
The VLDB Journal
DOI 10.1007/s00778-008-0120-3

REGULAR PAPER

The RUM-tree: supporting frequent updates in R-trees
using memos

Yasin N. Silva · Xiaopeng Xiong · Walid G. Aref

Received: 9 April 2007 / Revised: 28 January 2008 / Accepted: 26 March 2008
© Springer-Verlag 2008

Abstract The problem of frequently updating multi-
dimensional indexes arises in many location-dependent
applications. While the R-tree and its variants are the domi-
nant choices for indexing multi-dimensional objects, the
R-tree exhibits inferior performance in the presence of
frequent updates. In this paper, we present an R-tree variant,
termed the RUM-tree (which stands for R-tree with update
memo) that reduces the cost of object updates. The RUM-tree
processes updates in a memo-based approach that avoids disk
accesses for purging old entries during an update process.
Therefore, the cost of an update operation in the RUM-tree
is reduced to the cost of only an insert operation. The removal
of old object entries is carried out by a garbage cleaner inside
the RUM-tree. In this paper, we present the details of the
RUM-tree and study its properties. We also address the issues
of crash recovery and concurrency control for the RUM-tree.
Theoretical analysis and comprehensive experimental eva-
luation demonstrate that the RUM-tree outperforms other
R-tree variants by up to one order of magnitude in scena-
rios with frequent updates.

Keywords Indexing techniques · Frequent updates ·
Spatio-temporal databases · Performance

Y. N. Silva · X. Xiong · W. G. Aref (B)
Department of Computer Sciences, Purdue University,
West Lafayette, IN 47907-2107, USA
e-mail: aref@cs.purdue.edu

Y. N. Silva
e-mail: ysilva@cs.purdue.edu

X. Xiong
e-mail: xxiong@cs.purdue.edu

1 Introduction

With the advances in positioning systems and wireless
devices, spatial locations of moving objects can be sam-
pled continuously to database servers. Many emerging appli-
cations require to maintain the latest positions of moving
objects. In addition, a variety of potential applications rely on
monitoring multidimensional items that are sampled conti-
nuously. Considering the fact that every sampled data value
results in an update to the underlying database server, it is
essential to develop spatial indexes that can handle frequent
updates in efficient and scalable manners.

As one of the primary choices for indexing low-
dimensional spatial data, the R-tree [1] and the R*-tree [2]
exhibit satisfactory search performance in traditional data-
bases when updates are infrequent. However, due to the costly
update operation, R-trees are not applicable in practice to
situations with enormous amounts of updates. Improving the
R-tree update performance is an important, yet challenging
issue.

Two approaches exist to process updates in R-trees,
namely, the top-down approach and the bottom-up approach.
The top-down approach was originally proposed in [1] and
has been adopted in many R-tree variants, e.g., [2,9,20,24].
This approach treats an update as a combination of a sepa-
rate deletion and a separate insertion. Firstly, the R-tree is
searched from the root to the leaves to locate and delete the
data item to be updated. Given the fact that R-tree nodes
may overlap each other, such search process is expensive as
it may follow multiple paths before it gets to the right data
item. After deletion of the old data item, a single-path inser-
tion procedure is invoked to insert the new data item into the
R-tree. Figure 1a illustrates the top-down update process.
The top-down approach is rather costly due to the expensive
search operation.

123

Y. N. Silva et al.

Recently, new approaches for updating R-trees in a
bottom-up manner have been proposed [12,13]. The bottom-
up approach starts the update process from the leaf node of
the data item to be updated. The bottom-up approach tries to
insert the new entry into the original leaf node or to the sibling
node of the original leaf node. For fast access to the leaf node
of a data item, a secondary index such as a direct link [12]
or a hash table [13] is maintained on the identifiers of all
objects. Figure 1b illustrates the bottom-up update process.
The bottom-up approach exhibits better update performance
than the top-down approach when the change of an object bet-
ween two consecutive updates is small. In this case, the new
data item is likely to remain in the same leaf node. However,
the performance of the bottom-up approach degrades qui-
ckly when the changes between consecutive updates become
large. Moreover, a secondary index may not fit in memory
due to its large size, which may add significant maintenance
overhead to the update procedure. Note that the secondary
index needs to be updated whenever an object moves from
one leaf node to another.

In this paper, we propose the RUM-tree (R-tree with
update memo), an R-tree variant that handles object updates
efficiently. In the RUM-tree, a memo-based update approach
is utilized to reduce the update cost. The memo-based update
approach enhances the R-tree by an update memo structure.
The update memo eliminates the need to delete the old data
item from the index during an update operation. Specially
designed garbage cleaners are employed to remove old data
entries lazily. Therefore, the cost of an update operation is
reduced approximately to the cost of an insert operation and
the total cost of update processing is reduced dramatically.
Compared to R-trees with a top-down or a bottom-up update
approach, the RUM-tree has the following distinguishing
advantages in scenarios with frequent updates: (1) The RUM-
tree achieves significantly lower update cost while offering
similar search performance; (2) The update memo is much
smaller than the secondary index used by other approaches.
The garbage cleaner guarantees an upper-bound on the size
of the update memo making it practically suitable for main
memory; (3) The update performance of the RUM-tree is
stable with respect to various factors, i.e., the changes bet-
ween consecutive updates, the extents of moving objects, the
number of moving objects, and the distribution of the moving
objects in the space.

The contributions of the paper can be summarized as
follows:

− We propose an R-tree variant, named the RUM-tree, that
reduces the update cost while yielding similar search
performance to other R-tree variants in scenarios with
frequent updates;

− We address the issues of crash recovery and concurrency
control for the proposed RUM-tree;

R−tree

Incoming updates

1. Search
&

Delete
(Multiple Paths)

2. Insert
(Single Path)

1. Search 2nd Index 4. (Optional)
Update 2nd Index

2. Search & Update

R−tree

Incoming updates

A Secondary Index

Insert in Top−down
3. (Optional)

(a) (b)

Fig. 1 Existing R-tree update approaches

− We analyze the update costs for the RUM-tree and the
other R-tree variants, and derive an upper-bound on the
size of the update memo;

− We present a comprehensive set of experiments indica-
ting that the RUM-tree outperforms other R-tree variants
by up to one order of magnitude.

The remainder of the paper is organized as follows.
Section 2 gives an overview of the R-tree and summarizes
related work in the literature. Section 3 presents the details
of the RUM-tree, including the issues of crash recovery and
concurrency control. Section 4 gives a cost analysis of the
memo-based update approach and compares it with the top-
down and the bottom-up update approaches. This section pre-
sents also a derivation of an upper-bound for the size of the
update memo. Experimental results are presented in Sect. 5.
Finally, Sect. 6 concludes the paper.

2 R-tree-based indexing and related work

The R-tree [1] is a height-balanced indexing structure. It is
an extension to the B-tree in the multidimensional space. In
an R-tree, spatial objects are clustered in nodes according to
their Minimal bounding rectangles (MBRs). In contrast to
the B-tree, the R-tree nodes are allowed to overlap. An entry
in a leaf node is of the form: (M B Ro, oid), where M B Ro is
the MBR of the indexed spatial object, and oid is a unique
identifier of the corresponding object tuple in the database.
An entry in an internal node is of the form: (M B Rc, pc)

where M B Rc is the MBR covering all MBRs in its child
node, and pc is the pointer to its child node c. The number
of entries in each R-tree node, except for the root node, is
between two specified parameters m and M (m ≤ M

2). The
parameter M is termed the fanout of the R-tree. Figure 2
gives an R-tree example with a fanout of three that indexes
thirteen objects.

The R-tree [1] and its variants [2,9,20,24] were desi-
gned mainly for static data. Update processing is cumber-
some because the update is treated as a delete followed by an
insert. The claim is that updates are not frequent in traditional

123

The RUM-tree: supporting frequent updates in R-trees using memos

10
13

3

12

2
61

5

7R0

R1

R2

9
R3

R5

R4

R6

4

11

8

R0 R1

R2 R3 R4 R5 R6

1 5 6 87 9 10 12 13 3 4 2 11

(a) (b)

Fig. 2 An example of R-tree

applications. However, in spatio-temporal databases, objects
continuously change and update the underlying indexing
structures.

With the recent attention on indexing moving objects, a
number of R-tree-based methods for indexing moving objects
have been proposed. They focus on the following aspects:
(1) Indexing the historical trajectories of objects, e.g., [4,7,
15,16,25,26,28]; (2) Indexing the current locations of
objects, e.g., [6,11,17,18,21,22]; or (3) Indexing the predic-
ted trajectories of objects, e.g., [19,23,27]. For more detail
about R-tree variants, interested readers are referred to [14]
for a comprehensive survey. Most of these works assume that
the updates are processed in a top-down manner. Although
the memo-based update technique presented in this paper
can be applied to improve the update performance of most
of these works, this paper focuses on trees that index current
locations of objects.

To support frequent updates in R-trees, [12] and [13] pro-
pose a bottom-up update approach. The Lazy-update R-tree
(LUR-tree) [12] modifies the original R-tree structure to sup-
port frequent updates. The main idea is that if an update to
a certain object p would result in a deletion followed by an
insertion in a new R-tree node, it would be better to increase
slightly the size of the minimum boundary rectangle of the
R-tree node that contains p to accommodate the new loca-
tion of the object. The Frequently Updated R-tree (FUR-
tree) [13] extends the LUR-tree by performing a bottom-up
approach in which a certain moving object can move to one
of its siblings. The bottom-up approach works well when
the consecutive changes to objects are small. However, in
the case that consecutive changes are large, the performance
of the bottom-up approach degrades quickly. Besides, both
the LUR-tree and the FUR-tree rely on an auxiliary index
to locate the old object entries. In Sect. 5, we show that the
proposed memo-based update approach of the RUM-tree out-
performs the bottom-up approach significantly and is more
stable under various conditions.

Although some approaches have been proposed to handle
both data and indexes stored completely in main memory
(e.g., see [8,10]), in this paper we focus on index strategies

that handle data stored on disk. As in practical implemen-
tations of the R-tree and its variants, the non-leaf nodes of
the RUM-tree are stored in memory to take advantage of the
faster access speeds of main memory devices. The data and
RUM-tree leaf nodes are stored on disk allowing the sup-
port of very large datasets and the integration of recovery
mechanisms to protect the integrity of the data.

An earlier version of this paper appeared in [29]. This
paper extends on [29] by: (1) an improved structure for the
RUM tree that uses pointers to parents only in nodes that are
stored in main memory and consequently reduces the number
of required I/O accesses when the tree structure needs to be
updated due to node splitting; (2) an extended experimental
section that includes: (a) an evaluation of the RUM-tree under
datasets with various object distributions in space, (b) a study
of query performance for various query sizes, (c) a compa-
rison of the storage requirements (in memory and disk) of
the different trees, (d) an analysis of the dynamic structural
properties of the studied trees such as fanout and number of
nodes, and (e) a study of the CPU cost of querying the dif-
ferent trees for varying values of garbage collection ratios; (3)
a new garbage cleaning mechanism, termed the least-recently
cleaned mechanism, for the RUM-tree to control the memory
size of the update memos (Sect. 3.3.3); (4) a crash reco-
very mechanism for the RUM-tree (Sect. 3.4); (5) a concur-
rency control mechanism for the RUM-tree (Sect. 3.5); (6)
experimental evaluation of the algorithms in items (3)–(5)
(Sects. 5.1, 5.8, 5.9).

3 The RUM-tree index

In the existing update approaches, the deletion of old entries
generates extra overhead during the update process. In the
top-down approach, the deletion involves searching in mul-
tiple paths. In the bottom-up approach, a secondary index is
maintained to locate and delete an entry. In this section, we
present the RUM-tree, an R-tree variant that reduces addi-
tional disk accesses for such deletions and thus reduces the
update cost.

123

Y. N. Silva et al.

The primary feature behind the RUM-tree is that the old
entry of the data item is not required to be removed when it
gets updated. Instead, the old entry is allowed to co-exist with
newer entries before it is removed later. Only one entry of an
object is the most recent entry (referred to as the latest entry),
and all other entries of the object are old entries (referred to as
obsolete entries). The RUM-tree maintains an update memo
structure to detect if an entry is obsolete or not. The obsolete
entries are identified and removed from the RUM-tree by a
garbage cleaner mechanism.

In Sect. 3.1, we describe the RUM-tree structure. In
Sect. 3.2, we discuss the insert, update, delete, and query
algorithms of the RUM-tree. The garbage cleaner is intro-
duced in Sect. 3.3. Logging and crash recovery algorithms
are presented in Sect. 3.4. Finally, we discuss concurrency
control issues in Sect. 3.5.

3.1 The RUM-tree structure

In the RUM-tree, each leaf entry is assigned a stamp when the
entry is inserted into the tree. The stamp is assigned by a glo-
bal stamp counter that increments monotonically every time
it is used. The stamp of one leaf entry is globally unique in the
RUM-tree and remains unchanged once assigned. The stamp
places a temporal relationship among leaf entries, i.e., an
entry with a smaller stamp was inserted before an entry with
a larger stamp. Accordingly, the leaf entry of the RUM-tree is
extended to the form (MBRo, oid, stamp), where stamp is
the assigned stamp number, and MBRo and oid are the same
as in the standard R-tree.

The RUM-tree maintains an auxiliary structure, termed
the update memo (UM, for short). The main purpose of UM
is to distinguish the obsolete entries from the latest entries.
UM contains entries of the form: (oid, Slatest, Nold), where
oid is an object identifer, Slatest is the stamp of the latest
entry of the object oid, and Nold is the maximum number
of obsolete entries for the object oid in the RUM-tree. For
example, a UM entry (O99, 900, 2) entails that in the RUM-
tree there exist at most two obsolete entries for the object
O99, and that the latest entry of O99 bears the stamp of 900.
Note that no UM entry has Nold equivalent to zero, namely,
objects that are assured to have no obsolete entries in the
RUM-tree do not own a UM entry. To accelerate searching,
UM is hashed on the oid attribute. With the garbage cleaner
provided in Sect. 3.3, the size of UM is kept rather small and
can practically fit in main memory of nowadays machines.
UM only stores entries for the updated objects instead of
entries for all the objects. As will be shown in Sect. 4, the
size of the UM constructed this way can be upper-bounded.
The size of UM is further studied through experiments in
Sect. 5.

R−tree

Incoming updates

Insert

Add/Update
UM entries

Stamp Counter

Update Memo

R−tree

(Raw answer set)

Spatial queries

Spatial
search

Final answer set
Update Memo

(a) (b)

Fig. 3 Operations in the RUM-tree

Fig. 4 Insert/update in the RUM-tree

3.2 Insert, update, delete, and search algorithms

3.2.1 Insert and update

Inserting an entry and updating an entry in the RUM-tree
follow the same procedure as illustrated in Fig. 3a. Pseudo-
code for the insert/update algorithm is given in Fig. 4. First,
an insert/update is assigned a stamp number when it reaches
the RUM-tree. Then, along with the stamp and the object
identifier, the new value is inserted into the RUM-tree using
the standard R-tree insert algorithm [2]. After the insertion,
the entry that has been the latest entry, if exists, for the inser-
ted/updated object becomes an obsolete entry. To reflect such
a change, the UM entry for the object is updated as follows.
The UM entry of the object, if exists, changes Slatest to the
stamp of the inserted/updated tuple and increments Nold by
1. In the case that no UM entry for the object exists, a new
UM entry with the stamp of the inserted/updated tuple is
inserted. Nold of the UM entry is set to 1 to indicate up to one
obsolete entry in the RUM-tree. The old value of the object
being updated is not required, which potentially reduces the
maintenance cost of database applications.

3.2.2 Delete

Deleting an object in the RUM-tree is equivalent to mar-
king the latest entry of the object as obsolete. Figure 5 gives
pseudo-code for the deletion algorithm. The object to be

123

The RUM-tree: supporting frequent updates in R-trees using memos

Fig. 5 Delete in the RUM-tree

Fig. 6 Checking entry status in the RUM-tree

deleted is treated as an update to a special location. The
special update does not actually go through the R-tree. It
only affects the UM entry for the object to be deleted, if
exists, by changing Slatest to the next value assigned by the
stamp counter, and incrementing Nold by 1. In the case when
no UM entry for the given object exists, a new UM entry is
inserted whose Slatest is set to the next stamp number and Nold

is set to 1. In this way, all entries for the given object will be
identified as obsolete and consequently will get removed by
the garbage cleaner.

3.2.3 Search

Figure 3b illustrates the processing of spatial queries in the
RUM-tree. As the obsolete entries and the latest entry for one
object may co-exist in the RUM-tree, the output satisfying
the spatial query predicates is a superset of the actual ans-
wer. In the RUM-tree, UM is utilized as a filter to purge
false answers, i.e., UM filters obsolete entries out of the
answer set. The type of queries considered here is range
queries. Other query processing algorithms, e.g., k-NN que-
ries, will require the integration of this filtering step with
the specific query algorithms. The RUM-tree employs the
algorithm given in Fig. 6 to identify a leaf entry as latest or
obsolete. The main idea is to compare the stamp of the leaf
entry with the Slatest of the corresponding UM entry. Recall
that Slatest of a UM entry is always the stamp of the latest
entry of the corresponding object. If the stamp of the leaf
entry is smaller than Slatest of the UM entry, the leaf entry
is obsolete; otherwise it is the latest entry. In the case that
no corresponding UM entry exists, the leaf entry is the latest
entry.

Discussion. Sanity checking can be performed at a higher
level before invoking the index. Since the RUM-tree does

not check the existence of an old entry when performing
insert, update or delete operations, it would be possible to
delete/update an object that never existed. An instance of this
case could happen when an update is reported for an object
O1 that does not exist in the tree. An insert will be perfor-
med without checking if a previous instance of O1 exists
and a UM entry will be created for this object. This UM
entry will have the value 1 assigned to its Nold field although
the exact number of obsolete entries is 0. We call this UM
entry a phantom entry given that it will never be removed
by the cleaning mechanisms presented in Sects. 3.3.1, 3.3.2,
and 3.3.3. In Sect. 3.3.5 we present a mechanism to detect
and remove phantom entries. Based on the presented algo-
rithms, regardless of whether sanity checking is performed or
not, the RUM-tree will always return only the correct latest
insert/update values to queries. Sanity checking can be imple-
mented to detect that O1 is a new object and insert it using the
regular R-tree insert procedure without modifying the UM
structure. However, given that phantom entries can be detec-
ted and eliminated easily, the implementation of sanity che-
cking is not necessary. In the previous example, we assumed
that the expected behavior is to consider an update operation
on an object that does not exist in the database simply as an
insertion of a new object. If this is not the case and the update
should be detected as error, we could easily implement this
test in a higher layer and avoid further processing.

3.3 Garbage cleaning

The RUM-tree employs a Garbage Cleaner to limit the num-
ber of obsolete entries in the tree and to limit the size of UM.
The garbage cleaner deletes the obsolete entries lazily and in
batches. Deleting lazily means that obsolete entries are not
removed immediately; Deleting in batches means that mul-
tiple obsolete entries in the same leaf node are removed at
the same time.

3.3.1 Cleaning tokens

Figure 7a gives an example of the RUM tree structure. The
non-leaf nodes are divided in two groups: base internal nodes
(nodes in the lowest level of the tree formed by the non-leaf
nodes) and non-base internal nodes. In practical implemen-
tations, it is expected that the non-leaf nodes of the RUM
tree are stored in memory while the leaf nodes remain on
disk.

A cleaning token is a logical object that is used to traverse
all leaf nodes of the RUM-tree horizontally. When a specific
leaf node N is cleaned it may be necessary to update the
MBR of N and its ancestors in a bottom-up manner. (see the
algorithm in Fig. 8). Adding pointers to parents in the tree
nodes is a good approach to allow quick access to parents. The

123

Y. N. Silva et al.

Fig. 7 Garbage cleaners inside
the RUM-tree

1

B1 B2 B3 B4

2 3 4 5 6 7 8 9

A B

Non-Base
Internal
Nodes

Base
Internal
Nodes

Leaf
Nodes

Token

M
ai

n
M

em
or

y
D

is
k

1

B1 B2 B3 B4

2 3 4 5 6 7 8 9

30 35 40 43

Least Recently Cleaned Most Recently Cleaned

70...

(a) (b)

Fig. 8 Cleaning a leaf node

only exception is at the leaf level. In this case, if a split occurs
in the level immediate above it, it would require updating the
parent pointer of all the leaf nodes that have a new parent.
Each of these updates would cost one I/O because leaf nodes
are stored on disk. Consequently, only non-leaf nodes are
extended with pointers to parents.

The cleaning tokens cannot traverse the leaf nodes directly
because if a cleaning token processes a leaf node that requires
changing the node’s ancestors, there is no pointer from that
leaf node to its parent. The actual tokens traverse the base
internal nodes. Each token has the following structure:
(BINPtr , cur Entry I ndex). BINPtr is a pointer to a base
internal node BIN and cur Entry I ndex is the index of an
entry in BIN. Each time the cleaning process is called, it
updates BINPtr and cur Entry I ndex so that BINPtr.
entries [cur Entry I ndex].pc points to the next leaf node
to be processed and then performs the cleaning tasks on
this leaf node. To locate the next base internal node quickly,
the base internal nodes of the RUMtree are doubly-linked in
cycle. The cleaning process is called every time the RUMtree
receives new I updates. I is known as the inspection interval.
When a leaf node is cleaned, all its entries are inspected and
the obsolete entries deleted.

Figure 8 gives the pseudo code of the cleaning proce-
dure of a leaf node. Every entry in the inspected leaf node
is checked by CheckStatus() given in Fig. 6, and is deleted
from the node if the entry is identified as obsolete. When
an entry is removed, Nold of the corresponding UM entry
is decremented by one. When Nold reaches zero, indica-
ting that no obsolete entries exist for this object, the UM

entry is deleted. Occasionally, the leaf node may underflow
due to the deletion of obsolete entries. In this situation, the
remaining entries of the leaf node are reinserted to the RUM-
tree using the standard R-tree insert algorithm. If the leaf node
does not underflow, the MBR of the updated leaf node and
the MBRs of its ancestor nodes are adjusted. The parent P
of a leaf node being processed is always pointed at via the
token’s BINPtr . The ancestors of P can be obtained using
the pointers to parents.

To speed up the cleaning process, multiple cleaning tokens
may work in parallel in the garbage cleaner. In this case, each
token serves a subset of the leaf nodes. Figure 7a illustrates a
RUM-tree with two cleaning tokens. Token A inspects nodes
B1 to B2 while Token B inspects nodes B3 to B4.

Tokens move either with the same inspection interval or
with different inspection intervals. If all the subsets of nodes
share the same value for the inspection interval and they are
approximately of the same size, all the nodes of the tree
are cleaned with approximately the same frequency. If it is
known in advance that certain subsets will receive most of
the updates, these segments should receive smaller inspec-
tion intervals to be cleaned more frequently. In the following
sections, we propose two extensions to the Cleaning Tokens
approach that prioritize the cleaning process of nodes that
receive more updates. Notice that each cleaning token gene-
rates additional disk accesses during the cleaning procedure.
Hence, there is a tradeoff between the cleaning effect and the
overall cost.

We define the garbage ratio (gr) of the RUM-tree and
the inspection ratio (ir) of the garbage cleaner as follows.
The garbage ratio of the RUM-tree is the number of obso-
lete entries in the RUM-tree over the number of indexed
moving objects. The garbage ratio reflects how clean the
RUM-tree is. A RUM-tree with a small garbage ratio exhi-
bits better search performance than a RUM-tree with a large
garbage ratio.

The inspection ratio ir of the garbage cleaner is defined
as the number of leaf nodes inspected by the cleaner over the
total number of updates processed in the RUM-tree during a
period of time. The inspection ratio represents the cleaning
frequency of the cleaner. A larger inspection ratio results
in a smaller garbage ratio for the RUM-tree. Assuming that

123

The RUM-tree: supporting frequent updates in R-trees using memos

a RUM-tree has m cleaning tokens t1 to tm , and that the
inspection interval of tk is Ik for 1≤ k≤ m, then ir of the
cleaner is calculated as:

ir =
U
I1

+ U
I2

+ · · · + U
Im

T he total number of updates U

= 1

I1
+ 1

I2
+ · · · + 1

Im
(1)

= m

I
(i f I1 = I2 = · · · = Im = I)

The cleaning token approach has the following straight-
forward but important property.

Property 1 Let Ot be the set of obsolete entries in the RUM-
tree at time t. After every leaf node has been visited and
cleaned once since t, all entries in Ot are removed out of the
RUM-tree.

Property 1 holds no matter whether there are new inserts/
updates during the cleaning phase or not. Note that if some
entries become obsolete due to new inserts/updates, these
newly introduced obsolete entries are not contained in Ot .
The proof of Property 1 is straightforward given that when a
leaf node is visited by the garbage cleaner, all obsolete entries
in the leaf node will be identified and cleaned.

3.3.2 Clean upon touch

Besides the cleaning tokens, garbage cleaning can be perfor-
med whenever a leaf node is accessed during an insert/update
operation. The cleaning procedure is the same as in Fig. 8.
As a side effect of insert/update, such clean-upon-touch pro-
cess does not incur extra disk accesses other than the ones
required to reorganize the tree when the cleaned node under-
flows. When working with the cleaning tokens, the clean-
upon-touch reduces the garbage ratio and the size of UM
dramatically.

3.3.3 Least recently cleaned list

Note that the Cleaning Tokens mechanism cleans the RUM-
tree nodes in a round-robin order, and the clean-upon-touch
mechanism cleans the RUM-tree nodes in a random order.
When both mechanisms are concurrently running, a leaf node
that just got cleaned by one mechanism may be inspected by
the other mechanism in a short period of time, which com-
promises the cleaning effect. This situation happens because
the cleaners have no knowledge about the cleaning history of
the nodes. To maximize the effect of cleaning, the garbage
cleaners should inspect only the nodes that have not been
cleaned recently. These nodes have the potential of contai-
ning a large number of obsolete entries. Based on the above
observation, we enhance the RUM-tree by maintaining the

least recently cleaned (LRC) list according to the cleaning
history of the RUM-tree nodes.

Basically, the (LRC) list is a linked list in memory.
Logically each element of the list points to a leaf node of
the tree. In the actual implementation of the list, each of its
elements points to a leaf element rn through a pointer to its
parent node and the index in this node that points to rn. Each
list element contains (pNode; lea f I ndex ; lastClean).
pNode is the pointer to the parent node, lea f I ndex is the
index in the parent node that points to the leaf node rn, and
lastClean stores the historical value of the stamp counter
when the node rn was cleaned for the last time. Figure 7b
illustrates a RUM-tree with the LRC list. Here, the value of
lastClean is stored within each LRC element.

When a leaf node is cleaned either by the Cleaning Tokens
mechanism or by the clean-upon-touch mechanism, the cor-
responding LRC element is updated and is moved to the end
of the LRC list. In addition, node split results in inserting a
new element to the end of the list, and node deletion results
in removing the corresponding element from the LRC list.
Consequently, the elements in the LRC list are ordered based
on the cleaning history of their corresponding RUM-tree leaf
nodes. To maximize the cleaning effect, the Cleaning Tokens
mechanism only inspects the leaf node pointed at by the head
element of the LRC list. To avoid repeated cleaning of the
same RUM-tree nodes in a short period of time, an inspection
threshold T is specified. Then, when a RUM-tree leaf node is
touched by an insert or update operation, the node is cleaned
up only if the RUM-tree has received T updates since the
last time that the node was cleaned. Note that the number of
updates to the RUM-tree since the last time a node was clea-
ned can be calculated from the difference between the current
value of the stamp counter and the value of lastClean of the
corresponding node. In Sect. 5, we demonstrate that utilizing
the LRC list yields a smaller garbage ratio for the RUM-tree.

3.3.4 Properties of the proposed cleaning strategies

Cleaning tokens are used in all the cleaning strategies pre-
sented in previous sections. The fundamental property of the
Cleaning Tokens mechanism is that, as shown in Sect. 4, it
ensures an upper-bound on the size of the UM structure. It
also ensures that there are no obsolete entries that never get
removed. The clean-upon-touch approach used with the clea-
ning tokens ensures additionally that the nodes that receive
more updates are also more frequently cleaned. This approach
will be effective whether the updates are uniformly distribu-
ted on all the nodes or are concentrated on a small subset
of nodes. Finally, the LRC list approach used in conjunc-
tion with the previous two strategies changes the order in
which nodes are cleaned by the tokens such that nodes that
were not cleaned recently are cleaned first. When the distri-
bution of updates on the leaf nodes is close to uniform or

123

Y. N. Silva et al.

is not very skewed this strategy cleans first the nodes that
have more obsolete entries. In cases where the distribution
of updates is very skewed, the order itself may not be better
than a round-robin order but the use of the clean-upon-touch
mechanism still ensures that the nodes that receive most of
the updates are cleaned more frequently. The experimental
section reveals that the clean-upon-touch and the LRC list
approaches yield very small garbage ratios while bearing a
small overhead.

3.3.5 Phantom inspection

In this section, we address the issue of cleaning phantom
entries in the RUM-tree. A phantom entry is a UM entry
whose Nold is larger than the exact number of obsolete entries
for the corresponding object on the RUM-tree. Such an entry
will never get removed from the UM because its Nold never
reaches the value zero. Phantom entries are caused by per-
forming operations on objects that do not exist in the RUM-
tree, e.g., updating/deleting an object that does not exist
in the RUM-tree. A special case is when inserting a new
object to the RUM-tree1. Assume that object O1 is inser-
ted at time T1. The entry (O1, T1, 1) will be added to the
UM structure. The value 1 means that there is at most one
obsolete entry. Assuming that O1 is not updated, when the
cleaning process calls CheckStatus (see Fig. 6) for this
entry, O1 will always receive the value LATEST. Conse-
quently, the entry in UM will never be deleted. We should
observe that when there are not obsolete instances of an
object, we do not need to have an entry in UM for this
object.

The RUM-tree employs a Phantom Inspection procedure
to detect and remove phantom entries. According to Pro-
perty 1 in Sect. 3.3.1, we have the following lemma.

Lemma 1 Let c be the value of the stamp counter at time t.
After every leaf node has been visited and cleaned once since
t, a UM entry whose Slatest is less than c is a phantom entry.

Otherwise, if such a UM entry is not a phantom entry, by Pro-
perty 1, it should have been removed out of UM after every
leaf page has been visited and cleaned. Therefore, Lemma 1
holds.

Based on Lemma 1, the phantom inspection procedure
works periodically. The current value of the stamp counter is
stored as c. After the cleaning tokens traverse all leaf nodes
once, the procedure inspects UM and removes all UM entries
whose Slatest is less than c. Finally, c is updated for the next
inspection cycle. In this way, all phantom entries will be
removed after one cycle of cleaning.

1 Recall that in the RUM-tree, an insert is handled in the same way as
an update. The insert operation always generates a new UM entry.

3.4 Crash recovery

In this section, we address the recovery issue of the RUM-
tree in the case of system failure. Given that UM is stored in
main-memory, when the system crashes, the data in UM is
lost. The goal is to rebuild UM based on the tree on disk upon
recovery from failure. If the non-leaf nodes of the tree were
also stored in memory, then the tree can be rebuilt inserting
all the leaf level entries in a new tree. This insertion should be
performed using a standard R-tree insertion or bulk loading
processes and assigning also the stamp attribute value on the
leaf level entries from the data stored on disk. We consider
three approaches to recover UM, each with different tradeoffs
between the recovery cost and the logging cost.

Option I: Without log. In this approach, no log is maintai-
ned. When recovering, an empty UM is first created. Then,
every leaf entry in the tree is scanned. If no UM entry exists
for a leaf entry, a new UM entry is inserted. Otherwise, Slatest

and Nold of the corresponding UM entry are updated conti-
nuously during the scan. The value of the stamp counter
before the crash can also be recovered during the scan. The
UM entries having Nold equal to zero are removed out of UM,
and the resulting UM is the original UM before the crash. In
this approach, the intermediate UM is possibly large in size
depending on the number of moving objects.

Option II: With UM log at checkpoints. In this approach, UM
and the current value of the stamp counter are written to log
periodically at checkpoints. Since UM is small, the logging
cost on average is low. When recovering, the UM from the
most recent checkpoint is retrieved. Then, UM is updated
continuously in the same way as in Option I. However, only
the leaf entries that are inserted/updated after the checkpoint
will be processed. The resulting UM is a superset of the origi-
nal UM due to having ignored the removed leaf entries since
the checkpoint. This causes phantom entries as discussed in
Sect. 3.3.5. Inspecting UM will lead to the original UM after
one clean cycle.

Option III: With memo log at checkpoints and log of memo
operations. This approach requires writing UM to log at
each checkpoint and logging any changes to it after the check-
point. At the point of recovery, UM at the latest checkpoint
is retrieved and is updated according to the logged changes.
Despite high logging cost, the recovery cost in this option is
the cheapest as it avoids the need to scan the disk tree.

3.5 Concurrency control

Dynamic Granular Locking (DGL) [5] has been proposed to
provide concurrency in R-trees. DGL defines a set of lockable
node-level granules that can adjust dynamically during insert,

123

The RUM-tree: supporting frequent updates in R-trees using memos

delete, and update operations. DGL can directly apply to the
on-disk tree of the RUM-tree. Consider that the RUM-tree
utilizes the standard R-tree insert algorithm in the insert and
update operations. For deletion, garbage cleaning is analo-
gous to deleting multiple entries from a leaf node.

Besides the on-disk tree, the hash-based UM and the stamp
counter are also lockable resources. Each hash bucket of UM
is associated with a read lock and a write lock. A bucket is
set with the proper lock when accessed. Similarly, the stamp
counter is associated with such read/write locks. The DGL
and the read/write locks work together to guarantee concur-
rent accesses in the RUM-tree.

4 Cost analysis

Let N be the number of leaf nodes in the RUM-tree, E be
the size of the UM entry, ir be the inspection ratio of the
garbage cleaner, P be the node size of the RUM-tree, C be
the number of updates between two checkpoints, and M be
the number of indexed moving objects.

4.1 Garbage ratio and the size of UM

We start by analyzing the garbage ratio and the size of UM.
According to Property 1, after every leaf node is visited and
is cleaned once, all obsolete entries that exist before the clea-
ning are removed. In the RUM-tree, every leaf node is cleaned
once during N

ir inserts/updates. In the worst case, N
ir obsolete

entries are newly introduced in the RUM-tree. Therefore, the
upper-bound for the garbage ratio is N

ir×M . As each obsolete
entry may own an independent UM entry, the upper-bound
for the size of UM is N×E

ir . In real spatiotemporal applica-
tions the number of objects N can change over time. In this
case we should use an estimate of the maximum value of
the number of objects as N . This value will generate a safe
estimate of the upper bound for the size of UM.

It is straightforward to prove that the average garbage ratio
is N

2ir×M , and that the average size of UM is N×E
2ir . This result

implies that the garbage ratio and the size of UM are related
to the number of leaf nodes that is far less than the number of
indexed objects. Thus, the garbage ratio and the size of UM
are kept small, and UM can reasonably fit in main memory.
With the clean-upon-touch optimization, the garbage ratio
and the size of UM can be further reduced, as we show in
Sect. 5.

4.2 Update cost

We analyze the update costs for the top-down, the bottom-up,
and the memo-based update approaches. We investigate the
number of disk accesses.

x−m
n

m

y
y−n

x

1

1

Fig. 9 Probability of containment

Practically, the internal R-tree nodes are cached in the
memory buffer while the leaf nodes remain in disk. Other-
wise, a Direct Access Table as used in [13] can be utilized to
avoid excessive accesses to internal R-tree nodes. Therefore,
our analysis focuses on the disk accesses for leaf nodes. In
the following discussion, the data space is normalized to a
unit square. Node underflow and overflow are ignored in all
approaches as they happen quite rarely.

4.2.1 Cost of the top-down approach

The cost of a top-down update consists of two parts, namely,
(1) the cost of searching and deleting the old entry and (2) the
cost of inserting the new entry. Unlike [13], we notice that an
entry can be found only in nodes whose MBRs fully contain
the MBR of this entry. To deduce the search cost, we present
the following lemma:

Lemma 2 In a unit square, let Wxy be a window of size
x × y, and let Wmn be a window of size m × n, where 0 <

x, y, m, n < 1. When Wxy and Wmn are randomly placed,
the probability that Wxy contains Wmn is given by:

max(x − m, 0) × max(y − n, 0)

Proof Assume that the position of Wxy is fixed as shown
in Fig. 9. Then, Wmn is contained in Wxy if and only if
the bottom-left vertex of Wmn lies in the shaded area. The
size of the shaded area is given by max(x − m, 0) × max
(y − n, 0). Since Wmn is randomly placed, the probability of
Wxy containing Wmn is also max(x −m, 0)×max(y −n, 0).
For arbitrary placement of Wxy , the above situation holds.
Hence we reach Lemma 2.

Assume that the MBR of the entry to be deleted is given
by a × b, where 0 < a, b < 1. From Lemma 2, the expected
number of leaf node accesses for searching the old entry is
given by:

IOsearch = 1

2

N∑

i=1

(max(xi − a, 0) × max(yi − b, 0))

where xi and yi are the width and the height of the MBR
of the i th leaf node. Once the entry is found, it is deleted

123

Y. N. Silva et al.

and the corresponding leaf node is written back. In addition,
inserting a new entry involves one leaf node read and one leaf
node write. Therefore, the expected number of node accesses
for the top-down approach is:

IOTD = 1

2

N∑

i=1

(max(xi − a, 0) × max(yi − b, 0)) + 3

��

4.2.2 Cost of the bottom-up approach

The cost of the bottom-up approach, as we explain below,
ranges from three to seven leaf node accesses depending on
the placement of the new data.

If the new entry remains in the original node, the update
cost consists of three disk accesses: reading the secondary
index to locate the original leaf node, reading the original
leaf node, and writing the original leaf node.

When the new entry is inserted into some sibling of the
original node, the update cost consists of six disk accesses:
reading the secondary index, reading and writing the original
leaf node, reading and writing the sibling node, and writing
the changed secondary index.

In the case that the new entry is inserted into any other
node, the update cost consists of seven disk accesses: rea-
ding the secondary index, reading and writing the original
leaf node, reading and writing the inserted node, writing the
changed secondary index, and writing the adjusted parent
node of the inserted node.

4.2.3 Cost of the memo-based approach

For the memo-based approach, each update is directly inser-
ted. Inserting an entry involves one leaf node read and one
leaf node write. Given the inspection ratio ir, for a total num-
ber of U updates, the number of leaf nodes inspected by the
cleaner is U × ir . Each inspected leaf node involves one
node read and one node write. The clean-upon-touch opti-
mization does not involve extra disk accesses. Therefore, the
overall cost per update in the memo-based update approach
is 2(1 + ir) disk accesses.

As discussed in Sect. 3.4, various recovery approaches
involve different logging costs. Option I does not involve any
logging cost. Based on the upper-bound of the size of UM
derived in Sect. 4.1, the additional logging cost per update in
Option II is N×E

ir×P×C . For Option III, the additional logging

cost per update is (N×E
ir×P×C + 1).

5 Experimental evaluation

In this section, we study the performance of the RUM-tree
through experiments and compare this performance with

that of the R*-tree [2] and the Frequently Updated R-tree
(FUR-tree) [13].

All the experiments are performed on an Intel Pentium
IV machine with CPU Dual Core 1.83GHz and 2GB RAM.
In the experiments, the number of moving objects ranges
between 1 and 10 million objects.

Three datasets are used in the experiments: ROADS-SKW,
ROADS-UNI, and UNIFORM. In ROADS-SKW and
ROADS-UNI, the moving objects are restricted to move on
the roads of a city while in UNIFORM objects are uniformly
distributed in the space and assigned a random direction.
All datasets are scaled to a unit square. ROADS-SKW and
ROADS-UNI are generated using the Network-based Gene-
rator of Moving Objects [3] with the road map of Oldenburg,
Germany. The objects in ROADS-UNI are always distribu-
ted in a close to uniform fashion over the roads of the city.
The objects in ROADS-SKW, the dataset used by default,
aim to simulate the moving objects in a real life scenario
where the number of moving objects in the downtown of the
city is higher than the one in the outskirts of the city. The
extent of the objects ranges between 0 (i.e., points) and 0.01
(i.e., squares with side 0.01).

The moving distance ranges from between 0.001 and 0.1.
For the search performance, we study the performance of
range queries. The number of the queries is fixed at 100,000
queries. The queries are square regions of side length ran-
ging from 0.02 to 0.1. The primary parameters used in the
experiments are outlined in Table 1, where the default values
are given in bold fonts.

Both disk accesses (I/O) and CPU time are investigated
in the experiments. However, in most cases we only report
the I/O cost since it is the dominant cost. As discussed pre-
viously, the internal R-tree nodes are cached in memory buf-
fers for all the R-tree types. For the FUR-tree, the MBRs
of the leaf nodes are allowed to extend 0.003 to accom-
modate object updates in their original nodes. The value
0.003 is used since it was found that it yields the best per-
formance results under similar evaluation conditions [12].
Except the experiments in Sect. 5.8, Option II discussed in
Sect. 3.4 for the RUM-tree is chosen as the default recovery
option.

Table 1 Experiment parameters and values

Parameters Values used

Number of objects 1M, 1∼10M

Moving distance between updates 0.04, 0.001∼0.1

Extent of objects 0, 0∼0.01

Query square side lenght 0.06, 0.02∼0.1

Node size (KB) 1, 2, 4, 8

Inspection ratio of the RUM-tree 10%, 1∼100%

123

The RUM-tree: supporting frequent updates in R-trees using memos

0

1

2

3

4

5

6

0 20 40 60 80 100

IO
/U

p
d

at
e

Inspection Ratio (%)

RUM-tree Token
RUM-tree Touch
RUM-tree LRC
R*-tree
FUR-tree

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

C
P

U
 T

im
e/

U
p

d
at

e
(m

s)

Inspection ratio (%)

RUM-tree Token
RUM-tree Touch
RUM-tree LRC
R*-tree
FUR-tree

0

5

10

15

20

25

30

0 20 40 60 80 100

G
ar

b
ag

e
R

at
io

 (
%

)

Inspection Ratio (%)

RUM-tree Token

RUM-tree Touch

RUM-tree LRC

0

2

4

6

8

10

12

0 20 40 60 80 100

C
P

U
 T

im
e/

Q
u

er
y

(m
s)

Inspection Ratio (%)

RUM-tree Token
RUM-tree Touch
RUM-tree LRC
R*-tree
FUR-tree

(a) (b) (c) (d)

Fig. 10 Effect of the inspection ratio

5.1 Properties of the RUM-tree

In this section, we study the properties of the RUM-tree under
various inspection ratios and various node sizes. We imple-
ment three types of RUM-trees, each RUM-tree employs
one kind of garbage cleaning mechanism as discussed in
Sect. 3.3, namely, the cleaning-token mechanism (denoted
by the RUM-tree Token in this section), the clean-upon-touch
mechanism combined with cleaning tokens (denoted by the
RUM-tree Touch in this section), and the LRC mechanism
(denoted by the RUM-tree LRC in this section).

5.1.1 Effect of inspection ratio

Figure 10a gives the average update I/O costs for the RUM-
trees when the inspection ratio increases from 1 to 100%.
With the increase in the inspection ratio, the RUM-tree Token,
the RUM-tree Touch and the RUM-tree LRC all have lar-
ger update I/O costs due to the more frequent cleaning. The
update costs of the three RUM-trees are very similar. This is
because the clean-upon-touch optimization of the RUM-tree
Touch does not involve additional cleaning cost besides the
cost of cleaning tokens. Meanwhile, the LRC mechanism is
mainly designed to maximize the cleaning effect rather than
reduce the number of disk accesses. The update I/O costs
for the FUR and R* trees, included only as reference in this
figure, are constant since they do not depend on the inspec-
tion ratio. The update I/O cost of the RUM-tree approaches
is only 44–68% of the I/O cost of the R*-tree and only 54–
83% of the I/O cost of the FUR-tree. In general, lower values
of inspection ratio increase the advantage of the RUM-tree
approaches over the RUM and R* trees.

Figure 10b presents the update CPU time for the RUM,
FUR and R* trees. The average CPU time required to pro-
cess an update operation in the RUM and FUR trees is similar
and approximately 60% of the time required in the R*-tree
approach. The approach with the lowest update CPU time
for most values of inspection ratio is the RUM-tree Token
approach. The other two RUM-tree approaches consume
slightly higher CPU time because they make use of the clean-
upon-touch mechanism besides using cleaning tokens.

Figure 10c presents the garbage ratios of the RUM-trees
under various values of inspection ratio. The garbage ratios
of all the RUM-trees decrease along with the increase in
the inspection ratio. Specifically, the garbage ratios decrease
rapidly when the inspection ratio increases from 1 to 20%.
Observe that the inspection ratio of 10% achieves quite good
update performance (around 2.9 I/Os per update) and a near-
optimal garbage ratio for all the RUM-trees (smaller than
3.5%). The RUM-tree Touch has smaller garbage ratio than
that of the RUM-tree Token because the former approach
maintains clean the nodes that are more frequently updated.
The RUM-tree LRC has a smaller garbage ratio than that of
the RUM-tree touch because, in addition to using the clean-
upon-touch mechanism, its cleaning tokens clean first the
nodes that have not been cleaned recently. In many cases,
these nodes are the ones that have more obsolete entries.

Greater values of the inspection ratio produce less obsolete
entries and consequently reduce the number of nodes that
need to be read from disk and the CPU time spent filtering
obsolete entries to answer a query. This relationship between
the CPU time per query and the inspection ratio of the RUM-
trees is presented in Fig. 10d. This figure also presents for
reference the query CPU time for the FUR and R* trees. The
CPU costs to process a query in the RUM-trees is bigger than
the ones in the FUR and R* trees because of the extra time
required to filter the obsolete entries and the reduced fanout of
the RUM-trees due to its extra fields and pointers. Similarly
to the case of the garbage ratio, the CPU time for processing a
query decreases quickly when the inspection ratio increases
from 1 to 20%. For values greater than 10% the query CPU
cost associated to the RUM trees is just slightly higher than
the ones associated to the FUR and R* trees. If not otherwise
stated, RUM-trees use an inspection ratio value of 10% in
the rest of the experiments.

5.1.2 Effect of node size

In these experiments, we study the effect of various node
sizes of the RUM-tree. Figure 11a–d give the average update
I/O cost, the average update CPU cost, the garbage ratio, and
the average query I/O cost of the RUM-trees under 1, 2, 4

123

Y. N. Silva et al.

0

1

2

3

4

5

6

7

1024 2048 4096 8192

IO
/U

p
d

at
e

Node Size (Bytes)

RUM-tree Token

RUM-tree Touch

RUM-tree LRC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1024 2048 4096 8192

C
P

U
 t

im
e/

U
p

d
at

e
(m

s)

Node Size (Bytes)

RUM-tree Token

RUM-tree Touch

RUM-tree LRC

0

5

10

15

20

25

30

1024 2048 4096 8192

G
ar

b
ag

e
R

at
io

 (
%

)

Node Sizes (Bytes)

RUM-tree Token

RUM-tree Touch

RUM-tree LRC

0

50

100

150

200

250

300

1024 2048 4096 8192

IO
/Q

u
er

y

Node Size (Bytes)

RUM-tree Token

RUM-tree Touch

RUM-tree LRC

(a) (b) (c) (d)

Fig. 11 Effect of node size

and 8 K node sizes, respectively. When the RUM-tree node
has larger size, the update I/O cost for any of the three RUM-
trees decreases slightly. This is mainly due to fewer node
splitting in a larger node. The update CPU cost increases for
all the RUM-trees when the RUM-tree node becomes lar-
ger. This is because the garbage cleaners need to check more
entries every time a node is cleaned. The RUM-tree Touch
has a higher CPU cost than those of the other two RUM-trees
because it cleans a node whenever the node is accessed. The
CPU cost of the RUM-tree LRC is smaller than that of the
RUM-tree Touch because the RUM-tree LRC avoids cleaning
a node if the node has been cleaned recently. For the garbage
ratio, the RUM-tree LRC outperforms both the RUM-tree
Token and the RUM-tree Touch, while the RUM-tree Touch
outperforms the RUM-tree Tokens. The garbage ratios of all
the RUM-trees decrease quickly with the increase in node
size. As we observed previously, a direct effect of a smal-
ler value of garbage ratio is a smaller number of entries that
satisfy a query and need to be retrieved from disk. The last
figure of this section shows how the I/O query cost of all the
RUM-trees decreases when the node size increases. Notice
that the I/O cost dominates the CPU time, and the experi-
ments demonstrate that the RUM-trees favor a large node
size over a small node size. In the rest of the experiments, we
fix the node size to 8,192 bytes and use the RUM-tree LRC
approach as representative of the RUM-trees.

5.2 Performance while varying moving distance

In this section, we study the performance of the R*-tree,
the FUR-tree, and the RUM-tree when the changes in object
location between consecutive updates (referred to as moving
distance) vary from 0.001 to 0.1.

5.2.1 Update cost

Figure 12a gives the update I/O costs for the three R-tree
variants. The R*-tree exhibits the highest cost in all cases due
to the costly top-down search. The update cost of the FUR-

tree increases with the increase in moving distance. In this
case, more objects move far from their original nodes and
require top-down insertions. The update cost of the RUM-
tree is steady being only 47% of the cost of the R*-tree, and
only 55–65% of the cost of the FUR-tree for most values of
moving distance. Notice that the only case in which the FUR-
tree slightly outperforms the RUM-tree is when the moving
distance is extremely small. In this case, under the FUR-tree
approach, most of the updates are performed in the original
node of the entry being updated.

5.2.2 Search cost

The search performance of the three indexing types along
various moving distances is given in Fig. 12b. The R*-tree
exhibits the best search performance as its structure is adjus-
ted continuously by the top-down updates. The RUM-tree
exhibits around 30–60% higher search cost than that of the
R*-tree and around 25% higher search cost than that of the
FUR-tree. The query I/O cost of the FUR-tree is greater than
that of the R*-tree because the FUR-tree approach increases
the size of the MBRs to accommodate the new object loca-
tions and consequently more nodes need to be read and pro-
cessed for answering a query. On the other hand, the query
I/O cost of the RUM-tree is greater than that of the R*-tree
because of the presence of obsolete entries that satisfy the
query and the reduced fanout of the RUM-tree due to extra
attributes in the tree nodes.

5.2.3 Overall cost

Figure 12c gives a comprehensive view of the I/O perfor-
mance comparison when the moving distance is set to 0.1.
Given that our focus is on scenarios with frequent updates,
we vary the ratio of the number of updates over the number
of queries from 1:1 to 10,000:1. When the ratio increases,
the RUM-tree gains more performance achievement. At the
point 10,000:1, the average cost of the RUM-tree is only 55%
of the FUR-tree and 48% of the R*-tree. This experiment

123

The RUM-tree: supporting frequent updates in R-trees using memos

Fig. 12 Performance while
varying moving distance

0
1
2
3
4
5
6
7

0 0.02 0.04 0.06 0.08 0.1

IO
/U

p
d

at
e

Moving Distance

R*-tree
FUR-tree
RUM-tree

0
5

10
15
20
25
30

0 0.02 0.04 0.06 0.08 0.1

IO
/Q

u
er

y

Moving Distance

R*-tree
FUR-tree
RUM-tree

0

3

6

9

12

15

1:1 10:1 100:1 1000:1 10000:1

IO
/O

p
er

at
io

n

of Updares : # of Queries

(Moving Distance = 0.1)

R*-tree
FUR-tree
RUM-tree

M
o

vi
n

g
 D

is
ta

n
ce

R*-tree
FUR-tree
RUM-tree
Auxiliary
Structures

0.01

0.04

0.06

0.10

0 10 20 30 40 50 60

Size of Tree and Auxiliary Structures (MB)

(a) (b)

(c) (d)

demonstrates that the RUM-tree is more applicable than the
R*-tree and the FUR-tree in environments with frequent updates.

5.2.4 Size of tree and auxiliary structures

Figure 12d compares the sizes of the trees and auxiliary struc-
tures employed by the FUR, RUM and R* trees. The tree used
in the R*-tree approach is smaller than the ones used in the
other two approaches while the tree used in the RUM-tree is
slightly greater than the one used in the FUR-tree approach.
The size of the tree used in the RUM-tree approach is around
50% greater than the one used in the R*-tree approach and
around 10% greater than the one used in the FUR-tree. Howe-
ver, the total size (tree size plus auxiliary structures size)
of the RUM-tree approach is smaller than the total size of
the FUR-tree approach. Observe that in the FUR-tree, each
object owns a corresponding entry in the secondary index,
which results in a huge indexing structure. In the RUM-tree,
UM is upper-bounded and can be kept small in size. Also,
notice that the size of the tree used in the FUR-tree approach
increases significantly when the moving distance increases.
The tree size of the other two approaches remains more stable
when the moving distance changes. The increase in the FUR-
tree size when the moving distance increases is due to the
poor structure that the tree gets when there are many updates
that move the updated entries to sibling nodes and the sub-
sequent node splits. There is not effort made by the FUR-
tree approach to find the best sibling to store the updated
entry. This technique is outperformed by the approach used
by the R*-tree that is also implemented in the RUM-tree,

which uses a combined optimization of the area, margin and
overlap of the MBRs during the selection of a node to store
the updated object. Generally, the R*-tree strategy generates
a tree with less overlap among neighboring nodes, with less
splits, and with better storage utilization than those of the
FUR-tree. The greater tree size of the RUM-tree is mainly
due to the reduced fanout of the tree and the presence of
obsolete entries. The rather stable tree size of the RUM-
tree for varying moving distance values is due to the use
of the same node selection optimization strategy used by the
R*-tree.

5.3 Performance while varying object extent

In previous experiments, the object set consists of point
objects. In this section, we study the performance of the
R-tree variants with different object sizes. In these experi-
ments, the indexed objects are squares and their side length
(referred as object extent) varies from 0 to 0.01.

5.3.1 Update cost

Figure 13a gives the average update I/O cost of the three
R-tree variants for different values of object extent. For all
the evaluated trees the I/O cost is in general invariant to the
objects extent. The update cost of the RUM-tree is around
46% of the cost in the R*-tree, and is around 57% of the cost
in the FUR-tree.

123

Y. N. Silva et al.

Fig. 13 Performance while
varying object extent

0

1

2

3

4

5

6

7

0.000 0.002 0.004 0.006 0.008 0.010

IO
/U

p
d

at
e

Object Extent

R*-tree
FUR-tree
RUM-tree

0

10

20

30

40

0.000 0.002 0.004 0.006 0.008 0.010

IO
/Q

u
er

y

Object Extent

R*-tree

FUR-tree

RUM-tree

0

5

10

15

20

1:1 10:1 100:1 1000:1 10000:1

IO
/O

p
er

at
io

n

of Updates : # of Queries

(Object Extent = 0.010)

R*-tree

FUR-tree

RUM-tree

0.000

0.004

0.006

0.010

0 10 20 30 40 50 60

Size of Tree and
Auxiliary Structures (MB)

R*-tree
FUR-tree
RUM-tree
Auxiliary
Structures

O
b

je
ct

 E
xt

en
t

(a) (b)

(c) (d)

5.3.2 Search cost

While the object extent does not affect significantly the update
I/O cost of the studied tree structures, it does affect their
query I/O cost as shown in Fig. 13b. In general, for all the
approaches, the query I/O cost increases when the object
extent increases. The R*-tree achieves the best performance
followed by that of the FUR-tree. The search I/O cost of the
RUM-tree is around 25–65% higher than that of the RUM-
tree and around 70% higher than that of the R*-tree.

5.3.3 Overall cost

Figure 13c gives a comprehensive view of the I/O perfor-
mance comparison when the object extent is set as 0.01.
Again, we study the performance under various ratios of
updates over queries. The RUM-tree outperforms both the
R*-tree and the FUR-tree when the ratio is larger than or
equal to 10:1. At the point 10,000:1, the average cost of
the RUM-tree is only 57% of the FUR-tree and 47% of the
R*-tree.

5.3.4 Size of tree and auxiliary structures

Figure 13d gives the size of the trees and auxiliary structures
for different values of object extent. For all the approaches,
the size of the tree and auxiliary structures are not affec-
ted significantly by the objects extent. The tree size of the
R*-tree is around 34% smaller than that of the FUR-tree

and 43% smaller than that of the RUM trees. Furthermore,
although the tree size of the RUM-tree is 10% larger than
that of the FUR-tree, the total size (tree and auxiliary struc-
tures) of the RUM-tree approach is 5% smaller than that of
the FUR-tree approach.

5.4 Performance while varying query size

In this section, we study the scalability of the three R-tree
variants when increasing the query size. In these experiments
the queries are squares and their side length (referred to as
query size) varies from 0.02 to 0.1.

5.4.1 Update cost

The analysis of the update I/O cost is included in this section
only to facilitate the comparison of this cost with the update
and overall I/O costs. As expected, the update I/O cost shown
in Fig. 14a remains unaffected for all the studied trees when
the size of the query increases. The update I/O cost of the
RUM-tree is only 58% of that of the FUR-tree and 46% of
that of the R*-tree.

5.4.2 Search cost

On the other hand, the query I/O cost of all the tree
approaches, shown in Fig. 14b, increases when the query
size increases. The reason being that when the query size
increases, more objects qualify to be part of the answer sets;

123

The RUM-tree: supporting frequent updates in R-trees using memos

0

1

2

3

4

5

6

7

0.02 0.04 0.06 0.08 0.1

IO
/U

p
d

at
e

Query Size

R*-tree
FUR-tree
RUM-tree

0

10

20

30

40

50

60

70

0.02 0.04 0.06 0.08 0.1

IO
/Q

u
er

y

Query Size

R*-tree
FUR-tree
RUM-tree

0

5

10

15

20

25

30

35

40

1:1 100:1 1000:1 10000:1

IO
/O

p
er

at
io

n

of Updates : # of Queries

(Query Size = 0.1)

R*-tree
FUR-tree
RUM-tree

10:1

(a) (b) (c)

Fig. 14 Performance while varying query size

consequently more leaf nodes need to be read from disk.
Additionally, for the RUM-tree approach, the number of
obsolete entries increases when the query size grows.

The query I/O cost of the FUR-tree is higher than the query
cost of the R*-tree because this approach extends the MBRs
of the tree nodes. When the MBRs are extended, the overlap
among the MBRs and the number of nodes that need to be
analyzed to answer a given query increase too. The query I/O
cost of the RUM-tree is higher than the query cost of the R*-
tree because of the reduced tree fanout and the presence of
obsolete entries. The query I/O cost of the R*-tree is 57–60%
of the query cost of the RUM-tree and 68–77% of the query
cost of the FUR*-tree. The query I/O cost of the FUR-tree is
77–84% of the query cost of the RUM-tree.

5.4.3 Overall cost

The comprehensive I/O costs of the R*-tree, the FUR-tree
and the RUM-tree when the query size is set to 0.1 are given
in Fig. 14c. The ratio of the number of updates to the number
of queries varies from 1:1 to 10,000:1. The RUM-tree outper-
forms the other two R-tree variants when the ratio is larger
than 10:1. When the ratio reaches 10,000:1, the average cost
of the RUM-tree is only 58% of that of the FUR-tree, and
only 46% of that of the R*-tree.

5.5 Scalability while varying the number of objects

In this section, we study the scalability of the three R-tree
variants when increasing the data set up to 10 million point
objects.

5.5.1 Update cost

Figure 15a gives the update I/O performance of the three
R-tree variants for datasets of different sizes. When increa-
sing the number of objects, the R*-tree exhibits a growing
update cost. The reason is that more R-tree nodes are searched
to locate the objects to be updated. In general, the update I/O

cost of the FUR-tree increases slightly when the number of
objects increases. This is mainly due to the higher number of
updates that are performed in a top-down manner when the
number of objects grows. For the RUM-tree, the update cost
is basically unaffected by the number of objects. The reason
is that the update cost of the RUM-tree is a combination of the
cost of the insertion and the cost of the cleaning processes.
Both factors, as analyzed in Sect. 4.2.3, are basically inva-
riant to the size of the RUM-tree or the number of objects.
The update cost of the RUM-tree, which also includes the
cost of cleaning, is around 25–45% of the update cost of
the R*-tree, and is around 55–65% of the update cost of the
FUR-tree.

5.5.2 Search cost

Figure 15b gives the search I/O performance of the R-tree
variants while varying the number of objects. The search
I/O cost of all the approaches increases when the number
of objects increases. The reason is that although the size of
the queries remains the same, the number of the entries that
satisfy the queries increases when the dataset size grows.
The performance of the R*-tree and the FUR-tree are very
similar and in general get closer when the number of objects
increases. The reason is that for large datasets most updates
on the FUR-tree are performed using the top-down approach
and consequently the FUR-tree structure gets closer to the
R*-tree structure. Due to the smaller fanout and the presence
of obsolete entries, the search costs of the RUM-tree is higher
than the search cost in the other two approaches. For instance,
when the number of objects is 10 million, the search cost in
the RUM-tree is 19% higher than that of the FUR-tree, and
21% higher than that of the R*-tree.

5.5.3 Overall cost

The comprehensive I/O costs of the R*-tree, the FUR-tree
and the RUM-tree for a large dataset (10 million objects) are
given in Fig. 15c. The RUM-tree outperforms the other two

123

Y. N. Silva et al.

Fig. 15 Performance while
varying number of objects

0
2
4
6
8

10
12
14

0 2 4 6 8 10

IO
/U

p
d

at
e

Number of Objects (Millions)

R*-tree
FUR-tree
RUM-tree

0

50

100

150

200

250

0 2 4 6 8 10

IO
/Q

u
er

y

Number of Objects (Millions)

R*-tree
FUR-tree
RUM-tree

0

20

40

60

80

100

1:1 10:1 100:1 1000:1 10000:1

IO
/O

p
er

at
io

n

of Updates : # of Queries

(Number of Objects = 10 million)

R*-tree
FUR-tree
RUM-tree

1

2

5

10

0 100 200 300 400 500

Size of Tree and
Auxiliary Structures (MB)

N
u

m
b

er
 o

f
O

b
je

ct
s

(M
ill

io
n

s)

R*-tree
FUR-tree
RUM-tree
Auxiliary
Structures

(a) (b)

(c)
(d)

R-tree variants when the ratio is larger than 10:1. When the
ratio reaches 10,000:1, the average cost of the RUM-tree is
only 60% of that of the FUR-tree, and only 25% of that of
the R*-tree.

5.5.4 Size of tree and auxiliary structures

Figure 15d gives the size of the trees and auxiliary structures
for all the studied trees and different dataset sizes. For all the
approaches, the size of the tree increases when the dataset size
grows. This is naturally the case since more objects need to
be stored in the trees. Furthermore the tree size of the FUR-
tree gets closer to that of the R*-tree when the number of
objects increases. As we stated before, the reason is that for
large datasets most updates on the FUR-tree are performed
using the top-down approach and the FUR-tree structure gets
closer to the R*-tree structure. Although the tree size of the
RUM-tree is around 10–20% greater than that of the FUR-
tree under the different dataset sizes, the total size (tree and
auxiliary structures) of the RUM-tree approach is in general
slightly smaller than that of the FUR-tree approach.

5.6 Performance using various datasets

In this section, we study the performance of the different
trees under three different datasets: ROADS-SKW, ROADS-
UNI, and UNIFORM. As explained in the introduction of the
experimental section, ROADS-SKW, the dataset used in the
previous experiments, tries to reproduce as close as possible

the movement of cars (moving objects) on the roads a real
city, i.e., the objects are more concentrated in the roads that
belong to the downtown of the city. ROADS-UNI is similar
to ROADS-SKW in that the objects are restricted to move
only on the roads of the city but in this dataset the objects are
distributed on the roads in a close to uniform fashion, i.e.,
objects are not more concentrated in the downtown roads.
UNIFORM is not a road based dataset. In this dataset, the
objects are uniformly distributed on the space and are assi-
gned a random direction. Given the distribution properties of
each dataset, we can consider ROADS-UNI as an interme-
diate state between ROADS-SKW and UNIFORM.

5.6.1 Update cost

Figure 16a gives the update I/O costs for the three R-tree
variants and the three datasets. The update I/O cost decreases
in all approaches when the data becomes more uniform. The
reason is mainly a better tree structure and node utilization
when the data gets more uniform. The update I/O cost of
the RUM-tree is significantly smaller than the update cost
of the other trees in all the datasets. However, the RUM-tree
becomes slightly less advantageous when the data becomes
more uniform, especially in comparison to the R*-tree. The
update cost of the RUM-tree is 57% of that of the FUR-
tree under the ROADS-SKW dataset. This update cost of
the RUM-tree increases to be 60% of that of the FUR-tree
under the UNIFORM dataset. On the other hand, the update
cost of the RUM-tree is 46% of that of the FUR-tree under

123

The RUM-tree: supporting frequent updates in R-trees using memos

Fig. 16 Performance using
various datasets

0
1
2
3
4
5
6
7

ROADS-SKW ROADS-UNI UNIFORM

IO
/U

p
d

at
e

Dataset

R*-tree
FUR-tree
RUM-tree

0
5

10
15
20
25
30
35

ROADS-SKW ROADS-UNI UNIFORM

IO
/Q

u
er

y

Dataset

R*-tree
FUR-tree
RUM-tree

0
2
4
6
8

10
12
14
16

1:1 10:1 100:1 1000:1 10000:1

IO
/O

p
er

at
io

n

of Updates : # of Queries

(Dataset = UNIFORM)

R*-tree
FUR-tree
RUM-tree

D
at

as
et

R
O

A
D

S
-S

K
W

R
O

A
D

S
-U

N
I

U
N

IF
O

R
M

0 10 20 30 40 50

Size of Tree and
Auxiliary Structures (MB)

R*-tree
FUR-tree
RUM-tree
Auxiliary
Structures

(a) (b)

(c)
(d)

the ROADS-SKW dataset. This update cost of the RUM-
tree increases to be 58% of that of the R*-tree under the
UNIFORM dataset.

5.6.2 Search cost

The search performance of the three indexing types under the
different studied datasets is given in Fig. 16b. The search I/O
cost of the three approaches increases when the data becomes
more uniform. The reason is that when data is uniform all the
queries return approximately the same number of elements
as their result set while when the data is more skewed, there
might be a significant number of queries that return fewer or
no objects. The search cost of the RUM-tree is always higher
than the ones of the FUR and R* trees. However, this dif-
ference gets smaller when the data becomes more uniform.
The search cost of the RUM-tree is 25% higher than that
of the FUR-tree under the ROADS-SKW dataset. Under the
UNIFORM dataset, the search cost of the RUM-tree is only
13% higher than that of the FUR-tree. On the other hand, the
search cost of the RUM-tree is 67% higher than that of the
FUR-tree under the ROADS-SKW dataset. Under the UNI-
FORM dataset, the search cost of the RUM-tree is only 17%
higher than that of the R*-tree. An important conclusion is
that when data gets more uniform, the advantage of the update
performance of the RUM-tree in comparison the other two
approaches decreases slightly, while the query performance

of the RUM-tree becomes significantly closer to the ones of
the other two approaches.

5.6.3 Overall cost

Figure 16c gives a comprehensive view of the I/O perfor-
mance comparison under the UNIFORM dataset. Similar
to the case of previous experiments that use the ROADS-
SKW dataset, the RUM-tree performs better when the ratio
increases. At the point 10,000:1, the average cost of the
RUM-tree is only 60% of the FUR-tree and 58% of the
R*-tree. This experiment demonstrates that the RUM-tree is
more applicable than the R*-tree and the FUR-tree in envi-
ronments with frequent updates and dynamic distribution of
objects.

5.6.4 Size of tree and auxiliary structures

Figure 16d compares the sizes of the trees and auxiliary struc-
tures employed by the FUR, RUM and R* trees under the
different datasets. The sizes of all the trees decrease when
the data gets more uniform. This is due to the better tree
structures and node utilization that can be achieved when the
data is uniformly distributed on the space. Under all the data-
sets the tree size of the R*-tree is smaller than those of the
FUR and RUM trees. However, the RUM-tree and FUR-tree
sizes get closer to the R*-tree size when the data gets more
uniform. In all the cases, the tree size of the RUM-tree is

123

Y. N. Silva et al.

around 12–16% bigger than that of the FUR-tree. However,
the total size of the RUM-tree (tree and auxiliary structures)
is around 5–8% smaller than the total size of the FUR-tree
(tree and auxiliary structures). The reason is that, under all
the datasets, the auxiliary structures used by the RUM-tree
approach are very small and upper bounded (less than 1% of
the tree size) while the auxiliary structures used by the FUR
tree are very large (between 18 and 26% of the tree size).

5.7 Comparison of structure and dynamic properties of trees

This section presents the analysis of the dynamic properties
of the R*, FUR, and RUM trees.

Given that the RUM-tree makes use of additional attributes
in the nodes of the tree, the number of entries that can be sto-
red in its nodes, i.e., fanout of the tree, is smaller than in the R*
and FUR trees (assuming a fixed node size). A reduced fanout
has in general a negative effect on a tree since it increases
the size of the tree and the number of nodes that need to be
accessed to answer a query or to process an update opera-
tion. The previous experiments show that, although using a
smaller fanout, the RUM-tree has better performance than
the RUM and R* trees for multiple scenarios with frequent
updates. This advantage is logically not free of cost and the
cost is materialized in extra disk and main memory space
required by the RUM-tree approach.

Figure 17 compares several important properties of the
studied trees after the execution of 1 million updates and
100,000 queries.

The fanout of the RUM-tree (340) is approximately 83%
of the fanout of the other two trees (409). In all the studied
trees, we assume that all the nodes of a tree have the same
fanout. The height of the tree in this experiment is the same
for all the trees. The height remains the same even in other
experiments with 10 million objects. The number of non-base
internal nodes is also the same and is equal to 1 (the root
node). The number of the base internal nodes (the level on

PROPERTY R*-tree FUR-tree RUM-tree

Fanout 409 409 340

Height of tree 3 3 3

of leaf entries 1000000 1000000 1006901

of non-base int. nodes 1 1 1

of base int. nodes 13 18 24

of leaf nodes 3675 5378 6042

Size of non-base int. node (KB) 8.0 8.0 6.7

Size of base int. node (KB) 8.0 8.0 6.7

Size of leaf node (KB) 8.0 8.0 8.0

Tree space in RAM (MB) 0.10 0.14 0.16

Tree space on Disk (MB) 28.7 42.0 47.2

Tree space RAM+Disk (MB) 28.8 42.2 47.4

Aux. structures space (MB) 0.0 7.7 0.2
Total space (Tree+Aux. Str.) (MB) 28.8 49.8 47.6

Fig. 17 Comparison of structure and dynamic properties of trees

top of the leaf level) in the RUM-tree is 33% higher than
that of the FUR-tree and 85% higher than that of the R*-tree.
Furthermore, the number of leaf nodes of the RUM tree is
12% higher than that of the FUR-tree and 64% higher than
that of the R*-tree.

The size of a leaf node is the same in all the studied
trees and is equal to 8 KB. Having the same leaf node size
is important for the experimental section because it ensures
a correct comparison of the I/O costs of the different trees.
Given that non-leaf nodes are stored in main memory (refer-
red to as RAM), these nodes can have a smaller size than the
leaf nodes. This happens when the space required to store F
entries (where F is the fanout of the tree) in a non-leaf node
is smaller than the space required to store F entries in a leaf
node. In our experiment, the non-leaf nodes sizes are 8 KB
for the FUR and R* trees. In this case, leaf and non-leaf nodes
have the same size since the size of a node entry is similar in
both types of nodes. In the case of the RUM tree the non-leaf
nodes have a smaller size than the leaf nodes. The reason is
that the additional attributes used by the RUM-tree approach
affect the leaf nodes more than the non-leaf nodes. In the case
of a non-leaf node, only 1 or 3 pointers are added per node.
One pointer (to parent) is added in the case of the non-base
internal nodes and three pointers (to parent and siblings) in
the case of base internal nodes. In the case of a leaf node, a
timestamp field is added for each entry of the node. Given
that the size of the leaf node is fixed (8 KB) the number of
(extended) entries that fit in a leaf-node of a RUM-tree is
smaller than those of the FUR and R* trees. Specifically, this
number is 340, which is used as the fanout of the RUM-tree.
The space required to store 340 entries in a non-leaf node
is 6.7 KB. This size is significantly smaller than the sizes of
the non-leaf nodes in the other two approaches (8 KB). The
space used in RAM by the RUM-tree is 0.16 MB while the
FUR-tree and R* tree require 0.14 and 0.1 MB, respectively.
For all the indexes, the space used in RAM is a very small
fraction of the space used on disk. The space used on disk
by the RUM-tree is 47.2 MB, 12% more than the disk space
used by the FUR-tree that uses 42 MB and 64% more of the
disk space used by the R*-tree that uses 28.7 MB.

The previous discussion focuses on the analysis of the
tree structures. It is also important to observe that, the size
of auxiliary structures used by the RUM-tree index is always
very small and upper-bounded while the auxiliary structures
of the FUR-tree index are usually very large and make the
total size (tree and auxiliary structures) of the FUR-tree index
be greater than the total size of the RUM-tree index. In this
experiment for instance, the size of the auxiliary structures
used in the RUM-tree is only 0.2 MB while that of the FUR-
tree is 7.7 MB. The total size (tree and auxiliary structures)
used by the RUM-tree index is 47.6 MB while the total size
(tree and auxiliary structures) used by the FUR-tree index is
49.8 MB.

123

The RUM-tree: supporting frequent updates in R-trees using memos

Fig. 18 Update I/O with log options

5.8 Log and recovery

In this section, we study the logging costs and the recovery
costs for the different options presented in Sect. 3.4. For
Options II and III, one checkpoint is logged every 10,000
updates/inserts.

5.8.1 Update cost under logging

Figure 18 gives the overall I/O cost per update when the
RUM-tree works with different logging options. Option I has
the lowest update cost as no log is maintained. The cost of
Option II is only slightly higher than that of Option I where
Option II occasionally writes UM to the log. Option III has
the highest cost that is around 50% higher than the other two
options, as it logs every memo change.

5.8.2 Recovery cost

Table 2 gives the number of disk accesses when recovering
UM in the case of system failure. Option I incurs the largest
cost. This is because the intermediate UM is too large to
fit in memory, hence results in an excessive number of disk
accesses. The recovery cost of Option II is significantly lower
than Option I. Option II retrieves UM at the last checkpoint,
and scans every disk node once. Option I achieves the best
performance by only retrieving logged data. Considering the
tradeoff between the logging cost and the recovery cost, we
use Option II as the choice in our previous experiments.

Table 2 The number of I/Os for recovery

Option I Option II Option III

2,008,000 7,218 11

Fig. 19 Throughput comparison

5.9 Throughput under concurrent accesses

Figure 19 gives the throughput of the RUM-tree and the R*-
tree. The throughput of the FUR-tree is not compared as
there is insufficient knowledge about concurrency control
in the FUR-tree. In these experiments, 100 threads update
and query the R-tree variants concurrently. We vary the per-
centage of updates from 0 (i.e., queries only) to 100% (i.e.,
updates only). Our experiments indicate that the RUM-tree
is more suitable for concurrent accessing than the R*-tree.
The RUM-tree and the R*-tree have similar throughput when
all transactions are queries. With the increase in the ratio
of updates, the R*-tree suffers lower throughput while the
RUM-tree exhibits higher throughput. The reason is that an
update requires fewer locks than a query in the RUM-tree,
while it is not the case for the R*-tree.

6 Conclusion

For R-tree updates, given an object id and its new value,
the most costly part lies in searching the location in the
R-tree of the objects to be updated. In contrast to former
update approaches, we presented a memo-based approach
to avoid the deletion I/O costs. In the proposed RUM-tree,
object updates are ordered temporally according to the pro-
cessing time. By maintaining the update memo, more than
one entry of an object may coexist in the RUM-tree. The
obsolete entries are deleted lazily and in batch mode. Gar-
bage cleaning is employed to limit the garbage ratio in the
RUM-tree and confine the size of UM. In frequent update sce-
narios, the RUM-tree outperforms significantly other R-tree
variants in the update performance, while yielding similar
search performance. We believe that the memo-based update
approach has potential to support frequent updates in many
other indexing structures, for instances, B-trees, quadtrees
and Grid Files.

123

Y. N. Silva et al.

Acknowledgement This work was partially supported by NSF Grant
Number IIS-0811954.

References

1. Antonin Guttman, A.: R-trees: a dynamic index structure for spatial
searching. In: SIGMOD (1984)

2. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The
R*-tree: an efficient and robust access method for points and rec-
tangles. In: SIGMOD (1990)

3. Brinkhoff, T.: A framework for generating network-based moving
objects. GeoInformatica 6(2), (2002)

4. Chakka, P.V., Everspaugh, A., Patel, J.M.: Indexing large trajectory
data sets with SETI. In: Proceeding of the Conference on Innovative
Data Systems Research, CIDR (2003)

5. Chakrabarti, K., Mehrotra S.: Dynamic granular locking approach
to phantom protection in r-trees. In: ICDE (1998)

6. Cheng, R., Xia, Y., Prabhakar, S., Shah, R.: Change tolerant
indexing for constantly evolving data. In: ICDE (2005)

7. Hadjieleftheriou, M., Kollios G., Tsotras, V.J., Gunopulos, D.: Effi-
cient indexing of spatiotemporal objects. In: EDBT, pp. 251–268,
Prague, March (2002)

8. Kalashnikov, D.V., Prabhakar, S., Hambrusch, S.E.: Main memory
evaluation of monitoring queries over moving objects. Distrib.
Parallel Databases 15(2), 117–135 (2004)

9. Kamel, I., Faloutsos, C.: Hilbert R-tree: an improved R-tree using
fractals. In: VLDB, pp. 500–509 (1994)

10. Kim, K., Cha, S.K., Kwon, K.: Optimizing multidimensional index
trees for main memory access. In: SIGMOD (2001)

11. Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile
objects. In: PODS (1999)

12. Kwon, D., Lee, S., Lee, S.: Indexing the current positions of moving
objects using the lazy update R-tree. In: Mobile Data Management,
MDM (2002)

13. Lee, M.-L., Hsu, W., Jensen, C.S., Teo, K.L.: Supporting Frequent
Updates in R-Trees: A Bottom-Up Approach. In VLDB, (2003)

14. Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodo-
ridis, Y.: R-trees have grown everywhere. In: Technical Report,
Available at http://citeseer.ist.psu.edu/706599.html (2003)

15. Nascimento, M.A., Silva, J.R.O.: Towards historical R-trees. In:
Proceeding of the ACM Symposium on Applied Computing, SAC,
pp. 235–240, February (1998)

16. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in
query processing for moving object trajectories. In: VLDB, pp.
395–406, September (2000)

17. Porkaew, K., Lazaridis, I., Mehrotra, S.: Querying mobile objects in
spatio-temporal databases. In: SSTD, pp. 59–78, Redondo Beach,
July (2001)

18. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch,
S.E.: Query indexing and velocity constrained indexing: scalable
techniques for continuous queries on moving objects. IEEE Trans.
Comput. 51(10), 1124–1140 (2002)

19. Procopiuc, C.M., Agarwal, P.K., Har-Peled, S.: STAR-tree: an effi-
cient self-adjusting index for moving objects. In: Proceeding of the
Workshop on Algorithm Engineering and Experimentation, ALE-
NEX, pp. 178–193, January (2002)

20. Roussopoulos, N., Leifker, D.: Direct spatial search on pictorial
databases using packed r-trees. In: SIGMOD, pp. 17–31 (1985)

21. Saltenis, S., Jensen, C.S.: Indexing of moving objects for location-
based services. In: ICDE (2002)

22. Saltenis, S., Jensen, C.S.: Indexing of now-relative spatio-
bitemporal data. VLDB J. 11(1), 1–16 (2002)

23. Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing
the positions of continuously moving objects. In: SIGMOD (2000)

24. Sellis, T.K.: Nick Roussopoulos, and Christos Faloutsos. The r+-
tree: a dynamic index for multi-dimensional objects. In: VLDB,
pp. 507–518 (1987)

25. Tao, Y., Papadias, D.: Efficient historical R-trees. In: SSDBM, pp.
223–232, July (2001)

26. Tao, Y., Papadias, D.: MV3R-tree: a spatio-temporal access method
for timestamp and interval queries. In: VLDB (2001)

27. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-
temporal access method for predictive queries. In: VLDB (2003)

28. Theodoridis, Y., Vazirgiannis, M., Sellis, T.: Spatio-temporal
indexing for large multimedia applications. In: Proceedings of
the IEEE Conference on Multimedia Computing and Systems,
ICMCS, June (1996)

29. Xiong, X., Aref, W.G.: R-trees with update memos. In: ICDE
(2006)

123

http://citeseer.ist.psu.edu/706599.html

	The RUM-tree: supporting frequent updates in R-treesusing memos
	Abstract
	1 Introduction
	2 R-tree-based indexing and related work
	3 The RUM-tree index
	3.1 The RUM-tree structure
	3.2 Insert, update, delete, and search algorithms
	3.3 Garbage cleaning
	3.4 Crash recovery
	3.5 Concurrency control

	4 Cost analysis
	4.1 Garbage ratio and the size of UM
	4.2 Update cost

	5 Experimental evaluation
	5.1 Properties of the RUM-tree
	5.2 Performance while varying moving distance
	5.3 Performance while varying object extent
	5.4 Performance while varying query size
	5.5 Scalability while varying the number of objects
	5.6 Performance using various datasets
	5.7 Comparison of structure and dynamic properties of trees
	5.8 Log and recovery
	5.9 Throughput under concurrent accesses

	6 Conclusion
	Acknowledgement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

