proposed, many of these techniques were not experimentally compared against 

alternative approaches and some of them were not even implemented as part of the 

original publications. This paper aims to shed light on how the proposed algorithms 

compare to each other qualitatively (supported data types and distance functions) and 

quantitatively (execution time trends). The paper compares the performance of the al-

gorithms when the dataset size and the distance threshold increase. Furthermore, the 

paper evaluates the algorithms under different combinations of data type (vectors, 

same-length strings, variable-length strings, and sets) and distance functions (Euclidean 

Distance, Hamming Distance, Edit Distance, and Jaccard Distance). One of the key 

findings of our study is that the proposed algorithms vary significantly in terms of the 

supported distance functions, e.g., algorithms like MRSimJoin and MRThetaJoin sup-

port multiple metrics while Subsequence and Hamming Code support only one. There 

is also not a single algorithm that outperforms all the others for all the evaluated data 

types and distance functions. Instead, in some cases, an algorithm performs consistently 

better than the others for a given data type and metric, while in others, the identification 

of the best algorithm depends on the dataset size and distance threshold. The authors 

have made available the source code of all the implemented algorithms to enable other 

researchers and practitioners to apply and extend these algorithms.    
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