
SimDB: A Similarity-aware Database System*
Yasin N. Silva1 Ahmed M. Aly1 Walid G. Aref1 Per-Ake Larson2

1Dept. of Computer Science
Purdue University

West Lafayette, IN, USA

{ysilva,aaly,aref}@cs.purdue.edu

2Microsoft Research
Redmond, WA, USA

palarson@microsoft.com

ABSTRACT
The identification and processing of similarities in the data play a
key role in multiple application scenarios. Several types of
similarity-aware operations have been studied in the literature.
However, in most of the previous work, similarity-aware
operations are studied in isolation from other regular or similarity-
aware operations. Furthermore, most of the previous research in
the area considers a standalone implementation, i.e., without any
integration with a database system. In this demonstration we
present SimDB, a similarity-aware database management system.
SimDB supports multiple similarity-aware operations as first-class
database operators. We describe the architectural changes to
implement the similarity-aware operators. In particular, we
present the way conventional operators’ implementation
machinery is extended to support similarity-ware operators. We
also show how these operators interact with other similarity-aware
and regular operators. In particular, we show the effectiveness of
multiple equivalence rules that can be used to extend cost-based
query optimization to the case of similarity-ware operations.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Similarity-aware Query Processing and Optimization, Similarity
Group-by, Similarity Join.

1. INTRODUCTION
Multiple application scenarios, e.g., marketing analysis, medical
applications and data cleaning; can significantly benefit from the
identification and processing of similarities in the data. Several
techniques have been proposed to extend some data operations,
e.g., selection and join, to process similarities in the data ([1], [2],
[3], [4], [5], [6]). Unfortunately, in most of the previous work,
similarity-aware operations are studied in isolation from other
regular and similarity-aware operations. Furthermore, most of the
previous research in the area considers a standalone

———————————————
* This work was partially supported by NSF Grant IIS-0811954.

implementation, i.e., without any integration with a database
system.

In this demonstration we present SimDB, a similarity-aware
database system. SimDB supports multiple similarity-aware
operations as first-class physical database operators. The
implementation of these operators at the database level has the
following key advantages: (1) similarity-aware operators can be
interleaved with other regular or similarity-aware operators and
their results pipelined for further processing; (2) important
optimization techniques, e.g., pushing certain filtering operators to
lower levels of the execution plan, pre-aggregation, and the use of
materialized views can be extended to the new operators; and (3)
the implementation of these operators can reuse and extend other
operators and structures, and use the cost-based query optimizer
machinery to enhance execution time. SimDB currently supports
multiple similarity grouping and similarity join operators. In this
demonstration, we describe the architectural changes to
implement the similarity-aware operators. In particular, we
present the way the implementation machinery of conventional
operators is extended to support similarity-aware operators. We
also show practically how these operators interact with other
similarity-aware and regular operators. In particular, we show
experimentally the effectiveness of multiple equivalence rules that
can be used to extend cost-based query optimization to similarity-
ware operations. SimDB builds on the results of [7], [8], and [9].
The remaining part of the paper is organized as follows. Section 2
presents the similarity-aware operators supported in SimDB.
Section 3 discusses the implementation of these operators and
several optimization techniques. Section 4 presents the
demonstration scenario and Section 5 the conclusions and future
work paths.

2. SimDB’s SIMILARITY-AWARE
OPERATORS
The current version of SimDB supports several types of similarity
grouping and similarity join.

2.1 Similarity Grouping Operators
The generic definition of the similarity group-by (SGB) operator
is as defined in [7]:

𝛾𝛾𝐹𝐹1(𝐴𝐴1),…,𝐹𝐹𝑚𝑚 (𝐴𝐴𝑚𝑚)(𝑅𝑅)(𝐺𝐺1,𝑆𝑆1),…,(𝐺𝐺𝑛𝑛 ,𝑆𝑆𝑛𝑛)
where R is a relation name, Gi is an attribute of R that is used to
generate the groups, i.e., a similarity grouping attribute, Si is a
segmentation of the domain of Gi in non-overlapping segments, Fi
is an aggregation function, and Ai is an attribute of R.
SimDB supports several instances of the previous generic
definition: Unsupervised Similarity Group-by (SGB-U),
Supervised Similarity Group Around (SGB-A), and Supervised

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’10, June 6–10, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06...$10.00.

Group 1 Group 2 Group 3 Group 4 Group 5

c) GROUP BY Temperature DELIMITED BY (SELECT Value FROM Thresholds)

Group 1 Group 2 Group 3 Group 4 Group 5 Group 7

d d d

Group 6

s s ss s
d d d d

a) GROUP BY Temperature MAXIMUM_ELEMENT_SEPARATION 2
 MAXIMUM_GROUP_DIAMETER 6

b) GROUP BY Temperature AROUND {30,50}
 MAXIMUM_ELEMENT_SEPARATION 2 MAXIMUM_GROUP_DIAMETER 20

r r r
s s s

r

Group 1 Group 2

Figure 1. SimDB’s Similarity Group-by operators

A

 ε

a) SELECT … FROM A, B WHERE A.a WITHIN ε OF B.b

B

A

B

r

b) SELECT … FROM A, B WHERE A.a AROUND B.b [MAX_DIAMETER 2r]

Figure 2. SimDB’s Similarity Join operators

SGB using Delimiters (SGB-D). SGB-U (e.g., Figure 1.a) enables
grouping tuples based on desired group properties, e.g., size
(MAXIMUM_GROUP_DIAMETER) and compactness
(MAXIMUM_ELEMENT_SEPARATION). SGB-A (e.g., Figure
1.b) allows grouping around points of interest. SGB-D (e.g.,
Figure 1.c) enables segmenting the tuples based on given limiting
values. These instances represent a middle ground between the
regular group-by and clustering algorithms. They are intended to
be much faster than regular clustering algorithms and generate
groupings that capture similarities on the data not captured by the
regular group-by. As evident from Figure 1, similarity group-by
instances are able to identify successfully the naturally formed
groups.

2.2 Similarity Join Operators
The generic definition of the Similarity Join (SJ) operator is as
defined in [8]:

𝐴𝐴 ⋈𝜃𝜃𝑆𝑆 𝐵𝐵 = {〈𝑎𝑎, 𝑏𝑏〉 | 𝜃𝜃𝑆𝑆(𝑎𝑎, 𝑏𝑏), 𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵}
where θs represents the similarity join predicate. This predicate
specifies the similarity-based conditions that the pairs <a,b> need
to satisfy to be in the SJ output. The SJ predicates for the
similarity join operators supported in SimDB are as follows.

• Range Distance Join (Ɛ-Join): 𝜃𝜃𝜀𝜀 ≡ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑏𝑏) ≤ 𝜀𝜀
• Join-Around (A-Join): 𝜃𝜃𝐴𝐴,𝑟𝑟 ≡ 𝑏𝑏 𝑑𝑑𝑑𝑑 𝑑𝑑ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑

 𝑛𝑛𝑒𝑒𝑑𝑑𝑛𝑛ℎ𝑏𝑏𝑐𝑐𝑟𝑟 𝑐𝑐𝑜𝑜 𝑎𝑎 𝑎𝑎𝑛𝑛𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑏𝑏) ≤ 𝑟𝑟
The Ɛ-join operator (e.g., Figure 2.a) is an extensively used type
of SJ. The Join-Around (e.g., Figure 2.b) is a useful type of SJ in
which every value of the first joined set is assigned to its closest

NodeTag type

...

SelectStmt

List *targetList
List *fromClause

Node *whereClause
List *groupClause

TargetEntry tarEntry
SelectStmt *refPointsSelect
int maxElementSeparation

GroupTargetEntry

int maxGroupLength
char grouping_mode

list of

NodeTag type

...

Query

List *targetList
List *rtable

bool usesSimGrouping

NodeTag type
Index tleSortGroupRef

Oid sortop
Query *RefPointsSelect

int maxElementSeparation
int maxGroupLength
char grouping_mode

list of

a) Modified data structures of the parse tree

b) Modified data structures of the query tree

GroupClause

List *groupClause

Figure 3. Modifications in the main query processing data

structures to support SGB operators

Agg (a2 around T2, a1), or
Agg (a2 delimited by T2, a1)

1. SELECT … FROM (T)
 GROUP BY a1 AROUND (T1),
 a2 AROUND (T2)

Sort (a2)

T2

2. SELECT … FROM (T)
 GROUP BY a1 DELIMITED BY (T1),
 a2 DELIMITED BY (T2)

Sort (T2.col)

3. SELECT … FROM (T)
 GROUP BY
 a1 MAX_ELMT_SEPARATION s1,
 a2 MAX_ELMT_SEPARATION s2

Agg (a1 around T1, a2), or
Agg (a1 delimited by T1, a2)

Sort (a1)

T T1

Sort (T1.col)

Agg (a2 Max_Elmt_Sep s2, a1)

Sort (a2)

Agg (a1 Max_Elmt_Sep s1, a2)

Sort (a1)

T

Figure 4. Path/Plan trees for SGB with multiple SGAs

value in the second set. Additionally, only the pairs separated by a
distance of at most r are part of the join output.

3. QUERY PROCESSING AND
OPTIMIZATION IN SimDB
3.1 Query Processing in SimDB
SimDB extends PostgreSQL, an open source DBMS. The current
implementation of similarity-aware operators in SimDB supports
multiple independent numeric grouping attributes for SGB and
multiple join predicates over numeric attributes for SJ.
To add support for SGB and SJ in the parser, the raw-parsing
grammar rules, e.g., the yacc rules in the case of PostgreSQL, are
extended to recognize the syntax of the different new grouping
approaches and join predicates. The parse-tree and query-tree data
structures are extended to include the information about the type
and parameters of the similarity-based operations. Figure 3 shows
the changes in these data structures to support the SGB operators.
In the planning stage, when multiple similarity grouping attributes
(SGAs) or SJ predicates are used, they are processed one at the
time. Figure 4 gives the structure of the plan trees generated when
two SGAs a1 and a2 are used. The bottom aggregation node
applies similarity grouping on a1 and regular aggregation on a2.
The output of this node is aggregated by the top aggregation node
that applies similarity grouping on a2 and regular aggregation on
a1. Note that supervised aggregation nodes make use of their

Join-Around (a,b), or
Epsilon-JoinƐ (a,b)

1. SELECT … FROM T1, T2
 WHERE T1.a AROUND T2.b

Sort (a)

T1 T2

2. SELECT … FROM T1, T2
 WHERE T1.a WITHIN Ɛ T2.b

Join-Around (c,d), or
Epsilon-JoinƐ2 (c,d)

1. SELECT … FROM T1, T2, T3 WHERE
 T1.a AROUND T2.b AND T2.c AROUND T3.d

Sort (c)

T3

2. SELECT … FROM T1, T2, T3 WHERE T1.a
 WITHIN Ɛ1 OF T2.b AND T2.c WITHIN Ɛ2 OF T3.d

Join-Around (a,b), or
Epsilon-JoinƐ1 (a,b)

Sort (a)

T1 T2

a) One similarity join predicate b) Multiple similarity join predicates

Sort (b)

Sort (d)

Sort (b)

Figure 5. Path/Plan trees for SJ

Basic Associativity of SJ Operators
1. �𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀1 𝐸𝐸2� ⋈𝜃𝜃𝜀𝜀2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝜀𝜀2 𝐸𝐸3)

2. �𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴1 𝐸𝐸2� ⋈𝜃𝜃𝐴𝐴2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝐴𝐴2 𝐸𝐸3)
where θƐ1, and θA1 involve attributes from only E1 and E2; θƐ2 and θA2
involve attributes from only E2 and E3. θ is a non-similarity predicate.

Associativity Rule to Enable Join on Originally Unrelated
Attributes
In the case of Range Distance Join, when the attributes e1 of E1 and e2
of E2 are joined using Ɛ1 and the result joined with attribute e3 of E3
using Ɛ2, there is an implicit relationship between e1 and e3 that is
exploited by the following equivalence rule:

3. �𝐸𝐸1 ⋈𝑒𝑒1 𝜃𝜃𝜀𝜀1 𝑒𝑒2 𝐸𝐸2� ⋈𝑒𝑒2 𝜃𝜃𝜀𝜀2 𝑒𝑒3 𝐸𝐸3 ≡
 �𝐸𝐸1 ⋈𝑒𝑒1 𝜃𝜃𝜀𝜀1+𝜀𝜀2 𝑒𝑒3 𝐸𝐸3� ⋈(𝑒𝑒1 𝜃𝜃𝜀𝜀1 𝑒𝑒2)∧(𝑒𝑒2 𝜃𝜃𝜀𝜀2 𝑒𝑒3) 𝐸𝐸2
This rule enables the generation of a cheaper plan (RHS) when the
selectivity of the first join in the RHS of the rule is small.

Basic Distribution of Selection over SJ
When all the attributes of the selection predicate θ involve only the
attributes of one of the expressions being joined (E1):
4. 𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2

5. 𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝐴𝐴 𝐸𝐸2

Pushing Selection Predicate under Originally Unrelated
Join Operand
In equivalence rules 4-5 each selection predicate θ is “pushed” only
under the join operand that contains all the attributes referenced in θ.
In the case of the Range-Join operator, the filtering benefits of pushing
a selection predicate θ can be further improved by pushing θ under
both operands of the join as shown in the following equivalence rule:

6. 𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝜀𝜀 (𝜎𝜎𝜃𝜃±𝜀𝜀(𝐸𝐸2))
where all the attributes of the predicate θ involve only the attributes of
E1, and the selection predicate θ±Ɛ represents a modified version of θ
where each condition is “extended” by Ɛ and is applied on the join
attribute of E2. For example, if θ = 10 ≤ e1 ≤ 20, then θ±Ɛ = 10–Ɛ ≤ e2
≤ 20+Ɛ.

Equivalences Among Similarity-aware Operators
Join-Around and the Similarity Group-Around are equivalent as
follows:

7. γF(AA)(E1)
e1 around E2.e2

≡ γF(AA)(E1 ⋈e1 θA e2 E2)
e2

where F(AA) is the aggregate function on aggregation attribute AA.

Figure 6. Equivalence rules for similarity-aware operators

inner input plan tree to receive the reference points data. Figure 5
gives the structure of the plan trees for the cases of one and
multiple SJ predicates.

Each extended aggregation node is able to process one SGA and
any number of regular grouping attributes. Similarly, each
extended join node can process one SJ predicate and any number
of regular join predicates. The implementation of the executor
routines for the SGB operators uses a single plane sweep approach
to form the groups. The tuples to be grouped and the reference
points have been previously sorted and are processed
simultaneously using a hash table to maintain information of the
formed groups. At any time, a set of current groups is maintained
and each time the sweeping plane reaches a tuple the system
evaluates whether this tuple belongs to the current groups, does
not belong to any group, or starts a new set of groups [7]. Range-
Join and Join-Around are implemented extending the routines that
support the Sort Merge Join operator. This allows a fast and
efficient implementation of both SJ operators. The sorted tuples
received from the input plans are processed synchronously
following also a plane sweep approach. The algorithms are coded
in PostgreSQL in the fashion of a state machine. Both Ɛ -Join and
Join-Around use the same set of states employed by the Sorted
Merge Join. The main changes to implement the SJ operators are
on the routine that evaluates if there is a match between two tuples
and on the way the inner cursor is restored to a previous tuple to
ensure the correct generation of SJ links [8].

3.2 Optimizing Similarity-aware Operators
In this demonstration, we present experimentally, how
equivalence rules for similarity-aware operators can be used in
SimDB to enable the transformation of queries into equivalent
plans with potentially smaller expected execution time. These
rules include: (1) multiple non-trivial transformation rules that
exploit specific properties of SJ and SGB operators (e.g., Figure
6.[1-6]), (2) equivalence rules between multiple SJ operators and
between SJ and SGB operators (e.g., Figure 6.7), and (3) Eager
and Lazy aggregation transformations for SGB and SJ to enable
pre-aggregation that can significantly reduce the amount of data to
be processed by SJs. Figures 7 and 8 show examples of Eager and
Lazy aggregation transformations. In figure 8, the similarity
predicate of the Join-Around (in the Lazy approach) is completely
pushed down to the grouping operator (in the Eager approach).
Therefore, the Eager approach avoids completely the use of the SJ
operator, using instead a fast SGB operator and a regular join. In
this example, the bottom grouping node of the Eager approach
merges all the tuples of T1 even though they have different values
of J1. In general, both the eager and lazy versions of a query
should be considered during query optimization since neither of
them is the best approach in all scenarios. Joins with high
selectivity tend to benefit the Lazy approach while aggregation
that reduces considerably the number of tuples that flow in the
pipeline tend to benefit the Eager approach. Additional rules are
presented in [7] and [8].

4. SimDB DEMONSTRATION SCENARIO
We will interactively show the execution and generated query
plans of multiple similarity queries in SimDB. These queries make
use of the different similarity-aware operators presented in
Section 2. Figure 9 shows a subset of the queries to be used during
the demonstration. They have been constructed extending the
TPC-H benchmark [10]. We will show the output generated by

SGB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
SGB

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

SGB

SUM(S1) AS SS1, CNT

G1 around {1,20},
G2 around {1,20}

b) Eager Aggregationa) Lazy Aggregation

5 2

5

1

5

1 2

1

1

SELECT sum(S1), sum(S2) FROM T1, T2 WHERE
J1 within 5 of J2 GROUP BY G1 around {1,20}, G2 around {1,20}

T1

1 11 5
2 11 10
3 11 5
4 11 5
5 11 5

G1 J1 S1

T2

1 10 5
2 20 10

G2 J2 S2
S

S

J1 within
5 of J2

J1 within
5 of J2

G1,
G2 around {1,20}

G1 around
 {1,20}, J1

Figure 7. Eager/Lazy transformation with SGB and SJ

GB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
GB

T2
(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

J1←J2, SUM(S1)
AS SS1, CNT

G1 , G2
G1 , G2

b) Eager Aggregation a) Lazy Aggregation

J1=J2

G1,
J1 aroundMGD=10 J2

Join

R.r S.s

ε
ε

SGB-A

Group by
R.r aroundMGD=2Ɛ S.s

SGB5 2

5

1

1

1

1 2S

SELECT sum(S1), sum(S2) FROM T1, T2 WHERE
J1 around J2 MAX_DIAMETER 10 GROUP BY G1, G2

T1

10 18 5
10 19 5
10 20 10
10 21 5
10 22 5

G1 J1 S1

T2

20 20 10
15 40 5

G2 J2 S2

T1(G1,J1,S1) T2
5 2

J1 around J2
MD=10

Figure 8. Pushing similarity predicate from SJ to GB

each query and experimentally demonstrate how the usage of
equivalence rules, like the ones presented in section 3.2, allow the
generation of better execution plans.

5. CONCLUSIONS AND FUTURE WORK
We present SimDB, a similarity-aware database system that
supports multiple similarity-aware operators. We describe the way
these operators have been implemented and how transformation
rules are used to generate better execution plans. Plans for future
work include the implementation of other similarity-aware
operators and the integration of indexing techniques to support
similarity-aware operations at the database level.

6. REFERENCES
[1] E. H. Jacox and H. Samet. Metric Space Similarity Joins.

ACM Trans. Database Syst, 33(2): 1-38, 2008.
[2] C. Böhm, B. Braunmüller, F. Krebs, and H. P. Kriegel.

Epsilon Grid Order: An Algorithm for the Similarity Join on
Massive High-Dimensional Data. In SIGMOD, 2001.

[3] S. Chaudhuri, V. Ganti, and R. Kaushik. A Primitive
Operator for Similarity Joins in Data Cleaning. In ICDE,
2006.

[4] X. Yang, B. Wang, and C. Li. Cost-Based Variable-Length-
Gram Selection for String Collections to Support
Approximate Queries Efficiently. In SIGMOD, 2008.

[5] Xiang Lian and Lei Chen. Similarity Search in Arbitrary
Subspaces Under Lp-Norm. In ICDE, 2008.

[6] M. Wichterich, I. Assent, P. Kranen, and T. Seidl. Efficient
EMD-based Similarity Search in Multimedia Databases via
Flexible Dimensionality Reduction. In SIGMOD, 2008.

SELECT revenue as RevLevel, count(revenue), min(revenue),
 max(revenue), avg (revenue)
FROM (SELECT l_orderkey, sum(l_extendedprice*(1-l_discount))
 as revenue FROM C, O, L WHERE c_mktsegment = 'BUILDING'
 and c_custkey = o_custkey and l_orderkey = o_orderkey
 and o_orderdate < date '1995-03-15' and
 l_shipdate > date '1995-03-15' GROUP BY l_orderkey) as R1
GROUP BY revenue AROUND <RefRevLevels>

SELECT TotalBuy as TotalBuyLevelRef, min(TotalBuy), max(TotalBuy),
 count(TotalBuy), avg(TotalBuy)
FROM (SELECT c_name,c_custkey,sum(l_extendedprice) as TotalBuy
 FROM C, O, L WHERE c_custkey = o_custkey
 and o_orderkey = l_orderkey and
 o_orderkey IN (SELECT l_orderkey FROM L GROUP BY
 l_orderkey HAVING sum(l_quantity) > 300)
 GROUP BY c_name,c_custkey)
GROUP BY TotalBuy MAXIMUM_GROUP_DIAMETER 200000
MAXIMUM_ELEMENT_SEPARATION 20000

Business Question: Study how well the order priority system works around
dates of interest (holydays, marketing campaigns, etc.)

Select d_refdate, o_orderpriority,
 count(*) as order_count from orders, DatesOfInterest
Where o_orderdate AROUND d_refdate
 and exists (Select * from lineitem Where l_orderkey = o_orderkey
 and l_commitdate < l_receiptdate)
group by o_orderpriority, d_refdate order by o_orderpriority, d_refdate

Original TPC-H Query (Q4)
Business Question: Study how well the order priority system is working in a

given quarter
Similarity-aware Query

Business Question: Study the revenue volume done between local
(nearby) suppliers and customers (Revenue of “short distance”orders)

Select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue
From customer, orders, lineitem, supplier, nationSupp NS,
 nationCust NC, region
Where c_custkey = o_custkey and l_orderkey = o_orderkey
 and l_suppkey = s_suppkey and c_nationkey = NC.n_nationkey
 and c_location WITHIN Ɛ TO s_location
 and s_nationkey = NS.n_nationkey
 and NC.n_regionkey = NS.n_regionkey
 and NC.n_regionkey = r_regionkey
 and r_name = '[REGION]' and o_orderdate >= date '[DATE]'
 and o_orderdate<date '[DATE]'+interval '1' year
group by n_name order by revenue desc

Original TPC-H Query (Q5)
Business Question: Study the revenue volume done between suppliers

and customers of the same country
Similarity-aware Query

Similarity Query Example 1

Similarity Query Example 2

Business Question: Clusters the unshipped orders around revenue levels
of interest

Original TPC-H Query (Q3)
Business Question: Retrieve the unshipped orders with the highest value

Similarity-aware Query

Similarity Query Example 3

Business Question: Retrieve clusters of customers with similar buying
power

Original TPC-H Query (Q18)
Business Question: Retrieve large volume customers

Similarity-aware Query

Similarity Query Example 4

Figure 9. Demonstration scenario queries

[7] Y. N. Silva, W. G. Aref, and M. H. Ali. Similarity Group-by.
In ICDE, 2009.

[8] Y. N. Silva, W. G. Aref, and M. H. Ali. The Similarity-Join
Database Operator. In ICDE, 2010.

[9] Y. N. Silva and W. G. Aref. Similarity-aware Query
Processing and Optimization. In VLDB PhD Workshop,
2009.

[10] TPC-H Version 2.6.1. [Online]. Available:
http://www.tpc.org/tpch.

	INTRODUCTION
	SimDB’s SIMILARITY-AWARE OPERATORS
	Similarity Grouping Operators
	Similarity Join Operators

	QUERY PROCESSING AND OPTIMIZATION IN SimDB
	Query Processing in SimDB

	Figure 6. Equivalence rules for similarity-aware operators
	Optimizing Similarity-aware Operators

	SimDB DEMONSTRATION SCENARIO
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

