
SimDB: A Similarity-aware Database System* 
Yasin N. Silva1  Ahmed M. Aly1 Walid G. Aref1  Per-Ake Larson2   

1Dept. of Computer Science                                         
Purdue University                                                             

West Lafayette, IN, USA 

{ysilva,aaly,aref}@cs.purdue.edu 

2Microsoft Research                                                                                                
Redmond, WA, USA 

palarson@microsoft.com 

 
ABSTRACT 
The identification and processing of similarities in the data play a 
key role in multiple application scenarios. Several types of 
similarity-aware operations have been studied in the literature. 
However, in most of the previous work, similarity-aware 
operations are studied in isolation from other regular or similarity-
aware operations. Furthermore, most of the previous research in 
the area considers a standalone implementation, i.e., without any 
integration with a database system. In this demonstration we 
present SimDB, a similarity-aware database management system. 
SimDB supports multiple similarity-aware operations as first-class 
database operators. We describe the architectural changes to 
implement the similarity-aware operators. In particular, we 
present the way conventional operators’ implementation 
machinery is extended to support similarity-ware operators. We 
also show how these operators interact with other similarity-aware 
and regular operators. In particular, we show the effectiveness of 
multiple equivalence rules that can be used to extend cost-based 
query optimization to the case of similarity-ware operations.  

Categories and Subject Descriptors 
H.2.4 [Systems]: Query processing. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Similarity-aware Query Processing and Optimization, Similarity 
Group-by, Similarity Join. 

1. INTRODUCTION 
Multiple application scenarios, e.g., marketing analysis, medical 
applications and data cleaning; can significantly benefit from the 
identification and processing of similarities in the data. Several 
techniques have been proposed to extend some data operations, 
e.g., selection and join, to process similarities in the data ([1], [2], 
[3], [4], [5], [6]). Unfortunately, in most of the previous work, 
similarity-aware operations are studied in isolation from other 
regular and similarity-aware operations. Furthermore, most of the 
previous    research     in     the     area    considers    a   standalone  
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implementation, i.e., without any integration with a database 
system. 

In this demonstration we present SimDB, a similarity-aware 
database system. SimDB supports multiple similarity-aware 
operations   as    first-class    physical   database   operators.    The 
implementation of these operators at the database level has the 
following key advantages: (1) similarity-aware operators can be 
interleaved with other regular or similarity-aware operators and 
their results pipelined for further processing; (2) important 
optimization techniques, e.g., pushing certain filtering operators to 
lower levels of the execution plan, pre-aggregation, and the use of 
materialized views can be extended to the new operators; and (3) 
the implementation of these operators can reuse and extend other 
operators and structures, and use the cost-based query optimizer 
machinery to enhance execution time. SimDB currently supports 
multiple similarity grouping and similarity join operators. In this 
demonstration, we describe the architectural changes to 
implement the similarity-aware operators. In particular, we 
present the way the implementation machinery of conventional 
operators is extended to support similarity-aware operators. We 
also show practically how these operators interact with other 
similarity-aware and regular operators. In particular, we show 
experimentally the effectiveness of multiple equivalence rules that 
can be used to extend cost-based query optimization to similarity-
ware operations. SimDB builds on the results of [7], [8], and [9].   
The remaining part of the paper is organized as follows. Section 2 
presents the similarity-aware operators supported in SimDB. 
Section 3 discusses the implementation of these operators and 
several optimization techniques. Section 4 presents the 
demonstration scenario and Section 5 the conclusions and future 
work paths.  

2. SimDB’s SIMILARITY-AWARE 
OPERATORS 
The current version of SimDB supports several types of similarity 
grouping and similarity join.  

2.1 Similarity Grouping Operators 
The generic definition of the similarity group-by (SGB) operator 
is as defined in [7]:  

𝛾𝛾𝐹𝐹1(𝐴𝐴1),…,𝐹𝐹𝑚𝑚 (𝐴𝐴𝑚𝑚 )(𝑅𝑅)(𝐺𝐺1,𝑆𝑆1),…,(𝐺𝐺𝑛𝑛 ,𝑆𝑆𝑛𝑛 )   
where R is a relation name, Gi is an attribute of R that is used to 
generate the  groups, i.e.,  a similarity grouping attribute,  Si is a  
segmentation of the domain of Gi in non-overlapping segments, Fi 
is an aggregation function, and Ai is an attribute of R.  
SimDB supports several instances of the previous generic 
definition: Unsupervised Similarity Group-by (SGB-U), 
Supervised  Similarity  Group  Around (SGB-A),  and  Supervised  
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Figure 1. SimDB’s Similarity Group-by operators 

A

 ε

a) SELECT … FROM A, B WHERE A.a WITHIN ε OF B.b

B

A

B

r

b) SELECT … FROM A, B WHERE A.a AROUND B.b [MAX_DIAMETER 2r]
 

Figure 2. SimDB’s Similarity Join operators 

SGB using Delimiters (SGB-D). SGB-U (e.g., Figure 1.a) enables 
grouping tuples based on desired group properties, e.g., size 
(MAXIMUM_GROUP_DIAMETER) and compactness 
(MAXIMUM_ELEMENT_SEPARATION). SGB-A (e.g., Figure 
1.b) allows grouping around points of interest. SGB-D (e.g., 
Figure 1.c) enables segmenting the tuples based on given limiting 
values. These instances represent a middle ground between the 
regular group-by and clustering algorithms. They are intended to 
be much faster than regular clustering algorithms and generate 
groupings that capture similarities on the data not captured by the 
regular group-by. As evident from Figure 1, similarity group-by 
instances are able to identify successfully the naturally formed 
groups. 

2.2 Similarity Join Operators 
The generic definition of the Similarity Join (SJ) operator is as 
defined in [8]:  

𝐴𝐴 ⋈𝜃𝜃𝑆𝑆 𝐵𝐵 = {〈𝑎𝑎, 𝑏𝑏〉 | 𝜃𝜃𝑆𝑆(𝑎𝑎, 𝑏𝑏), 𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵} 
where θs represents the similarity join predicate. This predicate 
specifies the similarity-based conditions that the pairs <a,b> need 
to satisfy to be in the SJ output. The SJ predicates for the 
similarity join operators supported in SimDB are as follows.  

• Range Distance Join (Ɛ-Join): 𝜃𝜃𝜀𝜀 ≡ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑏𝑏) ≤ 𝜀𝜀 
• Join-Around (A-Join): 𝜃𝜃𝐴𝐴,𝑟𝑟 ≡ 𝑏𝑏 𝑑𝑑𝑑𝑑 𝑑𝑑ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑  

        𝑛𝑛𝑒𝑒𝑑𝑑𝑛𝑛ℎ𝑏𝑏𝑐𝑐𝑟𝑟 𝑐𝑐𝑜𝑜 𝑎𝑎 𝑎𝑎𝑛𝑛𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑏𝑏) ≤ 𝑟𝑟 
The Ɛ-join operator (e.g., Figure 2.a) is an extensively used type 
of SJ. The Join-Around (e.g., Figure 2.b) is a useful type of SJ in 
which  every  value of  the first joined set is assigned  to its closest  
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Figure 3. Modifications in the main query processing data 

structures to support SGB operators 
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Figure 4. Path/Plan trees for SGB with multiple SGAs 

value in the second set. Additionally, only the pairs separated by a 
distance of at most r are part of the join output.  

3. QUERY PROCESSING AND 
OPTIMIZATION IN SimDB 
3.1 Query Processing in SimDB 
SimDB extends PostgreSQL, an open source DBMS. The current 
implementation of similarity-aware operators in SimDB supports 
multiple independent numeric grouping attributes for SGB and 
multiple join predicates over numeric attributes for SJ.  
To add support for SGB and SJ in the parser, the raw-parsing 
grammar rules, e.g., the yacc rules in the case of PostgreSQL, are 
extended to recognize the syntax of the different new grouping 
approaches and join predicates. The parse-tree and query-tree data 
structures are extended to include the information about the type 
and parameters of the similarity-based operations. Figure 3 shows 
the changes in these data structures to support the SGB operators.  
In the planning stage, when multiple similarity grouping attributes 
(SGAs) or SJ predicates are used, they are processed one at the 
time. Figure 4 gives the structure of the plan trees generated when 
two SGAs a1 and a2 are used. The bottom aggregation node 
applies similarity grouping on a1 and regular aggregation on a2. 
The output of this node is aggregated by the top aggregation node 
that applies similarity grouping on a2 and regular aggregation on 
a1.  Note  that  supervised  aggregation nodes  make  use  of  their  
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Figure 5. Path/Plan trees for SJ 

Basic Associativity of SJ Operators  
1. �𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀1 𝐸𝐸2� ⋈𝜃𝜃𝜀𝜀2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝜀𝜀2 𝐸𝐸3)  

2. �𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴1 𝐸𝐸2� ⋈𝜃𝜃𝐴𝐴2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝐴𝐴2 𝐸𝐸3)  
where θƐ1, and θA1 involve attributes from only E1 and E2; θƐ2 and θA2 
involve attributes from only E2 and E3. θ is a non-similarity predicate.  

Associativity Rule to Enable Join on Originally Unrelated 
Attributes 
In the case of Range Distance Join, when the attributes e1 of E1 and e2 
of E2 are joined using Ɛ1 and the result joined with attribute e3 of E3 
using Ɛ2, there is an implicit relationship between e1 and e3 that is 
exploited by the following equivalence rule: 

3. �𝐸𝐸1 ⋈𝑒𝑒1 𝜃𝜃𝜀𝜀1 𝑒𝑒2 𝐸𝐸2� ⋈𝑒𝑒2 𝜃𝜃𝜀𝜀2 𝑒𝑒3 𝐸𝐸3 ≡ 
    �𝐸𝐸1 ⋈𝑒𝑒1 𝜃𝜃𝜀𝜀1+𝜀𝜀2 𝑒𝑒3 𝐸𝐸3� ⋈(𝑒𝑒1  𝜃𝜃𝜀𝜀1 𝑒𝑒2)∧(𝑒𝑒2 𝜃𝜃𝜀𝜀2 𝑒𝑒3) 𝐸𝐸2 
This rule enables the generation of a cheaper plan (RHS) when the 
selectivity of the first join in the RHS of the rule is small.  

Basic Distribution of Selection over SJ 
When all the attributes of the selection predicate θ involve only the 
attributes of one of the expressions being joined (E1): 
4.  𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2 

5. 𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝐴𝐴 𝐸𝐸2  

Pushing Selection Predicate under Originally Unrelated 
Join Operand 
In equivalence rules 4-5 each selection predicate θ is “pushed” only 
under the join operand that contains all the attributes referenced in θ. 
In the case of the Range-Join operator, the filtering benefits of pushing 
a selection predicate θ can be further improved by pushing θ under 
both operands of the join as shown in the following equivalence rule: 

6. 𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝜀𝜀 (𝜎𝜎𝜃𝜃±𝜀𝜀(𝐸𝐸2)) 
where all the attributes of the predicate θ involve only the attributes of 
E1, and the selection predicate θ±Ɛ represents a modified version of θ 
where each condition is “extended” by Ɛ and is applied on the join 
attribute of E2. For example, if θ = 10 ≤ e1 ≤ 20, then θ±Ɛ = 10–Ɛ ≤ e2 
≤ 20+Ɛ.   

Equivalences Among Similarity-aware Operators 
Join-Around and the Similarity Group-Around are equivalent as 
follows: 

7. γF(AA )(E1)
e1 around  E2.e2

≡ γF(AA )(E1 ⋈e1 θA  e2 E2)
e2

 

where F(AA) is the aggregate function on aggregation attribute AA. 

Figure 6. Equivalence rules for similarity-aware operators 

 

inner input plan tree to receive the reference points data. Figure 5 
gives the structure of the plan trees for the cases of one and 
multiple SJ predicates. 

Each extended aggregation node is able to process one SGA and 
any number of regular grouping attributes. Similarly, each 
extended join node can process one SJ predicate and any number 
of regular join predicates. The implementation of the executor 
routines for the SGB operators uses a single plane sweep approach 
to form the groups. The tuples to be grouped and the reference 
points have been previously sorted and are processed 
simultaneously using a hash table to maintain information of the 
formed groups. At any time, a set of current groups is maintained 
and each time the sweeping plane reaches a tuple the system 
evaluates whether this tuple belongs to the current groups, does 
not belong to any group, or starts a new set of groups [7]. Range-
Join and Join-Around are implemented extending the routines that 
support the Sort Merge Join operator. This allows a fast and 
efficient implementation of both SJ operators. The sorted tuples 
received from the input plans are processed synchronously 
following also a plane sweep approach. The algorithms are coded 
in PostgreSQL in the fashion of a state machine. Both Ɛ -Join and 
Join-Around use the same set of states employed by the Sorted 
Merge Join. The main changes to implement the SJ operators are 
on the routine that evaluates if there is a match between two tuples 
and on the way the inner cursor is restored to a previous tuple to 
ensure the correct generation of SJ links [8]. 

3.2 Optimizing Similarity-aware Operators 
In this demonstration, we present experimentally, how 
equivalence rules for similarity-aware operators can be used in 
SimDB to enable the transformation of queries into equivalent 
plans with potentially smaller expected execution time. These 
rules include: (1) multiple non-trivial transformation rules that 
exploit specific properties of SJ and SGB operators (e.g., Figure 
6.[1-6]), (2) equivalence rules between multiple SJ operators and 
between SJ and SGB operators (e.g., Figure 6.7), and (3) Eager 
and Lazy aggregation transformations for SGB and SJ to enable 
pre-aggregation that can significantly reduce the amount of data to 
be processed by SJs. Figures 7 and 8 show examples of Eager and 
Lazy aggregation transformations. In figure 8, the similarity 
predicate of the Join-Around (in the Lazy approach) is completely 
pushed down to the grouping operator (in the Eager approach). 
Therefore, the Eager approach avoids completely the use of the SJ 
operator, using instead a fast SGB operator and a regular join. In 
this example, the bottom grouping node of the Eager approach 
merges all the tuples of T1 even though they have different values 
of J1. In general, both the eager and lazy versions of a query 
should be considered during query optimization since neither of 
them is the best approach in all scenarios. Joins with high 
selectivity tend to benefit the Lazy approach while aggregation 
that reduces considerably the number of tuples that flow in the 
pipeline tend to benefit the Eager approach. Additional rules are 
presented in [7] and [8]. 

4. SimDB DEMONSTRATION SCENARIO 
We will interactively show the execution and generated query 
plans of multiple similarity queries in SimDB. These queries make 
use of the different similarity-aware operators presented in 
Section 2. Figure 9 shows a subset of the queries to be used during 
the demonstration. They have been constructed extending the 
TPC-H benchmark [10].   We will  show  the  output generated by  
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each query and experimentally demonstrate how the usage of 
equivalence rules, like the ones presented in section 3.2, allow the 
generation of better execution plans. 

5. CONCLUSIONS AND FUTURE WORK 
We present SimDB, a similarity-aware database system that 
supports multiple similarity-aware operators. We describe the way 
these operators have been implemented and how transformation 
rules are used to generate better execution plans. Plans for future 
work include the implementation of other similarity-aware 
operators and the integration of indexing techniques to support 
similarity-aware operations at the database level. 

6. REFERENCES 
[1] E. H. Jacox and H. Samet. Metric Space Similarity Joins. 

ACM Trans. Database Syst, 33(2): 1-38, 2008. 
[2] C. Böhm, B. Braunmüller, F. Krebs, and H. P. Kriegel. 

Epsilon Grid Order: An Algorithm for the Similarity Join on 
Massive High-Dimensional Data. In SIGMOD, 2001.  

[3] S. Chaudhuri, V. Ganti, and R. Kaushik. A Primitive 
Operator for Similarity Joins in Data Cleaning. In ICDE, 
2006.  

[4] X. Yang, B. Wang, and C. Li. Cost-Based Variable-Length-
Gram Selection for String Collections to Support 
Approximate Queries Efficiently. In SIGMOD, 2008. 

[5] Xiang Lian and Lei Chen. Similarity Search in Arbitrary 
Subspaces Under Lp-Norm. In ICDE, 2008. 

[6] M. Wichterich, I. Assent, P. Kranen, and T. Seidl. Efficient 
EMD-based Similarity Search in Multimedia Databases via 
Flexible Dimensionality Reduction. In SIGMOD, 2008. 

SELECT revenue as RevLevel, count(revenue), min(revenue), 
               max(revenue), avg (revenue) 
FROM  (SELECT l_orderkey, sum(l_extendedprice*(1-l_discount)) 
              as revenue FROM C, O, L WHERE c_mktsegment = 'BUILDING' 
              and c_custkey = o_custkey and l_orderkey = o_orderkey 
              and o_orderdate < date '1995-03-15' and 
              l_shipdate > date '1995-03-15' GROUP BY l_orderkey) as R1 
GROUP BY revenue AROUND <RefRevLevels>

SELECT TotalBuy as TotalBuyLevelRef, min(TotalBuy), max(TotalBuy), 
               count(TotalBuy), avg(TotalBuy) 
FROM (SELECT c_name,c_custkey,sum(l_extendedprice) as TotalBuy 
            FROM C, O, L WHERE c_custkey = o_custkey 
            and o_orderkey = l_orderkey and  
            o_orderkey IN (SELECT l_orderkey FROM L GROUP BY 
                                    l_orderkey HAVING sum(l_quantity) > 300)
            GROUP BY c_name,c_custkey)
GROUP BY TotalBuy MAXIMUM_GROUP_DIAMETER 200000 
MAXIMUM_ELEMENT_SEPARATION 20000

Business Question: Study how well the order priority system works around 
dates of interest (holydays, marketing campaigns, etc.)

Select d_refdate, o_orderpriority, 
           count(*) as order_count from orders, DatesOfInterest
Where o_orderdate AROUND d_refdate 
           and exists (Select * from lineitem Where l_orderkey = o_orderkey 
                             and l_commitdate < l_receiptdate)
group by o_orderpriority, d_refdate order by o_orderpriority, d_refdate

Original TPC-H Query (Q4)
Business Question: Study how well the order priority system is working in a 

given quarter
Similarity-aware Query

Business Question: Study the revenue volume done between local 
(nearby) suppliers and customers (Revenue of “short distance”orders)

Select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue
From customer, orders, lineitem, supplier, nationSupp NS, 
          nationCust NC, region
Where c_custkey = o_custkey and l_orderkey = o_orderkey
         and l_suppkey = s_suppkey and c_nationkey = NC.n_nationkey
         and c_location WITHIN Ɛ TO s_location            
         and s_nationkey = NS.n_nationkey
         and NC.n_regionkey = NS.n_regionkey 
         and NC.n_regionkey = r_regionkey
         and r_name = '[REGION]' and o_orderdate >= date '[DATE]'
         and o_orderdate<date '[DATE]'+interval '1' year
group by n_name order by revenue desc

Original TPC-H Query (Q5)
Business Question: Study the revenue volume done between suppliers 

and customers of the same country
Similarity-aware Query

Similarity Query Example 1

Similarity Query Example 2

Business Question: Clusters the unshipped orders around revenue levels 
of interest

Original TPC-H Query (Q3)
Business Question: Retrieve the unshipped orders with the highest value

Similarity-aware Query

Similarity Query Example 3

Business Question: Retrieve clusters of customers with similar buying 
power

Original TPC-H Query (Q18)
Business Question: Retrieve large volume customers

Similarity-aware Query

Similarity Query Example 4

Figure 9. Demonstration scenario queries 
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