
Fast and Scalable Distributed Set Similarity Joins for
Big Data Analytics

Chuitian Rong†], Chunbin Lin‡, Yasin N. Silva], Jianguo Wang‡, Wei Lu[§, Xiaoyong Du[§

† Tianjin Polytechnic University] Arizona State University ‡ University of California, San Diego
§ Key Laboratory of Data Engineering and Knowledge Engineering, Ministry of Education, China

[School of Information, Renmin University of China
† chuitian@tjpu.edu.cn] ysilva@asu.edu ‡ {chunbinlin, csjgwang}@cs.ucsd.edu § {lu-wei,duyong}@ruc.edu.cn

Abstract—Set similarity join is an essential operation in big
data analytics, e.g., data integration and data cleaning, that finds
similar pairs from two collections of sets. To cope with the
increasing scale of the data, distributed algorithms are called
for to support large-scale set similarity joins. Multiple techniques
have been proposed to perform similarity joins using MapReduce
in recent years. These techniques, however, usually produce huge
amounts of duplicates in order to perform parallel processing
successfully as MapReduce is a shared-nothing framework. The
large number of duplicates incurs on both large shuffle cost and
unnecessary computation cost, which significantly decrease the
performance. Moreover, these approaches do not provide a load
balancing guarantee, which results in a skewness problem and
negatively affects the scalability properties of these techniques.
To address these problems, in this paper, we propose a duplicate-
free framework, called FS-Join, to perform set similarity joins
efficiently by utilizing an innovative vertical partitioning tech-
nique. FS-Join employs three powerful filtering methods to prune
dissimilar string pairs without computing their similarity scores.
To further improve the performance and scalability, FS-Join
integrates horizontal partitioning. Experimental results on three
real datasets show that FS-Join outperforms the state-of-the-
art methods by one order of magnitude on average, which
demonstrates the good scalability and performance qualities of
the proposed technique.

I. INTRODUCTION

Similarity join is an essential operation that finds all pairs
of records from two data collections whose similarity scores
are no less than a given threshold using a similarity function,
e.g., Jaccard similarity [18]. Similarity joins are widely used
in a variety of applications including data integration [6], data
cleaning [7], duplicate detection [22], record linkage [20] and
entity resolution [8].

Most of the existing similarity join algorithms are in-
memory approaches [5], [17], [3], [1], [2], [22], [12]. The
era of big data, however, poses new challenges for large-
scale string similarity joins and calls for new efficient and
scalable algorithms. As MapReduce has become the most
popular framework for big data analysis, in this paper, we study
efficient and scalable string similarity joins using MapReduce.
One straightforward method is to enumerate all string pairs
from two string collections and use MapReduce to process all
the generated pairs. However, this method is inefficient and
dose not scale to large data sets.

To improve the performance, signature-based algorithms
have been proposed, which use a filter-and-verification frame-
work [18], [13], [4]. In the filter phase, the tokens/terms in each

string are ordered based on a global order (e.g., lexicographical
ordering or frequency-based ordering), then some of the tokens
are chosen (sometimes combined with other information, e.g.,
length and position information) as signatures. Each signature
token is treated as a key, and the input string containing the
key is the corresponding value, e.g., (B,{B,C, I, J,K}) is a
(key, value) pair in Figure 1. Usually, each string has more
than one signature, e.g., s2 has two signature tokens B and
C, and generates multiple copies of the input string. By using
signature tokens as keys, strings sharing a common signature
will be shuffled to the same reduce node. From the perspective
of data partition, the string dataset is partitioned horizontally
into several partitions, in which there are many duplicates.
Two strings are considered to be a candidate pair if and only
if their signatures share a common token1. In the verification
phase, the candidates are verified by computing their accurate
similarity scores based on similarity functions, e.g., Jaccard or
Cosine similarity, to produce the final results (if the similarity
score of a string pair is no less than the given threshold value,
then it is a result). Figure 1 shows an example of the similarity
join in existing MapReduce algorithms [18], [4]. Even though
such signature-based methods improve the performance, they
still have several limitations.

• Generation of many duplicates. If n tokens are
selected as signatures of a string, then n duplicates
are generated in order to create the (key, value) pairs,
where each key is a token in the signature set [18],
as shown in Figure 1. Although some previous tech-
niques tried to merge key-value pairs, e.g., [4], dupli-
cates still cannot be avoided.

• Skewness problem. Using signature tokens as keys
may lead to a skewness problem, as the number of
key-value pairs sharing the same key is not control-
lable or predictable, which heavily depends on the data
distribution. Each reduce node has to passively receive
strings containing the corresponding signatures.

• Expensive verification processing. Existing ap-
proaches usually use the original strings to calculate
the accurate similarity score for each candidate string
pair in the verification phase. The main operation is
to compute the intersection size for each candidate,
which is O(m + n), where m and n are the lengths

1Sometimes, other combined information is also used to help pruning
dissimilar string pairs, e.g., length information.

map

map

map

D, {D, K, E, F}
B, {B, C, I, J, K}
C, {B, C, I, J, K}

Key, Value

g
ro

u
p
 b

y
 k

ey
s

A, {A, B, H, I}

A, {A, C, D, F, J}

B, {B, C, I, J, K}

B, {B, G, H, J, K}

C, {B, C, I, J, K}

C, {A, C, D, F, J}

D, {D, K, E, F}

D, {D, E, G, I}

G, {B, G, H, J, K}

Key, Value

reduce

Results

S1 = {D, E, F, K}

S2 = {B, C, I, J, K}

A, {A, B, H, I}
A, {A, C, D, F, J}
C, {A, C, D, F, J}

D, {D, E, G, I}
B, {B, G, H, J, K}
G, {B, G, H, J, K}

reduce

reduce

S3 = {A, B, H, I}

S4 = {A, C, D, F, J}

S5 = {D, E, G, I}

S6 = {B, G, H, J, K}

duplicates

Fig. 1. Example of existing similarity joins using MapReduce. Each string is
tokenized as a set, and the tokens within a string are ordered based on the the
lexicographical order. The underscored tokens are selected as signatures. Each
signature token is regarded as a key, and the corresponding string is regarded
as its value.

of the two strings2. When the number of candidates is
large, which is usually true3, then the verification cost
will dominate the whole execution time.

To tackle all these problems, we propose an innovative dis-
tributed string similarity join algorithm, FS-Join, which uses
a filter-and-verification framework. In the filter phase, FS-Join
partitions each original string into several disjoint segments
according to carefully selected pivots and a global ordering
(See Section IV). For example, Figure 2(c) shows the segments
of each string for pivots {C,F, I}. Seg11 and Seg21 are the first
two segments of string s1. FS-Join assigns equivalent amount
of strings to each map task with the partition ids as keys and
the segments as values, e.g., (1, Seg11) and (2, Seg12) are two
(key, value) pairs. By using (id, segment) pairs in the map
phase instead of (token, string) pairs of existing algorithms,
FS-Join avoids generating duplicates (solves the first problem).
This is the case because each segment is unique. Then, FS-
Join transmits all the segments with the same partition id
into the same reducer. The segments with the same partition
id constitute a fragment, e.g., each red dotted rectangle in
Figure 2 denotes a fragment. From the perspective of data
partitioning, the string dataset is partitioned vertically, which
is orthogonal to the horizontal partitioning in existing methods.
The number of tokens in fragments are the same (or similar),
which is guaranteed by the selection of pivots. Therefore,
each reduce node has the same size data, which guarantees
proper load balancing on the reduce phase (solves the second
problem). Then, each reduce task generates a list of candidates
along with the number of common tokens. To decrease the
number of candidates, we use a prefix-based inverted list index
and a length filter. In addition, we also introduce three new
segment-aware filters and novel hybrid partitioning optimiza-
tion technique to further reduce the number of candidates
(See Section V-A). In the verification phase, FS-Join uses a
MapReduce job to simply aggregate the candidates to get the
total number of common tokens (i.e., intersection size) without
calling O(m+ n) algorithms to compute it on-the-fly (solves
the third problem) (See Section V-B).

As MapReduce is a shared-nothing framework, it may seem
that generating duplicates cannot be avoided when performing
similarity joins. Duplicates are in fact generated by all previous
techniques [18], [4]. However, this paper gives a surprising so-
lution by successfully avoiding duplicates and achieving higher
performance and better scalability than existing techniques.

2If two strings are not sorted according to a global ordering, then the time
complexity is O(mn).

3Assume two string collections having one billion strings and only 0.01%
of the string pairs are candidates, the number of candidates is still O(1014).

S1 = {D, E, F, K}

S2 = {B, C, I, J, K}

S3 = {A, B, H, I}

S4 = {A, C, D, F, J}

S5 = {D, E, G, I}

S6 = {B, G, H, J, K}

S1 = {D, K, E, F}

S2 = {I, C, J, B, K}

S3 = {H, B, I, A}

S4 = {A, D, C, J, F}

S5 = {G, I, D, E}

S6 = {H, J, B, G, K}

(a) Original sets (b) Re-ordered sets

Seg1 = {} Seg1 = {D, E, F} Seg1 ={} Seg1 ={K}

Seg2 = {B, C} Seg2 ={} Seg2 ={I} Seg2 ={J, K}

Seg3 = {A, B} Seg3 ={} Seg3 ={H, I} Seg3 ={}

Seg4 = {A, C} Seg4 ={D, F} Seg4 ={} Seg4 ={J}

Seg5 = {} Seg5={D, E} Seg5 ={G, I} Seg5 ={}

Seg6 = {B} Seg6 ={} Seg6 ={G,H} Seg6 ={J, K}

(c) Partitioning based on pivots {C, F, I}

segment of S1fragment

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Fig. 2. Vertical partitioning based on selected pivots. (a) the original data,
(b) the sorted data, and (c) a pivot-based partitioning.

The contributions of our work can be summarized as follows.

1) We propose a vertical-partitioning based algorithm,
called FS-Join, to support parallel set similarity joins
without generating duplicates. In addition, it guaran-
tees load balancing in both map and reduce phases.

2) We introduce three new segment-based filtering meth-
ods, which significantly reduce the number of candi-
dates.

3) We propose an optimization method by integrating
horizontal data partitioning with vertical data parti-
tioning to achieve higher scalability.

4) We implemented our method and experimental results
on three real-world datasets show that our method
outperforms state-of-the-art approaches by one order
of magnitude.

The rest of the paper is structured as follows. In Section II
we formulate our problem and review the related work. We
introduce the architecture of FS-Join in Section III. Section IV
presents the details of the vertical partitioning method used in
FS-Join. Section V illustrates the details of FS-Join including
its computation framework, its design choices and its optimiza-
tions. We theoretically and experimentally evaluate FS-Join in
Section V-C and Section VI, respectively. Finally, we give the
conclusion in Section VII.

II. PRELIMINARY

In string similarity joins, a string is usually treated as a
set of tokens, where each token is a word [18]. For example,
the set of tokens of string “ICDE conference” is {ICDE,
conference}. For simplicity, we do not differentiate a string
and its set of tokens unless there is ambiguity.

A. Problem Definition

Definition 1 (String Similarity Join): Given two string
collections S and T , a similarity function SIM and a similarity
threshold θ, the string similarity join problem finds all the
string pairs (s, t)∈ S × T such that SIM(s, t)≥ θ.

Set-based Similarity Measures. There are three widely used
set-based similarity functions, namely Jaccard [14], Dice [16]
and Cosine [21], whose computation problem can be reduced
to the set overlap problem [2]. These three similarity measures
are defined in Table II along with examples. Unless other-
wise specified, we use Jaccard as the default function, i.e.,
sim(s, t) = simJaccard(s, t).

B. MapReduce

MapReduce was proposed to facilitate the processing of
large-scale datasets on shared-nothing clusters, particularly

TABLE I. COMPARISON OF MAPREDUCE-BASED STRING SIMILARITY JOIN ALGORITHMS.

Filtering Phase Verification
Phase

Algorithm
runs of

reading
original data

avoid
duplicates

apply
filters load balancing predictable

size in Reduce candidates generation avoid reading
original data

Map Reduce
RIDPairsPPJoin[18] ≥ 3 7 3 3 3 7 common prefix 7

V-Smart-Join[13] ≥ 3 3 7 3 7 7 enumerate pairs in inverted lists 3

MassJoin[4] ≥ 3 7 3 3 7 7 enumerate pairs in inverted lists 7

FS-Join 2 3 3 3 3 3 common prefix + segmentation 3

TABLE II. SIMILARITY FUNCTIONS. Ts AND Tt ARE THE SETS OF
TOKENS OF STRING s AND t, RESPECTIVELY.

Similarity Function Definition Example
simjaccard(s, t)

|Ts∩Tt|
|Ts∪Tt| simjaccard(“ab”,“bc”) = 1

3

simdice(s, t)
2×|Ts∩Tt|
|Ts|+|Tt| simdice(“ab”,“bc”) = 1

2

simcosine(s, t)
|Ts∩Tt|
|Ts|×|Tt| simcosine(“ab”,“bc”) = 1

4

commodity machines. Due to its high scalability and built-in
fault tolerance, it has become the de facto platform for big data
processing. A MapReduce program consists of two primitives,
Map and Reduce. In the MapReduce framework, all the records
are represented as key/value pairs. The input dataset is usually
stored in a distributed file system (DFS) across several nodes
that execute the job. Once the MapReduce job is submitted, the
records are provided to mapper nodes in chunks. Each record
will be parsed into key/value pair <key1, value1>, and the
mapper applies the map function on each record to emit a
list of new key/value pairs list(<key2, value2>). The emitted
key/value pairs with the same key will be sent to the same
reduce node during the shuffle phase and will be grouped by
their key into the form of value list <key2, list(value2)>. The
reducer will receive the list of values <key2, list(value2)>
and apply the reduce function one them. Finally, the reducer
will produce a list of key/value pairs list(<key3, value3>)
and write them out to the distributed file system. The above
process can be formalized as below.
Map: <key1, value1>→ list(<key2, value2>);
Reduce: <key2, list(value2)>→ list(<key3, value3>);

C. Related Work

In-memory string similarity joins. There are many studies
on in-memory similarity join algorithms [5], [17], [3], [1], [2],
[22], which can be categorized into two kinds: set-based string
similarity join (SSJoin) and character-based string similarity
join (EDJoin). SSJoin considers the string as a set of tokens
and uses set-based similarity functions, such as Jaccard, Dice
and Cosine, while EDJoin considers the string as a character
sequence and uses edit distance as its similarity function. This
work focuses on SSJoin.

To efficiently answer string similarity joins, most of the
existing works follow a filter-and-verification framework [9],
[19], [15], [11]. In the filter stage, the dissimilar string pairs are
pruned based on some efficient filtering methods, e.g., prefix-
filter, and the candidates are generated. In the verification
stage, the candidates are verified by computing the accurate
similarity score. More precisely, [3] proposed prefix filtering
method by utilizing prefix tokens as signatures. [22] improved
the prefix filtering by integrating the position information and
length information. [2] built inverted indices for all the strings,

where keys are tokens in the signatures and values are the
corresponding strings containing the tokens. [9], [22] proposed
more optimization techniques for the inverted list. [19] ex-
tended the fixed-length based prefix filtering and proposed
a variable-length prefix filtering. For the same string, [19]
extracts more tokens than fixed-length based prefix filtering
methods and constructs multiple inverted indices incremen-
tally. [15] explored various global orderings and proposed a
multiple prefix filtering based algorithm. The multiple prefix
filters are applied in an incrementally manner. [11] designed
a tree based index for prefixes of multiple attributes and
proposed one cost model to guide the index construction.
Different from these studies, in this paper we focuses on how
to support large-scale similarity joins using MapReduce.

MapReduce-based string similarity joins. To support string
similarity joins over big data, many recent contributions fo-
cus on implementing algorithms on Map-Reduce [18], [13],
[4]. More precisely, [18] proposed a signature-based algo-
rithm, called RIDPairsPPJoin, which follows the filter-and-
verification framework. In the filter phase, it creates signatures
for each string by choosing a set of prefix tokens4. Each prefix
token is considered as a key, and a string including the key
is regarded as the corresponding value. The strings with the
same signatures are transmitted into one group for further
verification. In the verification phase, an inverted index for
each group of strings is created to accelerate processing, and
filtering methods are applied to further prune dissimilar pairs.
However, RIDPairsPPJoin has two limitations: (1) a string may
be duplicated multiple times, since multiple tokens are selected
as signatures, which incur high shuffle cost and redundant
computations; and (2) the values in each Reduce task are a
list of strings containing the same key, which have different
sizes. Therefore, there is no guarantee of load balancing in
the Reduce nodes. It is reported that RIDPairsPPJoin dose not
scalable well [13].

[13] proposed a new algorithm V-Smart-Join for similarity
joins on multisets and vectors. V-Smart-Join performs simi-
larity joins in two phases: Join and Similarity. In the Join
phase, it contains several MapReduce jobs and provides dif-
ferent implementations, including Online-Aggregation, Lookup
and Sharding. In the Similarity phase, the partial results are
aggregated to get final candidates pairs. According to [13],
Online-Aggregation has the best scalability among the three
implementations. In the Join phase, each token of every strings
is outputted as a key. This is like building an inverted index
for all tokens in the data set on HDFS. V-Smart-Join has
the same issues (duplications and load balancing problems)
as RIDPairsPPJoin. In addition, it has two extra limitations:

4The tokens in a string are ordered according to a pre-defined global order.

global

order

HDFS

string

collection

MapReduce

Ordering

global order

calculator

MapReduce

data

partitioner

candidate

generator

Filtering

MapReduce

candidate

aggregator

Verification
HDFS

Results

(similar

pairs)

candidatesordered

token

sets

Fig. 3. Architecture of FS-Join.

(1) the cost of enumerating each pair of rids in each inverted
list is expensive; and (2) no filtering is applied during the join
process, which results in a high number of false positives, extra
shuffle cost and unnecessary computation.

[4] proposed a similarity join method, called MassJoin, for
long strings based on their centralized algorithm in [10]. In [4],
each string s in S is partitioned to even segments and all of
them as its signatures; for each string t in T , it must generate
many signatures to ensure there is a common signature with
s that with length in d|t| × θe ≤ |s| ≤ b|t|/θc. If θ = 0.8 and
|t| = 100, the length range is [80,125]. So, for each integer
from 80 to 125, string t will generate signatures separately. It
also has the same issues as RIDPairsPPJoin.

To solve the duplication and load balancing issues, in this
paper, we propose a new framework for similarity join, called
FS-Join. FS-Join applies a vertical partitioning method to
partition each strings into disjoint segments. All the segments
in a same partition constitute a fragment. The fragments
have same (or similar) sizes. In the Map phase, FS-Join
uses the partition ids as keys and corresponding segments as
values. Since segments are disjoint, there is no duplication.
In addition, in the Reduce phase, all the segments belonging
to the same fragment are shuffled into a same Reduce node.
Due to the same sizes of fragments, FS-Join guarantees proper
load balancing. Table I summarizes the comparison of FS-Join
and the state-of-the-art methods, i.e., RIDPairsPPJoin [18], V-
Smart-Join [13] and MassJoin [4].

III. FS-JOIN ARCHITECTURE

Figure 3 shows the architecture of FS-Join, which contains
three phases: Ordering, Filtering and Verification.

Ordering. The first step of FS-Join is to obtain a global order
O. FS-Join adopts the ordering method proposed in [18], that
is (1) first calculating the frequency for each token, then (2)
sorting the tokens in an ascending order in terms of token’s
frequency. The global order calculator of FS-Join uses one
MapReduce job to compute the global order for the string
collection in HDFS. The details of ordering phase are omitted
here due to the space limitation, we recommend readers to find
the detailed ordering algorithm in [18].

Filtering. In the filtering phase, FS-Join uses one MapReduce
job to generate candidate string pairs by pruning dissimi-
lar pairs without computing their accurate similarity scores.
This is the core operation of FS-Join and has two phases:
partitioning phase and join phase (See Section V). More
precisely, the data partitioner first receives the global order
O returned from the previous ordering step and selects a
number of pivots from O. Next, it sorts all the tokens in
each received strings according to the global order. Then, the
data partitioner partitions each string into several segments
based on a set of carefully chosen pivots (See Section IV).

Finally, FS-Join treats the partition id as the key and the
segment in the corresponding partition as the value in the
Map phase. The segments belonging to the same partition
are shuffled to the same reduce node. In each reducer, the
candidate generator of FS-Join generates candidates by using
a prefix-based inverted index and several filtering methods,
e.g., length filtering, segment-aware filtering (See Section V)).
The output of the i-th reducer is a list of (p, c) pairs, where
p = (s, t) is a string pair while c is the number of common
tokens between s and t in the i-th partition, i.e., the i-th
segment of s and t.

Verification. Finally, FS-Join uses one MapReduce job to
verify the candidates generated in the filter phase. If the final
number of common tokens of a string pair is greater than a
threshold value, then it is an answer. Otherwise, it is not. The
details will be discussed in Section V-B.

IV. VERTICAL PARTITIONING

In this paper, we propose a novel partitioning method,
called vertical partitioning, which is used by FS-Join to
support efficient string similarity joins. The high level idea
of the vertical partitioning is that (1) the vector space is very
sparse when a string dataset is transformed into a vector space
model; and (2) when splitting the vector space into disjoint
fragments, each fragment only contains small subset of the
strings. In order to present our main ideas clearly, we give
several definitions below.

Definition 2 (Token Domain): All distinct tokens from a
given collection constitute a token set. We define this token
set as the Token Domain, denoted as U .

Definition 3 (Global Ordering): For the tokens domain U ,
we define a total order on its tokens by a sorting method.
For example, we sort all the tokens according to their term
frequencies. We call the defined total order a Global Ordering,
denoted as O.

Definition 4 (Pivots): A pivot is a token. A set of selected
tokens from U form a set of pivots, denoted as P .

Definition 5 (Segment): When the tokens of a string are
sorted by a global ordering O, the pivots P split the string
(si) into several disjoint segments Seg1i , ..., S

|p|+1
i . There is

no overlap between any two segments of a string, i.e., ∀a 6=
b ∈ [1, |P|+ 1], Segai ∩ Segbi = ∅.

Definition 6 (Fragment): For all strings in the given col-
lection S, the segments produced by the same pivot con-
stitute a fragment F . The i-th fragment is defined as Fi
={Segi1, Segi2, ..., Segi|S|}.

Example 1: Taking the data set in Figure 2(a) as an ex-
ample. First, we define a global ordering, e.g., the dictionary
order O = {A → B · · · → Z}. Each string is sorted by

the same global ordering, as shown in Figure 2(b). Then, we
select a set of pivots P={C, F, I}. The pivots split each sorted
tokens set into four segments (See Figure 2(c)). For example,
string s1 is split into four segments Seg11={}, Seg21={D, E, F},
Seg31={} and Seg41={K}. The segments belonging to the same
partition (indicated by the second subscripts) form a fragment.
For example, the first fragment F1 contains the first segments
of all the strings, i.e., Seg11 , Seg12 , Seg13 , Seg14 , Seg15 and
Seg16 .

Based on the above analysis, it should be clear that select-
ing a proper global ordering and the pivots are two important
aspects of vertical partitioning for string datasets. Performing
parallel similarity join using MapReduce, the workload bal-
ancing and the shuffle cost should be taken into consideration
to get high performance. In this paper, we adopt the ascending
order of term frequency as the global ordering. Taking this
global ordering, we can identify the most popular tokens and
use this information to implement an effective load balancing
technique. Regarding the selection of pivots, there are two
problems that should be considered: (1) how to select the
pivots, and (2) how many pivots should be selected.

Pivots Selection Methods. There are many kinds of possible
methods to select pivots from the token domain. In this paper,
we study the following three approaches.

Random Selection (Random). We assign each token a equiva-
lent probability to be selected as a pivot. Then we randomly
choose |P| tokens from the token domain O as pivots. The
distance between each adjacent pivots pair in P may vary sig-
nificantly. Thus, this method cannot ensure an even workload
partitioning.

Even Interval (Even-Interval). In order to get a more even
workload partitioning, a better way to select the pivots is to
split the global ordering O into even segments. This method
can ensure that the token domain is partitioned evenly as the
interval between each pair of adjacent pivots is equal. Still,
as the tokens’ term frequency is different, this method cannot
achieve workload balancing either. The pivots set P can be
formalized as below (Np = |P|).

P = {Oi|i = k × |O|/Np, 0 < k ≤ Np} (1)

Even Token Frequency (Even-TF). Based on the above analy-
sis, we proposed a pivot selection method that uses the tokens’
distribution. This method aims to generate fragments with the
same number to tokens. Thus, we select the pivots that can
partition the total term frequency of tokens in O evenly. The
pivots set P can be formalized as below (Np = |P|, TFOn is
the term frequency of the n-th token in O).

P = {Omi
|

mi∑
n=mi−1

TFOn
=

|O|∑
t=0

TFOt
/Np, 0 ≤ i ≤ Np} (2)

In this paper, FS-Join applies the Even-TF to choose pivots.
Experiments in Section VI-D demonstrate that using Even-TF
is more efficient than the other two approaches. Even-TF has
a load balancing guarantee, while the others do not.

The Number of Pivots. Assume that all the computing nodes
have the same memory. Let Nc be the number of nodes used
to perform joins (the same to the number of fragments), D
be the size of a given dataset, M be the memory size. The
number of pivots is defined to be Nc − 1 (Nc ≥ D/M).

Algorithm 1: FS-Join Algorithm
1 //Ordering phase
2 SetUp(context)
3 O ← Load Global Ordering;
4 P ← PiovtsSelection(O,N);

5 //Filtering phase
6 Map(rid, string)
7 segments← VerticalPartition(string,O,P);
8 foreach segment ∈ segments do
9 context.write(partitionID, <segment, segInfo>);

10 Reduce(partitionID, list(<segment, segInfo>))
11 Candidates ← PerformJoin(<segment, segInfo>);
12 foreach candidate ∈ Candidates do
13 context.write(RidPair, Count);

14 //Verification phase
15 Map(RidPair, Count)
16 context.write(RidPair, Count);

17 Reduce(RidPair, list(Count))
18 sim← Verification(list(Count));
19 if sim ≥ θ then
20 context.write(RidPair, sim);

V. FS-JOIN ALGORITHM

In this section, we describe two key phases of FS-Join:
generating candidates and verifying candidates.

To perform similarity joins using MapReduce on shared-
nothing clusters, data duplication is a common technique uti-
lized to improve parallel processing [18], [4]. Since similarity
join is a pairwise-comparison problem, it inevitably generates
vast volumes of data duplicates and high shuffle cost. These
two factors negatively impact the overall performance. More
precisely, the existing MapReduce-based string similarity join
algorithms [18], [4] have two limitations: (1) generating many
duplicates, which causes high shuffle and computation costs;
and (2) incurring on load balancing problems. To solve these
problems, we propose a new framework for similarity joins
that uses the vertical partitioning.

A. Generating candidates.

We first use a MapReduce job to implement vertical
partitioning in the Map phase and perform the join in the
Reduce phase, as shown in Figure 4. The algorithm is given
in Algorithm 1. In the MapReduce framework, there is a
setup method before the map task. We use setup to load the
global ordering O outputted by the last MapReduce Job. Then,
we select Np pivots P using the global ordering O (Line 3
- 4). The pivots split the sorted token set O into Np + 1
segments Segk(0 ≤ k ≤ Np + 1). For each record Si in a
mapper, we sort the tokens of Si using O and split the sorted
token set into several segments Segki using P (Line 7). The
integer k (partitionID) is the sequence number of Fk that
Segki belongs to. For each segment Segki , the mapper outputs
the (k, <Segki , segInfo>) pair (Line 9). The segments Segki
(0 ≤ i ≤ |S|) from different strings with key k belong to Fk
and are shuffled to the same Reduce node. In the Reduce, the
segments from the same Fk will be processed to compute the

number of common tokens of each pair of segments. Doing
this like performing joins in relational databases. So, this can
be done by loop join, index join, directly (Line 11). During the
join process, the position aware filtering technique is applied
to prune false positives. Finally, the record id pairs(key) and
the number of common tokens(value) will be outputted (Line
13). In this MapReduce job, all the strings are spitted into
several segments and shuffled to reduce nodes without data
duplication. Then, we get the partial results, the number of
common tokens of different segments from all possible similar
pairs.

Observe that, [18], [4] choose the tokens in signatures as
the keys, which results in large number of duplicates, as shown
in Figure 1. However, FS-Join uses partition ids as keys, which
has no duplicates as shown in Figure 4.

Join Algorithms. Once the partition task is completed, the
segments with the same key will be shuffled to the same
node. From the perspective of data partitioning, the strings
collection are partitioned vertically and the segments of the
same fragment will be processed by one node. The main
task of performing joins is to get the number of common
tokens between each segment pairs. Based on the work in
relational databases, there are many techniques to implement
join operations.

Loop Join. The naive method to implement the join operation
is the loop join. Since the tokens in each segment are sorted
according to O, the time cost to identify segment intersection
is determined by their length.

Index Join. Inverted lists can be utilized to accelerate the
process of identifying the number of common tokens between
each segment pair. All the tokens of each segment of the same
fragment will be mapped to corresponding inverted lists. For
each segment, we probe the related inverted list to get the
segments’ identifiers. Then, the results can be computed by an
aggregation.

Prefix Based Index Join. Prefix filtering [18] is a popular
technique applied in set similarity join due to its efficient
pruning power. Given that the strings are sorted by the tokens’
ascending order of term frequency, the prefix of each string
is composed of the tokens with smaller term frequency. This
minimizes the size of constructed index. According to the
property of prefix filtering, similar strings should share at least
one common prefix token. In practice, many segments in the
same fragment do not share any prefix tokens, especially for
the fragments containing the tokens with high term frequency.
In order to reduce the unnecessary cost, we use the prefix
filtering for segment intersections in each fragment.

The above three methods are widely used in main mem-
ory based algorithms. FS-Join chooses the prefix-join, which
achieves higher performance than the others (This is verified
in Section VI-E).

Filtering Methods. The join algorithms should be utilized
in conjunction with other filtering techniques to achieve high
efficiency. In this work, we applied four filtering methods:
string length filtering (StrL-Filter), segment length filtering
(SegL-Filter), segment intersection filtering (SegI-Filter) and
segment difference filtering (SegD-Filter). SegL-Filter, SegI-
Filter and SegD-Filter are novel contributions.

In order to apply these filtering methods, each segment
should be accompanied with other information, including the
number of tokens in the string (|s|), the number of tokens
ahead of the segment(|sh|), the tokens in the current segment
Segms and the number of tokens behind the segment(|se|).
String Length Filtering (StrL-Filter). The motivation of the
length filtering is that two similar strings have similar lengths.

Lemma 1 (StrL-Filter): Given two strings s and t (|s| <
|t|), a threshold value θ, if |s| < θ · |t|, then sim(s,t)< θ.

Proof: As |s ∩ t| ≤ |s| and |s ∪ t| ≥ |t| always hold. So
sim(s,t)= |s∩t||s∪t| ≤

|s|
|t| . If |s| < θ · |t| holds, then sim(s,t)< θ.

Segment Length Filtering (SegL-Filter). Recall that given a
pivot set, a string is partitioned into several segments. Let Segis
be the i-th (i > 0) segment of string s, sh be the token set
of the substring of s from the beginning to the (i − 1)-th
segment, se be the token set of the substring of s from the
(i+1)-th segment to the end. For example, consider the string
token set s = {B,C, I, J,K}, Seg2s={I}, then sh={B,C}
and se={J,K}.

Lemma 2 (SegL-Filter): Given two strings s and t (|s| <
|t|), a threshold value θ, and let n be the size of pivots, if
∀i ∈ [1, n + 1], min(|Segis|, |Segit|) < θ

1+θ × (|s| + |t|) -
min(|sh|, |th|)-min(|st, rt|) holds, then sim(s,t)< θ.

Proof: Since min(|sh|, |th|) ≥ |sh ∩ th|, min(|se, te|) ≥
|se∩te| and min(|Segis|, |Segit|) ≥ |Segis∩Segit| always hold,
we have
min(|Segis|, |Segit|) <

θ(|s|+ |t|)
1 + θ

−min(|sh|, |th|)−min(|se, te|)

⇒ min(|Segis|, |Segit|) <
θ

1 + θ
×(|s|+|t|)−|sh∩th|−|se∩te|

⇒ |Segis ∩ Segit| <
θ

1 + θ
× (|s|+ |t|)− |sh ∩ th| − |se ∩ te|

Since all the strings in the collection are sorted by the
same global ordering O and split by the same pivots P , their
common tokens come from segments that belong to the same
fragment. Therefore, ∀i, |s ∩ t| = |sh ∩ th|+ |Segis ∩ Segit|+
|se ∩ te|. The above inequation can be transformed to

|Segis ∩ Segit|+ |sh ∩ th|+ |se ∩ te| <
θ

1 + θ
× (|s|+ |t|)

⇒ |s ∩ t| < θ

1 + θ
× (|s|+ |t|)⇒ |s ∩ t|

|s|+ |t| − |s ∩ t|
< θ

Since Sim(s,t) = |s∩t||s∪t|=
|s∩t|

|s|+|t|−|s∩t| , we have Sim(s,t)< θ.

Example 2: Consider two strings s=“A,B,D,E,G”
and t=“B,D,E, F,K”, θ=0.8. Let {D,G} be the
selected pivots. Then Seg1s={A,B,D}, Seg2s={E,G},
Seg3s={} and Seg1t ={B,D}, Seg2t ={E,F}, Seg3t ={K}.
For i=1, min(|Seg1s |, |Seg1t |)=min(3, 2)=2, θ

1+θ×(|s|+|t|)-
min(|sh|, |th|)-min(|st, rt|)= 0.8

1+0.8×10-min(0, 0)-min(2, 3)
>min(|Seg1s |, |Seg1t |). Similarly, for i=2 and i=3, the
condition holds, so it is safe to claim that the similarity of
s and t is less than 0.8, which means (s,t) can be pruned
without verification.

Segment Intersection Filtering (SegI-Filter). In addition, we
observe that if two strings have few common tokens (below a
certain threshold value), then the two strings are not similar.
Based on this observation, we propose segment intersection
filtering (called SegI-Filter).

map

map

map

1, Seg1

2, Seg1

3, Seg1

4, Seg1

1, Seg2

2, Seg2

3, Seg2

4, Seg2

Key, Value

1, Seg3

2, Seg3

1, Seg5

2, Seg5
g
ro

u
p
 b

y
 k

ey
s

reduceglobal order

1, Seg1

1, Seg2

1, Seg3

1, Seg4

1, Seg5

1, Seg6

Key, Value

2, Seg1

2, Seg2

3, Seg1

3, Seg2

4, Seg1

4, Seg2

reduce

reduce

reduce

(S2, S3), 1
(S2, S4), 1
(S2, S6), 1
(S3, S4), 1
(S3, S6), 1
(S1, S4), 2
(S1, S5), 2
(S4, S5), 1
(S2, S3),1
(S2, S5), 1
(S3, S5), 1
(S3, S6), 1
(S5, S6), 1
(S1, S2), 1
(S1, S6), 1
(S2, S4), 1
(S2, S6), 2
(S4, S6), 1
……

Pair, # of common token

map

map

map

(S2, S3), 1
(S2, S4), 1
(S2, S6), 1
(S3, S4), 1
(S3, S6), 1

(S1, S4), 2
(S1, S5), 2
(S4, S5), 1
(S2, S3), 1
(S2, S5), 1
(S3, S5), 1

(S3, S6), 1
(S5, S6), 1
(S1, S2), 1
(S1, S6), 1
(S2, S4), 1
(S2, S6), 2
(S4, S6), 1

g
ro

u
p
 b

y
 k

ey
s

(S1, S2), 1

Key, Value

(S2, S3), 1
(S2, S3), 1

(S3, S6), 1
(S3, S6), 1

(S5, S6), 1

reduce

reduce

reduce

a segment of S1

S1 = {D, E, F, K}

S2 = {B, C, I, J, K}

S3 = {A, B, H, I}

S4 = {A, C, D, F, J}

S5 = {D, E, G, I}

S6 = {B, G, H, J, K}

…

…

…

…

R
es

u
lt

s

Filter phase: generate candidate string pairs Verification phase: produce final similarity join results

a fragment

common tokens of Seg2

and Seg3 obtained from
the first reduce

1

2

3

4

1

2

3

4

1

2

1

2

1

1

1

1

1

1

…

2

2

3

3

4

4

(S1, S4), 2

(S1, S5), 2

(S1, S6), 1

(S2, S4), 1
(S2, S4), 1

(S2, S6), 1
(S2, S6), 2

(S2, S5), 1

(S4, S5), 1

(S4, S6), 1

1

1

Fig. 4. Computation framework of FS-Join.

Lemma 3 (SegI-Filter): Given two strings s and t (|s| <
|t|), a threshold value θ, and let n be the size of pivots, if ∀i ∈
[1, n+1], |Segis∩Segit| < θ

1+θ×(|s|+ |t|)−|s
h∩th|−|se∩te|

holds, then sim(s,t)< θ.

The proof of Lemma 3 is similar to that of Lemma 2, so we
omit it here due to space sontraints.

Segment Difference Filtering (SegD-Filter). We further pro-
pose another segment-based filtering method Segment Dif-
ference Filtering, which is based on the difference of two
segments.

Lemma 4 (SegD-Filter): Given two strings s and t, and a
threshold value θ, if ∀i, |Segis − Segit| + |Segit − Segis| >
(1−θ)(|s|+|t|)

1+θ − (abs(|sh| − |th|)+ abs(|se| − |te|)) holds, then
sim(s,t)< θ.

Proof: |sh−th|+|th−sh| ≥ abs(|sh|−|th|) and |se−te|+
|te−se| ≥ abs(|se|−|te|) always hold, so if ∀i, |Segis−Segit|+
|Segit − Segis|>

(1−θ)(|s|+|t|)
1+θ − (abs(|sh| − |th|) + abs(|se| −

|te|)) holds, we have

|Segis − Segit|+ |Segit − Segis| >
(1− θ)(|s|+ |t|)

1 + θ
− ((|sh − th|+ |th − sh|) + (|se − te|+ |te − se|)

Since the strings are split into several segments, the differ-
ence between two strings can be expressed by the differences
between their corresponding segments. That is
|s−t|+|t−s| = |sh−th|+|th−sh|+|Segis−Segit|+|Segit−Segis|

+ |se − te|+ |te − se|
Thus, we can get the following expression:

|s− t|+ |t− s| > (1− θ)(|s|+ |t|)
1 + θ

As |s− t| = |s| − |s ∩ t| and |t− s| = |t| − |s ∩ t|, we have:
|s ∩ t| < θ(|s|+|t|)

1+θ ⇒ |s∩t|
|s∪t| < θ.

Optimization: Horizontal Partitioning. FS-Join adopts ver-
tical partitioning to achieve high scalability by avoiding du-
plicates. In the filtering phase, each fragment is processed by
one reduce node, which requires the reduce nodes to have
enough memory space for the whole fragment. To enhance
the scalability and performance of FS-Join without requiring
large memory space in the reduce nodes, we employ horizontal

partitioning to divide strings based on their length. Horizontal
partitioning is based on the observation that similar strings
have similar lengths. More precisely, given two strings s
and t, if |s∩t||s∪t| ≥ θ holds, then their lengths should satisfy
d|t| × θe ≤ |s| ≤ b|t|/θc.

FS-Join uses horizontal partitioning to divide each frag-
ment into several sections by using a set of Horizontal pivots.
In this subsection, we first describe how horizontal pivots are
selected. Then, we present the details of how they are used.

⌈L1xθ⌉
L
1
θ

L
2
θ

L1

⌈L2xθ⌉

L2h0 h1 h2

h3 h4

Fig. 5. Horizontal Partitioning.

Horizontal pivots selection
FS-Join first creates a statistic length histogram H, which
describes the length distribution of the string collection. Then
FS-Join chooses a set of horizontal pivots PH={L1, ..., Lt}
based on H in order to get the same total length in each
partition. The length histogram H can be created in the
Ordering phase and the horizontal pivots PH can be selected
in the SetUp procedure of the Filtering phase. Let k be the
number of bins in H, li the length corresponds to the i-th
bin, ci the number of strings with length li, and t the number
of pivots. The pivot set PH={L1, ..., Lt} can be computed as
follows(Nh=|PH|):

PH = {Lp|
p∑

j=p−1
(lj × cj) = (

k∑
i=0

li × ci)/Nh} (3)

FS-Join uses the horizontal pivots PH={L1, ..., Lt} to
partition strings into 2|PH|+1 (i.e., 2t+1) partitions h0, ..., h2t
performing the following two steps: (1) For the first t + 1
partitions h0, ..., ht, FS-Join assigns all the strings with length
in the range [Li, Li+1) to the partition hi (i > 0). Strings with

length less than L1 are assigned to partition h0, and those with
lengths greater than or equal to Lt are distributed to partition
ht. (2) For the last t partitions ht+1, ..., h2t, FS-Join assigns
all the strings with length in the range [dLi×θe, bLi/θc] to the
partition ht+i. Observe that strings in ht+i come from ht−1
and ht, and that strings in ht+i, ht−1 and ht will be shuffled
to different nodes according to their horizontal partition ids. In
order to avoid producing duplicate results, we perform joins
in ht+i only among strings s and r that satisfy |s| < Li and
|r| ≥ Li.

Example 3: Figure 5 shows a sample length histogram.
Assume that the selected pivot set is PH={L1, L2}. This set
is used to partition all the strings into 2×2+1 = 5 partitions.
The strings with length less than L1 are mapped to horizontal
partition h0, while those with lengths between L1 and L2

are mapped to horizontal partition h1, and those with lengths
greater than or equals to L2 are assigned to horizontal partition
h2. Additionally, the strings with length between dL1×θe and
bL1/θc (or dL2 × θe and bL2/θc) are mapped to h3 (or h4).

Combining vertical and horizontal partitioning
FS-Join uses vertical partitioning to achieve high performance
and good scalability. Horizontal partitioning is integrated to
further improve the scalability and performance. FS-Join first
maps each string to horizontal partitions according to its length
and the horizontal pivots. Then, each string is partitioned into
segments and mapped to the corresponding fragment by using
vertical partitioning. Finally, each segment is associated with
a pair (h, v), where h is the horizontal partition number and
v is the vertical partition number. Segments are shuffled and
aggregated based on the partition id pairs in the filtering phase.

B. Candidate Verification

FS-Join first generates candidates by pruning many dissim-
ilar pairs using the filter methods mentioned in the previous
section. In this subsection, we describe how the candidates are
verified. FS-Join uses one MapReduce job to combine partial
results and get the id pairs of similar strings as the final results.
Taking the output of the second MapReduce job as input, the
mapper outputs the Key/Value pairs using the same format as
the input. The number of common tokens between different
segments of the same string pair are shuffled to the same
reducer. FS-Join aggregates the numbers of common tokens
for each string pair. Finally, reducers compute the similarity
score and output the id pairs of records whose similarity score
is not less than the given threshold. Let c be the number of
final common tokens for string pair (s, t). It is easy to know
whether (s, t) is a similar pair or not.

• If c
|s|+|t|−c ≥ θ, then simjaccard(s, t) ≥ θ.

• If 2c
|s|+|t| ≥ θ, then simdice(s, t) ≥ θ.

• If c
|s|×|t| ≥ θ, then simcosine(s, t) ≥ θ.

Observe that, FS-Join computes the accurate similarity
scores without using the original data.

C. Cost Analysis

In this part, we analyze the cost of FS-Join5 performing
self-join over a collection S using MapReduce. We assume that

5Here we analyze the cost of the filtering and verification phases excluding
the ordering phase.

TABLE III. DATA SETS STATISTICAL INFORMATION.

DataSet Size (GB) # of Records Length(Number of tokens)
Min Max Average

Email 0.994 517,401 51 148,624 320.69
PubMed 4.390 7,400,308 1 1,142 80.59
Wiki 1.650 4,305,022 1 42,639 55.95

all the worker nodes are equipped with the same computational
capabilities. The costs includes the cost of the mapper, shuffle,
reducer and results output. Let Cm, Cs, Cr and Co be the cost
of processing one unit of data in the mapper, shuffle, reducer
and output respectively. Let M be the number of strings in the
dataset, N be the number of partitions which is equal to the
numbers of workers in the cluster.

Lemma 5 (Cost of FS-Join): The cost of FS-Join is
M∑
i=1

(|si|Cm) +
M∑
i=1

(|si|Cs) + (M×PN)2 × (NM

M∑
i=1

|si| × Cr +

N × α(Cm + Cs + Cr + Co) + α× β × Co), where α is the
proportion of the string pairs identified as candidates pairs, and
β is the proportion of the candidates pairs that are included in
the result.

The detailed proof of Lemma 5 is provided in Appendix A.

VI. EXPERIMENTS

In this section, we evaluate FS-Join’s capbilities by run-
ning string similarity joins on three real-world datasets. We
first compare our algorithms with the state-of-art algorithms
under different thresholds on three datasets (Section VI-B).
The results show that FS-Join outperforms the state-of-the-art
methods in all the datasets. Then we conduct more experiments
to evaluate different features of FS-Join.

• We evaluate the scalability of our algorithms with the
variations of data scale and the number of worker
nodes in the cluster (Section VI-C).

• We evaluate the effect of different pivots selection
methods (Section VI-D).

• We evaluate the effect of different join approaches
(Section VI-E).

• We evaluate the effect of different optimizations in-
cluding the filter methods and the horizontal partition-
ing (Section VI-F).

A. Experiments Setup

Cloud Platform. All the algorithms were implemented and
evaluated using Hadoop (0.20.2), the most popular open-source
MapReduce framework. The experiments were performed us-
ing a Hadoop cluster running on the Amazon Elastic Compute
Cloud (EC2). Unless otherwise stated, we used a cluster of
11 nodes (1 master + 10 worker nodes) with the following
specifications: 15 GB of memory, 4 virtual cores with one
EC2 Compute Unit 6, 400 GB of local instance storage, 64-bit
platform. On each worker node, the maximum map and reduce
tasks is 3. So, we set the number of reduce tasks to be three
times the number of nodes.

DataSets. We evaluated all the systems with three public
datasets, which cover a wide range of data distributions and are

6https://aws.amazon.com/ec2/

widely used in previous studies. We generate different scales
of the datasets by random sampling.

• Enron Email (Email)7 is an email messages dataset
collected and prepared by the CALO project. It con-
tains the messages of 150 users.

• PubMed Abstract (PubMed)8 is an abstract dataset
of biomedical literature from MEDLINE.

• Wiki Abstract (Wiki)9 is an abstract dataset extracted
from Wikipedia dumps generated in February / March
2015.

The statistical information of the three datasets are given
in Table III.

Alternative Techniques. To provide an end-to-end compar-
ison, we compared FS-Join with the state-of-art methods
RIDPairsPPJoin [18], V-Smart-Join [13] and MassJoin [4].
Each of them proposed several optimized algorithms. In our
experiments, we used the algorithms that perform the best.

• RIDPairsPPJoin [18]. As the authors published the
source code, we directly used their code in our exper-
iments.

• V-Smart-Join [13]. Since there is no public source
code, so we implemented its Online-Aggregation al-
gorithm from scratch.

• MassJoin [4]. We implemented two of its algorithms,
Merge and Merge+Light, from scratch as there is no
publicly available code.

B. Comparisons with State-of-the-art Methods

Figure 6 and Figure 7 present the running time of string
similarity join queries (self-join) for each approach on big and
small datasets, respectively. Since MassJoin and V-Smart-Join
cannot run successfully on the large datasets, we also con-
duct the experiments on small datasets generated by random
sampling. From the experimental results, we can observe that
FS-Join performs and scales significantly better than the other
techniques. We further observed that:

• With smaller threshold values, FS-Join achieves better
performance. For instance, FS-Join outperforms RID-
PairsPPJoin by 5 times and 10 times, respectively,
when the threshold is set to 0.9 and 0.75 in Figure 6(a).
Observe that a lower threshold means larger signatures
for each string. It also generates a huge amount
of duplicates in RIDPairsPPJoin, which results in
expensive shuffle cost and unnecessary computation.

• MassJoin is unable to answer string similarity joins on
the large datasets, since it generates huge amounts of
duplicates. More precisely, MassJoin has four MapRe-
duce jobs to complete the join operation. The first job
is to get the token frequency. The other three jobs
constitute the three phases of the join operation. When
running its Merge algorithm on the whole Wiki dataset
with threshold 0.8, the first phase job takes more than
13 minutes to complete, which is much more than

7https://www.cs.cmu.edu/∼enron/
8https://www.ncbi.nlm.nih.gov/pubmed/
9http://wiki.dbpedia.org/Downloads2015-04

the whole execution time of RIDPairsPPJoin and FS-
Join. The output size of the first phase job of Merge
is 105GB while the size of the input Wiki dataset is
1.65GB . The shuffle cost and HDFS writing cost is
very high. The same problem is found when running
MassJoin on the other two datasets. In the last job of
MassJoin, it will enumerate each item in the inverted
lists and output the same string multiple times with the
items. Although Merge+Light applied a light filtering
by token grouping method, it cannot run successfully
on large datasets.

• V-Smart-Join cannot run completely on the large
datasets. One of its drawbacks is that it must emit
each token of the string with related information in the
Map. Then, the tokens’ information will be shuffled
to reduce nodes in the form of value lists. In the
Reduce, V-Smart-Join enumerates each pair of items
in each value list. Another drawback is that no filtering
methods are applied. The output size of the first Simi-
larity phase is very large. Even on the small PubMed
dataset, its algorithm Online-Aggregation cannot run
completely. When running on small Email and Wiki
datasets, the performance of Online-Aggregation is
the worst among the tested algorithms (See Figure
7). Since V-Smart-Join uses the threshold only in the
last reduce task to get the final results, its time is not
sensitive to the variation of the threshold.

• For small datasets, both RIDPairsPPJoin and FS-Join
outperform Merge and Merge+Light on all the datasets
(See Figure 7). In particular, in the Email dataset,
when the threshold is low, the performance of Merge
is extremely slow (more than 100x slower than the
others). As Merge+Light adopted a light filtering by
token grouping technique, the shuffle cost decreases
significantly. So, Merge+Light performs better than
Merge. Since the datasets are small, the time cost
difference between RIDPairsPPJoin and FS-Join is
also very small.

C. Scalability

In order to study the scalability of FS-Join, we conducted
experiments to test its execution time with the variation of (1)
data scale, and (2) the number of computing nodes. We plotted
the experimental results in Figure 8 and Figure 9, respectively.

Figure 8 shows the execution time of FS-Join on three
datasets under different data sizes. In this experiment, we
used four different scales for each dataset, 4X, 6X, 8X and
10X. Specifically, 6X means that we extracted 60% of strings
randomly. Since the similarity join is a pairwise-comparison
problem, the number of candidate pairs increases quadratically
on the size of dataset. From Figure 8, we can observe that when
the data size increases by 2X, the time cost will increase less
than 33% in most cases(under the same threshold).

Figure 9 shows the scalability of FS-Join with the variation
of the number of computing nodes. We conducted experiments
on 5 nodes, 10 nodes and 15 nodes, respectively. In this
experiment, we set the number of reduce tasks to be three times
the number of nodes. From the three sub-figures in Figure 9,
we can observe that the time cost decreases about 35%-48%
when the computing nodes increases from 5 to 10 on all the

0

1

2

3

4

5

 0.75 0.8 0.85 0.9

T
im

e
C

os
t(

Se
c)

X
10

3

Threshold

RidPairsPPJoin
FS-Join

0

5

10

15

 0.75 0.8 0.85 0.9

T
im

e
C

os
t(

Se
c)

X
10

2

Threshold

RidPairsPPJoin
FS-Join

0

1

2

3

4

5

 0.75 0.8 0.85 0.9

T
im

e
C

os
t(

Se
c)

 X
 1

02

Threshold

RidPairsPPJoin
FS-Join

(a) Email DataSet (b) PubMed DataSet (c) Wiki DataSet
Fig. 6. Comparison With Existing Methods (Large Datasets)

0

1

2

3

 0.75 0.8 0.85 0.9

T
im

e
C

os
t(

Se
c)

X
10

3

Threshold

Online-Aggregation
Merge

Merge+Light
RIDPairsPPJoin

FS-Join

0

5

10

15

20

25

 0.75 0.8 0.85 0.9

T
im

e
C

os
t(

Se
c)

X
10

2

Threshold

Merge
Merge+Light

RIDPairsPPJoin
FS-Join

0
1
3
5

10

20

 0.75 0.8 0.85 0.9

T
im

e
C

os
t(

Se
c)

 X
 1

02

Threshold

Online-Aggregation
Merge

Merge+Light
RidPairsPPJoin

FS-Join

(a) Email DataSet(2%) (b) PubMed DataSet(1%) (c) Wiki DataSet(1%)
Fig. 7. Comparison With Existing Methods (Small Datasets)

datasets. As the number of nodes increasing, the number of
reduce tasks also increases. At the same time, the shuffle cost
among computing nodes also increases. Thus, the time costs
decrease about 10%-20% when the nodes number increases
from 10 to 15. Overall, FS-Join has good scalability with the
number of computing nodes in the cluster.

D. Effect Of Pivot Selection

In Section IV, we studied three pivot selection meth-
ods, i.e., Random, Even-Interval and Even-TF. We conducted
experiments to evaluate the effects of these three different
approaches. As shown in Figure 11, Even-TF performs the
best on the three datasets followed by Even-Interval and
Random. This is because both Random and Even-Interval incur
on workload imbalance among worker nodes, while Even-TF
achieves good workload balancing. More specifically, Even-
Interval ensures an equal number of distinct tokens in each
fragment. As we adopt the ascending order of token frequency
as the global ordering, the last fragment contains the tokens
with high term frequency. So, the reduce tasks that process
the sections from the last fragment take much more time
than other reduce tasks, which results in workload imbalance.
Nevertheless, Even-TF carefully selects the pivots to ensure
each fragment contains an equal number of tokens, which
guarantees proper workload balancing among worker nodes.

E. Effect Of Join Methods

Recall that there are three types of join methods studied
in Section V. They are Loop Join, Index Join and Prefix Join.
In this subsection, we conducted experiments to evaluate the
effects of these three different join methods. As shown in
Figure 12, Prefix Join is clearly the winer among those three. In
particular, for datasets with long strings (e.g., Email dataset),
Prefix Join is about two times faster than Loop Join and Index
Join.

F. Effect Of Optimizations

Effects of different filters. FS-Join uses four filtering strate-
gies in the join procedure as mentioned in Section V-A. They
are StrL-Filter (String length filtering), SegL-Filter (Segment
length filtering), SegI-Filter (Segment intersection filtering),
SegD-Filter (Segment difference filtering) and Prefix-Filter.
Table IV shows the filtering power of each of them and also the
combination of all of them (i.e., All). For efficiency consid-
erations, we combined StrL-Filter with the other four filters
and conducted experiments on three datasets: Email(10%),
Wiki(1%) and PubMed(1%). The numbers in the table are the
output number of records of the filter job.

TABLE IV. FILTER EFFECTIVENESS
Filter Email(10%) Wiki(1%) PubMed(1%)
StrL 271,385,025 1,473,167,384 1,403,760,351
StrL + SegL 233,063,886 1,449,842,593 1,399,927,097
StrL + SegI 1,164,102 2,287,718 31,498
StrL + SegD 1,143,783 1,236,775 8,342
StrL + Prefix 1,011,428 1,147,016 792,185
All 493,644 515,664 6,840

From Table IV, we can observe that in general SegD-Filter
has the most efficient and stable pruning power among all the
filters on the three datasets, followed by SegI-Filter. SegD-
Filter can prune out more than 90% false positives based on
the results of StrL-Filter. Prefix-Filter performs the best on
Email and Wiki. However, it is not as stable as SegD-Filter
and SegI-Filter due to the token distributions of the datasets.
When the filters are applied together, FS-Join prunes most of
the false positives. See from the Figure 10, the time cost of
verification phase is much smaller than that of the join phase.

Effects of horizontal partition. To further speedup the per-
formance, we proposed horizontal partitioning in Section V-A.
To evaluate the effect of horizontal partitioning, we compared
FS-Join with FS-Join-V (the algorithm without horizontal

 50

 100

 150

 200

 250

 300

4X 6X 8X 10X

T
im

e
C

os
t(

Se
c)

Data Scale

0.75
0.80
0.85
0.90

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

4X 6X 8X 10X

T
im

e
C

os
t(

Se
c)

Data Scale

0.75
0.80
0.85
0.90

 100

 120

 140

 160

 180

 200

 220

4X 6X 8X 10X

T
im

e
C

os
t(

Se
c)

Data Scale

0.75
0.80
0.85
0.90

(a) Email DataSet (b) PubMed DataSet (c) Wiki DataSet
Fig. 8. Scalability Tests Increasing Dataset Size (X=0.1)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.75 0.8 0.85 0.9

T
im

e
C

os
t(

Se
c)

Threshold

5 Nodes
10 Nodes
15 Nodes

 200

 300

 400

 500

 600

 700

 800

 900

 0.75 0.8 0.85 0.9

T
im

e
C

os
t(

Se
c)

Threshold

5 Nodes
10 Nodes
15 Nodes

 160
 180
 200
 220
 240
 260
 280
 300
 320
 340

 0.75 0.8 0.85 0.9

T
im

e
C

os
t(

Se
c)

Threshold

5 Nodes
10 Nodes
15 Nodes

(a) Email DataSet (b) PubMed DataSet (c) Wiki DataSet
Fig. 9. Scalability Tests Increasing The Number Of Cluster Nodes

 0

 100

 200

 300

 400

 500

 600

20 30 40 50 30 40 50 60 30 40 50 60

T
im

es
 C

os
t(

Se
c)

Join
Verification

PubMedWikiEmail

Fig. 10. Time Cost of Filtering and Verification.

 0

 100

 200

 300

 400

 500

Email(2x105) Wiki(1x106) Pubmed(1x106)

T
im

e
C

os
t(

Se
c)

DataSet

Random
Even-Interval

Even-TF

Fig. 11. Pivots Selection.

 0

 50

 100

 150

 200

 250

Email(5x104) Wiki(2x105) PubMed(2x105)

T
im

e
C

os
t(

Se
c)

DataSet

Loop Join
Index Join
Prefix Join

Fig. 12. Join Type.

partitioning) on three datasets. In this experiment, the number
of vertical partitions is set to 30 for all the datasets; the
number of horizontal partitions is set to 10 for the Email
dataset, 50 for the Wiki dataset and 70 for the PubMed dataset.
The experimental results are shown in Figure 13. FS-Join
outperforms FS-Join-V on the three datasets under different
thresholds. In FS-Join-V, each dataset is partitioned vertically
into 30 disjoint fragments. Each fragment is processed on one
node and each node should process 3 fragments. The segments
of different strings are produced by different map tasks and
grouped into 30 groups. Before shuffling to the reduce nodes,
the segments belonging to the same fragment should be sorted
and outputted to HDFS. As each fragment is large, the spilling
procedure is invoked multiple times to write the map buffer
to HDFS during the sort and shuffle phase. Consequently,
each reduce node will incur on high time latency to load
its fragment from HDFS and to start the reduce task. In FS-
Join, each dataset is partitioned into sections using vertical and
horizontal partitioning. The segments from different strings are
grouped into 300 groups for the Email dataset, 1500 groups
for the Wiki dataset and 2100 groups for the PubMed dataset,
not including the very small partitions at the intersection of
adjacent horizontal parititions. All these groups will be shuffled

to 10 reduce nodes to guarantee workload balancing among
different nodes. Unlike FS-Join-V, each group is much smaller
in FS-Join. During the shuffle phase, most groups can be sorted
without multiple spilling procedures. Each reduce task can load
its groups from the output of related map tasks with low time
latency. Furthermore, each reduce task can process its groups
fast in its local memory space. Therefore, FS-Join significantly
outperforms FS-Join-V. We evaluated the effects of the number
of horizontal partitions. The experimental results is shown
in Figure 10, where the numbers above the dataset names
represent the number of horizontal partitions. From Figure 10,
we observe that on the three datasets, the overall execution time
of FS-Join decreases when the number of horizontal partitions
increases. We also find that the time cost of filtering phase
is much more than that of the verification phase. This is the
result of the powerful filtering methods that have pruned out
most of the false positives in the filtering phase.

VII. CONCLUSIONS

The string similarity join is a key data processing operator
in many Big Data applications. In this paper we proposed FS-
Join, a highly scalable MapReduce-based string similarity join
algorithm based on a novel partitioning technique (Vertical Par-

 0

 50

 100

 150

 200

 0.75 0.8 0.85 0.9

T
im

e
C

os
t(

Se
c)

Threshold

FS-Join
FS-Join-V

 0

 100

 200

 300

 400

 500

 600

 0.75 0.8 0.85 0.9

T
im

e
C

os
t(

Se
c)

Threshold

FS-Join
FS-Join-V

 0

 50

 100

 150

 200

 250

 300

 0.75 0.8 0.85 0.9

T
im

e
C

os
t(

Se
c)

Threshold

FS-Join
FS-Join-V

(a) Email DataSet (b) PubMed DataSet (c) Wiki DataSet
Fig. 13. Effects Of Horizontal Partitioning.

titioning). Moreover, we proposed highly effective optimiza-
tion techniques and introduced new filtering approaches. We
thoroughly analyze the performance of FS-Join theoretically
and experimentally. The results show that FS-Join significantly
outperforms the state-of-the-art techniques and that it has
excellent scalability and performance properties. In the future,
we plan to extend our methods to approximate approaches and
other Big Data platforms, like Spark.

ACKNOWLEDGEMENT

This material is based upon work supported by the National
Natural Science Foundation of China under grant No.61402329
and No.61502504, and the China Scholarship Council.

REFERENCES

[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins.
In VLDB, pages 918–929. ACM, 2006.

[2] R. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity
search. In WWW, pages 131–140. ACM, 2007.

[3] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for
similarity joins in data cleaning. In ICDE, pages 61–72. IEEE, 2006.

[4] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng. Massjoin: A mapreduce-
based method for scalable string similarity joins. In ICDE, pages 340–
351. IEEE, 2014.

[5] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan, and
D. Srivastava. Approximate string joins in a database (almost) for free.
In VLDB, pages 491–500. ACM, 2001.

[6] M. Hernández and S. Stolfo. The merge/purge problem for large
databases. In SIGMOD, pages 127–138. ACM, 1995.

[7] M. Hernández and S. Stolfo. Real-world data is dirty: Data cleansing
and the merge/purge problem. Data mining and knowledge discovery,
2(1):9–37, 1998.

[8] L. Kolb, A. Thor, and E. Rahm. Load balancing for mapreduce-based
entity resolution. In ICDE, pages 618–629. IEEE, 2012.

[9] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for
approximate string searches. In ICDE, pages 257–266. IEEE, 2008.

[10] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A partition-based
method for similarity joins. VLDB, 5(3):253–264, 2011.

[11] G. Li, J. He, D. Deng, and J. Li. Efficient similarity join and search
on multi-attribute data. In SIGMOD, pages 1137–1151. ACM, 2015.

[12] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang. String similarity measures
and joins with synonyms. In SIGMOD, pages 373–384. ACM, 2013.

[13] A. Metwally and C. Faloutsos. V-smart-join: A scalable mapreduce
framework for all-pair similarity joins of multisets and vectors. VLDB,
5(8):704–715, 2012.

[14] A. Monge and C. Elkan. The field matching problem: Algorithms and
applications. In SIGKDD, pages 267–270, 1996.

[15] C. Rong, W. Lu, X. Wang, X. Du, Y. Chen, and A. K. Tung. Efficient
and scalable processing of string similarity join. TKDE, 25(10):2217–
2230, 2013.

[16] G. Salton and M. McGill. Introduction to modern information retrieval.
McGraw-Hill, Inc., 1986.

[17] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates.
In SIGMOD, pages 743–754. ACM, 2004.

[18] R. Vernica, M. Carey, and C. Li. Efficient parallel set-similarity joins
using MapReduce. In SIGMOD, pages 495–506. ACM, 2010.

[19] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an
adaptive framework for similarity join and search. In SIGMOD, pages
85–96. ACM, 2012.

[20] W. Winkler. The state of record linkage and current research problems.
In Statistical Research Division, 1999.

[21] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images, Second Edition.
Morgan Kaufmann, 1999.

[22] C. Xiao, W. Wang, X. Lin, and J. Yu. Efficient similarity joins for near
duplicate detection. In WWW, pages 131–140. ACM, 2008.

APPENDIX A
PROOF OF LEMMA 5

Recall that FS-Join uses one MapReduce job to generate
candidates and one MapReduce job to verify the candidates.
In the first MapReduce job, the mapper splits strings into
segments and outputs them with segment information. The
cost of mapper is

∑M
i=1 |si| × Cm. Since there is no data

duplicates are produced, the shuffle cost is
∑M
i=1 |si| × Cs.

Each reducer performs joins on its fragment and the loop
join based implementation will perform joins on each pairs of
segments. Let p be the probability of the token’s occurrence.
The probability that one segment belongs to a fragment is
1
N × p. The expected number of segments in one fragment is
1
N ×M×P . So, the cost of the loop join based implementation
for one reducer is (1

N ×M×P)
2× 1

M

∑M
i=1 |si|×Cr. The total

cost of all reducers is N×(1
N ×M×P)

2× 1
M

∑M
i=1 |si|×Cr.

The output cost of one reducer is (1
N ×M×P)

2×α×Co. The
cost of the first job is

∑M
i=1 |si| × Cm+

∑M
i=1 |si| × Cs+N×

(1
N×M×P)

2× 1
M

∑M
i=1 |si|×Cr+N×(

1
N×M×P)

2×α×Co.
In the second MapReduce job, the mapper reads the input
and outputs the candidates pairs, the cost of the mapper
is N × (1

N × M × P)2 × α × Cm. The shuffle cost is
N × (1

N × M × P)2 × α × Cs. The cost of the reducer
is N × (1

N × M × P)2 × α × Cr. The output cost is
(1
N ×M × P)

2 × α × β × Co. The total cost of the second
job is N × (1

N ×M ×P)
2 ×α(Cm +Cs +Cr) + (1

N ×M ×
P)2 × α× β × Co.

Therefore, the total cost of FS-Join is
∑M
i=1 |si| × Cm +∑M

i=1 |si| × Cs+(1
N ×M ×P)

2× (NM
∑M
i=1 |si|×Cr+N ×

α(Cm + Cs + Cr + Co) + α× β × Co).

