
Querying Databases by Snapping Blocks

Yasin N. Silva
Arizona State University

Glendale, AZ 85306, USA
Email: ysilva@asu.edu

Jaime Chon
Arizona State University

Glendale, AZ 85306, USA
Email: jchon@asu.edu

Abstract—A key area of focus in recent Computer Science
education research has been block-based programming. In this
approach, program instructions are represented as visual blocks
with shapes that control the way multiple instructions can be com-
bined. Since programs are created by dragging and connecting
blocks, the focus is on the program’s logic rather than its syntax.
In this demonstration we present DBSnap, a system that enables
building database queries, specifically relational algebra queries,
by connecting blocks. A differentiating property of DBSnap is
that it uses a visual tree-based structure to represent queries.
This structure is, in fact, very similar to the intuitive query
trees commonly used by database practitioners and educators.
DBSnap is also highly dynamic, it shows the query result and the
corresponding relational algebra expression as the query is built
and enables the inspection of intermediate query results. This
paper describes DBSnap’s main design elements, its architecture
and implementation guidelines, and the interactive demonstration
scenarios. DBSnap is a publicly available system and aims to have
a transformational effect on database learning.

I. INTRODUCTION

The creation of a computer program requires a logical
specification of the instructions to be executed and a fully
correct syntactical representation of the instructions. This
second component is a common reason of frustration for
programmers, particularly those that are beginners, because
minor syntactical errors prevent the execution of logically
correct programs. Recognizing this limitation of common pro-
gramming environments, the research community on computer
science education has recently focused on the design and study
of block-based programming environments such as Snap! [1],
Scratch [2], Blockly [3], Mindstorm [4], and App Inventor
[5]. In this approach, computer programs are created by
dragging and connecting blocks and consequently the focus
is on the program’s structure and logic instead of its syntax.
Block-based systems have revolutionized the way computer
programming can be taught and have enabled younger students
to learn fundamental programming concepts.

In this demonstration we present DBSnap, a web applica-
tion to build database queries, particularly relational algebra
queries, by snapping blocks. An important feature of DBSnap
is that it uses a tree-based structure to visually represent a
query. Tree-based query representation has been extensively
used by database educators and textbooks because it intuitively
shows the organization of the different operators and the way
intermediate results flow in the query pipeline. DBSnap also
dynamically shows the query result as the query is being
constructed and allows the exploration of intermediate node
results. This paper presents the design and implementation
details of DBSnap, which are aimed to enable other researchers

to extend and customize DBSnap. The study and evaluation of
DBSnap as an educational tool was recently presented in [6].
DBSnap is a publicly available tool and aims to have the same
transformational effect on database learning as other block-
based systems had on traditional programming learning.

The rest of the paper is organized as follows. Section II
presents the design elements of DBSnap. Section III describes
the architecture and implementation details of DBSnap. Sec-
tion IV describes the demonstration scenarios and Section V
concludes the paper.

II. DBSNAP’S DESIGN

As shown in Fig. 1, the main interface components of
DBSnap are: (1) operator palette, (2) dataset palette, (3) query
area, (4) relational algebra panel, (5) query result panel, and
(6) node result panel. To build a query, the user only needs
to drag operator and dataset blocks and connect them in the
query area. As the user builds a query, the query result panel
and the relational algebra panel are automatically updated
with the query result and the corresponding relational algebra
expression, respectively. When the user clicks on any node, the
result of this node appears in the node result panel. This feature
enables the inspection of intermediate results. We describe next
the different components of DBSnap.

A. Dataset Palette

The dataset palette shows the list of all the available
dataset blocks (relations or tables). DBSnap includes an initial
database (University Database) with the following schema:

Students (SID, LName, FName, Level, Age) [100]
Courses (CID, CName) [20]
Professors (PID, LName, FName) [20]
Course_Student (CID, SID) [125]
Course_Professor (CID, PID) [20]

The number at the end of each relation represents the number
of records in that relation. The sample University Database has
a size and complexity that allow building relatively complex
queries while maintaining small query results that can be easily
visualized. Moreover, DBSnap allows importing additional
datasets. This can be done by clicking on the Import Data Set
link at the bottom of the dataset palette. Each dataset block
is a terminal (leaf) node and thus its graphical representation
does not allow connecting blocks underneath it. Dataset blocks
have a distinguishable orange color, a left circular handle to
connect the dataset with its parent node, and a right text area



2

3

User Interface

Components

1. Operator

palette

2. Dataset

palette

3. Query area

4. Relational

algebra panel

5. Query result

panel

6. Node result

panel

1

4

5

6

Fig. 1. DBSnap’s User Interface.

with the name of the relation. The bottom part of the DBSnap
query in Fig. 2.a shows the dataset block Students.

B. Operator Palette

The operator palette contains the set of available operator
blocks. Each supported relational operator is represented as
an operator block with a distinguishing color. As presented in
Fig. 2.a, each operator block has, in general, three visual com-
ponents: (1) top-left: a circular connection handle to connect
the operator with a parent node, (2) top-right: a predicate area
to specify the required operator parameters, and (3) bottom:
one or two connection links to connect this operator with its
operand(s). The shape of DBSnap operator blocks facilitate
block manipulation and query tree construction. Particularly,
the shape of an operator makes it easy to identify missing
predicates and children nodes, and does not allow assigning
more operands than needed. Fig. 2 shows two of the supported
operators. In each sub-figure, the left tree is the DBSnap query
and the right one is the query tree representation commonly
used by database practitioners and in database textbooks,
e.g., [7], [8]. Observe that DBSnap queries closely follow
the intuitive query trees used by database professionals and
educators.

DBSnap supports many relational algebra operators in-
cluding basic operators (e.g., Selection and Projection), set-
based operations (i.e., Union, Intersection, Difference and
Cross Product), Join operators, and useful extensions like
the Grouping operator. We describe next several DBSnap
operators.

• Selection: σθ(R). This operator selects all the records
of relation R that satisfy the predicate θ. Fig. 2.a
shows the use of this operator (σAge>21(Student)).
Observe that the predicate area is used to specify the
selection condition (Age > 21).

(a) Selection

Select

Table Students Students

Age > 21

(b) Natural Join

Courses
Table

Course_

Student
Table Courses Course_

Student

Natural

Join

Age > 21

Connection handle

Predicate area

Connection link

Fig. 2. Some DBSnap Operators.

• Projection: πa1,...,an(R). This operator removes all
the attributes of R not contained in a1, ..., an. The
predicate area in this case stores the list of attributes
(a1, ..., an).

• Cross Product: R×S. This operator pairs each record
of R with each record of S. Since this is a binary
operator, it has two connection links.

• Theta-join (θ-join): R ◃▹θ S. Returns a similar result
as the Cross Product but selecting only the rows that
satisfy the predicate θ.

• Natural Join: R ◃▹ S. This operator is similar to the
θ-join where the predicate θ is the equality of all
the common attributes between R and S. Fig. 2.b
represents Courses ◃▹ Course Student. The implicit
join predicate is Courses.CID=Course Student.CID.

• Grouping: g1,...,gmGf1(a1),...,fk(ak)(R). This opera-
tor groups the records of R forming a group for
each unique occurring permutation of the grouping



Group

Table Course_StudentTable Students

Table Courses

Select

Students Course_Student

Courses

Level<>"Sophomore"

Gmin(age),

max(age)

CID, Level,

CName

Group by: CID, Level, CName
Aggr: min(age), max(age)

Level<>"Sophomore"

Natural

Join

Natural

Join

Group

Table Course_Student

Table Students

Table Courses

Select

Students

Course_Student

Courses

Level<>

"Sophomore"

Gmin(age),

max(age)

CID, Level,

CName

Group by: CID, Level, CName
Aggr: min(age), max(age)

Level<>

"Sophomore"

Natural

Join

Natural

Join

Fig. 3. DBSnap Queries.

attributes g1, ..., gm. For each group, the operator
computes the aggregation functions f1(a1), ..., fk(ak)
where a1, ..., ak are attributes of R and the sup-
ported functions are sum, count, avg, max and min.
By default, count(SID) counts all the occurrences
of SID including duplicates. DBSnap also supports
distinct − count(SID) which counts only distinct
values. DBSnap supports the use of ∗ instead of an at-
tribute name. While count(SID) ignores null values,
count(∗) counts these values too. For convenience,
DBSnap allows renaming the attribute corresponding
to an aggregation function using the keyword “as”.
The predicate area of this operator has two fields: the
top one stores the grouping attributes and the bottom
one the aggregation functions.

• Other set operations. DBSnap also supports common
set operations such as Set Union (R ∪ S), Set Inter-
section (R ∩ S) and Set Difference (R− S).

• Rename: ρS(i1→b1,...,ik→bk)(R). This operator
changes the name of relation R to S and the name
of the attribute at position ij to bj . The top predicate
field of this operator stores the new relation name
and the bottom one specifies the positions and new
attribute names. Alternatively, the operator supports
the direct specification of the old attribute names
instead of their positions.

C. Query Area

The query area is the component where queries can be
created. This area expands as the query grows. A DBSnap
query is specified as a tree of connected dataset and operator
blocks. Representing a query as a tree is a very useful analogy
because it closely represents the way the data is processed
by the different operators and how the results of intermediate
operations are used as the input of other operators.

Fig. 3 shows two DBSnap queries. Next to each query,
the figure includes the common query tree representation used
by database practitioners. The left DBSnap query computes,
for each course and level, the age range of enrolled students.
The query ignores the Sophomore level. The tree-based query
structure and the use of distinctive block colors make it easy to
understand the semantics of a DBSnap query. In this query for
instance, it is easy to recognize that it joins three datasets,

groups the intermediate result and then filters some of the
groups. The relational algebra expression of this query is:

σLevel<>“Sophomore”

(CID,Level,CNameGmin(age),max(age)

((Students ◃▹ Course Student) ◃▹ Courses))

Even in this small query, the relational algebra expression
may be intimidating for non-expert users. DBSnap aims to
simplify the process of building a query by using an intuitive
query structure and by showing the corresponding relational
algebra expression after any change in the query.

An important feature of DBSnap is that it allows rapid
query modification. This feature makes DBSnap an excellent
tool to learn about query transformations and query opti-
mization. Many database systems transform the initial query
plan into several alternative plans using query transformation
rules. The query optimizer selects the query with the lowest
estimated cost for execution. For instance, the right query of
Fig. 3 shows a query that is equivalent to the left one. In
this case, the selection operator has been pushed below the
grouping and join operators. Since the right query executes
the selection earlier, it reduces the number of tuples to be
joined and aggregated and has a potentially smaller cost. Using
DBSnap a user can quickly transform the left query into
the right one. Furthermore, DBSnap supports the side-by-side
specification of both queries.

D. Result Panels

The query result panel and node result panel are located on
the right-hand side of DBSnap’s user interface (see Fig. 1). The
query result panel shows the result of the current query. This
panel gets automatically updated every time the user makes
a change in the query, i.e., adding, removing or updating an
operator. This feature helps the user to refine a query or explore
the effects of certain changes. The node result panel shows the
result of any selected node (which is also highlighted in the
query area). This feature is particularly useful to explore the
data generated by intermediate nodes in complex queries. Both
result panels also allow sorting their content by any attribute.

III. DBSNAP ARCHITECTURE AND IMPLEMENTATION

Two important goals of DBSnap’s implementation were
to maximize its availability and to facilitate its extensibility.



GUI.js

DBBlocks.js

Morphic.js

Dataset and

Operator Blocks
Query Evaluation

Query to Relational

Algebra Translation

Morph WorldMorph

Query Handler

DBSnap.html DBSnap Query

Canvas

Query Result Panel

Node Result Panel

Fig. 4. DBSnap’s Architecture.

To achieve the first goal, we implemented DBSnap as a
web application using only standard internet browser features,
particularly HTML5 and JavaScript. DBSnap does not require
any specialized software or hardware. In fact, DBSnap can
be used with most internet browsers (e.g., Chrome, Firefox,
Internet Explorer, and Safari) and hardware devices (e.g.,
desktops, laptops, tablets, and smartphones). To achieve the
second goal and facilitate the addition of new operators, we
modularized the code following the Model-View-Controller
design pattern (MVC).

Fig. 4 presents DBSnap’s architecture. The system has
four main components: an HTML web page (DBSnap.html)
and three JavaScript libraries (GUI.js, DBBlocks.js, and Mor-
phic.js). DBSnap.html (View) has three container objects: the
DBSnap Query Canvas, which contains the two block palettes
and the query area, and the two result panels, which get popu-
lated with the query and current node results. DBSnap.html
dynamically interacts with GUI.js (Controller) to calculate
the position and size of the HTML containers, support the
manipulation of blocks in the Query Canvas, and display
the query results. DBBlocks.js (Model) maintains the inter-
nal representation of the application (palettes, queries, and
blocks). This component includes the Query Handler module
which maintains an internal tree-based representation of the
current query. The Query Handler module interacts with the
Query Evaluation module to evaluate the current query and
with the Query to Relational Algebra Translation module to
generate the relational algebra expression of the current query.
DBBlocks.js is built on top of the Morphic.js framework,
a JavaScript library developed by Jens Mönig and available
under the GNU license [9]. Morphic.js provides lower-level
classes to handle user input and redrawing of dirty frames,
and enables basic functionality like dragging, dropping, and
connecting blocks. Morphic.js is also used in Snap! [1], a well
known block-based programming application.

IV. DEMONSTRATION SCENARIOS

DBSnap is a publicly available web application [10] that
can be used on a wide array of devices. The demonstration of
DBSnap is aimed to be highly dynamic and will be composed
of two parts. In the first part, we will briefly explain the design
and architecture of the application. We will also introduce
the various operators and show several sample queries using
the University Database presented in Section II. The second
part will be focused on providing a hands-on experience with

DBSnap. We will bring several devices (laptops and tablets)
so that conference attendees can use DBSnap to build various
queries. Attendees will be able to use the built-in University
Database and construct queries like the ones presented in Fig.
3. They will also be able to experiment with various features
of DBSnap like the automatic generation of relational algebra
expressions and the inspection of intermediate results. To show
the use of DBSnap’s feature to import custom datasets, we
will prepare files containing the tables of the TPC-H database
benchmark [11]. After importing these tables, attendees will
be invited to build some of the TPC-H queries.

Given that one of the goals of building DBSnap was to
create a highly intuitive tool to learn database query languages,
we plan to engage in discussion with other database educators
about ways in which the use of DBSnap can be integrated into
database courses.

V. CONCLUSIONS

This paper describes DBSnap, an interactive web applica-
tion that enables building database query trees by snapping
blocks together. A key feature of DBSnap is that it uses
a tree-based representation of queries. This representation is
very similar to the query trees commonly used by database
practitioners and educators. DBSnap is also a highly interactive
tool that shows the query result and the relational algebra
expression while the query is constructed. This paper describes
the design features of DBSnap, presents its architecture and
key implementation details, and describes the demonstration
scenarios.

While DBSnap was originally built as an educational
tool, its approach to constructing queries by dragging and
connecting blocks to form query trees can also be a more
user-friendly alternative to specify queries in many real-world
systems. DBSnap, in fact, could be an alternative to other
graphical query languages, e.g., Query by Example (QBE).

REFERENCES

[1] C. North and B. Shneiderman, “Snap-together visualization: Can users
construct and operate coordinated visualizations?” Int. J. Hum.-Comput.
Stud., vol. 53, no. 5, pp. 715–739, 2000.

[2] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk,
“Programming by choice: Urban youth learning programming with
scratch,” in ACM SIGCSE, 2008.

[3] A. Marron, G. Weiss, and G. Wiener, “A decentralized approach for
programming interactive applications with javascript and blockly,” in
AGERE!, 2012.

[4] S. H. Kim and J. W. Jeon, “Programming lego mindstorms nxt with
visual programming,” in ICCAS, 2007.

[5] D. Wolber, “App inventor and real-world motivation,” in ACM SIGCSE,
2011.

[6] Y. N. Silva and J. Chon, “Dbsnap: Learning database queries by
snapping blocks,” in ACM SIGCSE, 2015.

[7] R. A. Elmasri and S. B. Navathe, Fundamentals of Database Systems,
6th ed. Addison-Wesley, 2010.

[8] A. Silberschatz, H. Korth, and S. Sudarshan, Database Systems Con-
cepts, 6th ed. McGraw-Hill, Inc., 2010.

[9] J. Mönig, “morphic.js - source code,” https://github.com/jmoenig/
morphic.js.

[10] Y. N. Silva and J. Chon, “Dbsnap,” http://www.public.asu.edu/∼ynsilva/
dbsnap.

[11] “Tpc-h version 2.17.0,” http://www.tpc.org/tpch.


