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Abstract. Similarity joins represent a useful operator for data mining,
data analysis and data exploration applications. With the exponential
growth of data to be analyzed, distributed approaches like MapReduce
are required. So far, the state-of-the-art similarity join approaches based
on MapReduce mainly focused on the processing of low-dimensional vec-
tor data. In this paper, we revisit and investigate the performance of dif-
ferent MapReduce-based approximate k-NN similarity join approaches
on Apache Hadoop for large volumes of high-dimensional vector data.
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1 Introduction

The k-NN similarity joins serve as a powerful tool in many domains. In the
data mining and machine learning context, k-NN joins can be employed as a
preprocessing step for classification or cluster analysis. In data exploration and
information retrieval, similarity joins provide a similarity graph with the most
relevant entities for each object in the database. Their applications can be found
for example in the image and video retrieval domain [6, 7], and in network com-
munication analysis and malware detection frameworks [2, 11]. Because data
volumes are often too large to be processed on a single machine (especially for
high-dimensional data), we study the use of the distributed MapReduce environ-
ment [5] on Hadoop3. Hadoop MapReduce is a widely adopted technology and
considered an efficient and scalable solution for distributed big data processing.

Related papers [15, 16, 9] have deeply analyzed advantages, disadvantages and
bottlenecks of distributed MapReduce systems Hadoop and Spark4 [22]. In this
paper, we study similarity join algorithms that were designed and implemented
3 http://hadoop.apache.org/
4 http://spark.apache.org/
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on Apache Hadoop. The comparison considers methods employing data orga-
nization/replication strategies initialized randomly as they enable convenient
application and usage on different domains. Although several studies tackling
similarity joins have been previously published for Hadoop [19, 25], these algo-
rithms focused mainly on data with lower dimensionality. The need of effective
and efficient high-dimensional-data k-NN similarity joins led us to revise avail-
able MapReduce algorithms and integrate further adaptations. In the paper, we
study three different approaches which offer diverse ways of approximate query
processing with a promising trade-off between error and computation time (when
compared to exact k-NN similarity joins).

The main contributions of this paper are revisions and adaptations of all
algorithms for high-dimensional data and thorough experiments. Particularly,
we report interesting findings for high-dimensional data that were not previously
identified. We also discuss implementation difficulties and other modifications
and compare all presented algorithms according to multiple testing scenarios
and demonstrate scalability, competitiveness and suitability of all the solutions
for high-dimensional real data (200, 512, 1000 dimensions).

The paper is structured in the following order. In Section 2, all essential
definitions are presented. Section 3 summarizes all investigated k-NN similarity
join algorithms with revisions. In Section 4, we examine the presented approaches
in multiples experimental evaluations and discuss the results, and finally, in
Section 5, we conclude the paper.

2 Preliminaries

In this section, we present fundamental concepts and basic definitions related to
approximate k-NN similarity joins. All the definitions use the standard notations
[19, 23].

2.1 Similarity model and k-NN joins

In this paper we address the efficiency of k-NN similarity joins of objects oi
modeled by high-dimensional vectors voi ∈ Rn. In the following text, a shorter
notation vi will be used instead of voi . In connection with a metric distance
function δ : Rn × Rn → R+

0 , the tuple M = (Rn, δ) forms a metric space that
serves as a similarity model for retrieval (low distance means high similarity and
vice versa)5.

Let us suppose two sets of objects in a metric space M : database (train)
objects S ⊆ Rn and query (test) objects R ⊆ Rn. The similarity join task is
to find the k nearest neighbors for each query object q ∈ R from the set S
employing a metric function δ. Usually, the Euclidean (L2) metric is employed.
Formally:

kNN(q, S) = {X ⊂ S; |X| = k ∧ ∀xi ∈ X,∀y ∈ S −X : δ(q, xi) ≤ δ(q, y)}
5 Note that the effectiveness of the distance function and feature extraction mapping
from oi to vi is the subject of similarity modeling.
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and the k-NN similarity join is defined as:

R on S = {(q, s)|q ∈ R, s ∈ kNN(q, S)}.

Because of the high computational complexity of similarity joins, we focus on
approximations of joins which can significantly reduce computation costs while
keeping reasonable precision. Formally an approximate k-NN query for an object
q ∈ R is labeled as kNNa(q) and defined as ε-approximation of exact k-NN:

kNNa(q, S) = {X ⊂ S; |X| = k∧

max
xi∈kNN(q,S)

δ(q, xi) ≤ max
xi∈X

δ(q, xi) ≤ ε · max
xi∈kNN(q,S)

δ(q, xi)}

where ε ≥ 1 is an approximation constant. The corresponding approximate
k-NN similarity join is defined as:

R ona S = {(q, s)|q ∈ R, s ∈ kNNa(q, S)},

For high-dimensional vector representations, all the pairwise distances be-
tween dataset vectors tend to be similar and high with respect to the maximal
distance (the effect of high intrinsic dimensionality [23]). Hence, the ε constant
for such datasets and given k would have to be very small to guarantee a mean-
ingful precision with respect to exact search. At the same time, any filtering
method implementing such ε guarantee would result in inefficient (i.e., too ex-
pensive) approximate kNN query processing. Therefore, in this work we do not
consider such guarantees for the compared methods (theoretical limitations of
the guarantees are out of the scope of this paper). In the experiments, we focus
just on the error of the similarity join approximation. The error is measured
as the mean of the approximation errors of particular k-NN queries. The k-NN
query approximation precision (or recall with respect to the exact k-NN search)
is defined as:

precision(k, q, S) =
|kNN(q, S) ∩ kNNa(q, S)|

k

2.2 MapReduce environment

Since data volumes are significantly increasing every day, centralized solutions
are often intractable for large data processing. Memory of a single computer is
becoming insufficient, and CPUs do not provide enough power for query pro-
cessing in reasonable time. Therefore, the need for effective distributed data
processing is emerging.

In this paper, we have adopted the MapReduce [5] paradigm that is often
used for parallel processing of big datasets. The algorithms described in Section
3 are implemented in the Hadoop MapReduce environment which consists of
several components.

Datasets are stored in the Hadoop distributed file system (HDFS), which
is designed to form a big virtual file space to contain data in one place. Data
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files are physically stored on different data nodes across the cluster and are
replicated in multiple copies (protection against a hardware failure or a data node
disconnection). Name nodes manage access to data according to the distance
from a request source to a data node (it finds the closest data node to a request).

In Hadoop, every program is composed of one or more MapReduce jobs. Each
job consists of three main phases: a map phase, a shuffle phase and a reduce
phase. In the map phase, data are loaded from the HDFS file system, split into
fractions and sent to mappers where a fraction of data is parsed, transformed and
prepared for further processing. The output of the map phase are <key, value>
pairs. In the shuffle phase, all <key, value> pairs are grouped and sorted by
the key attribute and all values for a specific key are sent to a target reducer.
Ideally, each reducer receives the same (or similar) number of groups to equally
balance a workload of the job. In the reduce phase all reducers process values
for an obtained key (or multiple keys) and usually perform the main execution
part of the whole job. Finally, all computed results from the reduce phase are
written back to the HDFS.

3 Related k-NN similarity joins

In this paper we study a pivot-based approach for general metric spaces and two
vector space approaches - space filling Z-curve and locality sensitive hashing.

3.1 Pivot-based approach

The original version of this approximate k-NN join algorithm [2] utilizes pivot
space partitioning based on a set of preselected global pivots Pi. This approach
was inspired by the Lu et al. work [12], which focused on exact similarity joins.
The algorithm is composed of two main phases: the preprocessing phase and the
actual k-NN join computation phase.

In the preprocessing phase, both sets of database and query objects (S and
R) are distributed into Voronoi cells Ci using the Voronoi space partitioning
algorithm according to the preselected pivots Pi (a cell Ci is determined by
the pivot Pi). Next, all distances dji from objects oj ∈ S ∪ R to all pivots
Pi (dji = d(oj , Pi)) have to be computed, and for every object oj the nearest
pivot Pn with the distance djn is stored within the oj data record. Also, global
statistics are evaluated for every Voronoi cell Ci such as covering radius, number
of objects oj and total size of all objects oj in the particular cell Ci. At the end
of the preprocessing phase, the Voronoi cells Ci are grouped together into bigger
groups Gl (Gl = ∪i∈l Ci). Every group Gl should contain objects of a similar
total size to properly balance further parallel k-NN join workload.

The second phase performs k-NN join of two sets S and R in a parallel
MapReduce environment (one MapReduce job). Every computing unit (one re-
ducer redl) receives a subset Sl ⊂ S of database objects and Rl ⊂ R of query
objects corresponding to a group Gl precomputed in the previous phase. Be-
cause not all nearest neighbors-valid candidates for query objects ql ∈ Rl may
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be present in a group Gl (especially for query objects near Gl space bound-
aries), the replication heuristic is employed. Database objects on ∈ Sn ∈ Cn

(Sn ⊂ S ∧ ∀on ∈ Sn, on ∈ Cn) from the nearest Voronoi cells Cn ⊂ C are repli-
cated into the group Gl (reducer redl). Specifically, every database object ol ∈ Sl

from a cell Cl is replicated to all cells Cn ⊂ C and corresponding groups Gm ⊂ G
where |Cn| = ReplicationThreshold (constant determining number of replica-
tions), Gm = ∪ Gi: Gi∩Cn 6= ∅ and ∀Px ∈ Cn,∀Py 6∈ Cn : d(Pl, Px) ≤ d(Pl, Py),
Pl ∈ Cl. Additional details of this algorithm can be found in the original paper
[2]. The output of a reducer redl is a set of the k nearest neighbors for every
query object ql ∈ Rl.

An overview of the space partitioning and replication algorithm is depicted
in Figure 1.a.
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Fig. 1: An example of the Voronoi space partitioning and replication of database objects
on ∈ S. The first part a) depicts the replication based on distances between pivots pi.
For the ReplicationThreshold = 2 only the object o3 is replicated to the other group
G1, whereas o1 and o2 have the closest pivot to the corresponding pivot pi (in the cell
ci) in the same group. In the b) scenario for the MaxRecDepth = 2 all three objects
on near groups boundaries are replicated to the other group because the second closest
pivot to the objects on lies in the other group.

Algorithm revision In this paper, we use a slightly modified version of the
previously described algorithm. The main difference is the utilization of a repet-
itive (recursive) Voronoi partitioning inspired by indexing techniques in metric
spaces such as M-Index [17]. Basically, every object oj is identified by a pivot
permutation [3] determined by a set of closest pivots instead of a single clos-
est pivot. The modification influences mainly the preprocessing phase and also
the database objects replication heuristic. The new algorithm is summarized in
Figure 1.b.

We define a new parameter MaxRecDepth which sets a threshold for the
maximum depth of the Voronoi space partitioning. In the preprocessing phase,
for every object oj (oj ∈ S∪R) a set of n distances dji (dji = d(oj , Pi)) is selected
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and stored with the nearest pivots Pj
n ⊂ P where |Pj

n| = MaxRecDepth and
∀x ∈ n, ∀y 6∈ n : djx ≤ djy.

The replication heuristic in the beginning of the second phase utilizes repet-
itive partitioning in a similar way to the original approach but the nearest cells
Cn are not determined by the distance of corresponding pivots but precomputed
in the preprocessing phase. Specifically, every database object ol ∈ Sl from a cell
Cl is replicated to all cells Cn ⊂ C and corresponding groups Gm ⊂ G where
|Cn| =MaxRecDepth, Gm = ∪ Gi: Gi ∩Cn 6= ∅ and ∀Px ∈ Cn : Px ∈ Pl

n (Pl
n

are stored nearest pivots to the object ol).

3.2 Space filling curve approach

Yao et al. [21] proposed the use of space-filling curves for approximate k-NN
computation in relational databases. A space-filling curve is a bijection which
maps an object in n-dimensional space to a one-dimensional value, preserving
original objects locality with high probability. Of these functions, the authors
chose z-order curve, whose value (referenced as z-value) can be computed eas-
ily by interleaving binary representation of coordinate values. When querying
the database, the z-value of the query object is calculated and k database ob-
jects with nearest z-values are returned. Sorting the objects by their z-values in
advance, the querying step can be done efficiently in logarithmic time.

While the z-curve preserves locality of points with high probability, some
nearest neighbors might be omitted. To reach a more precise solution, c inde-
pendent copies of the database are produced, each of them shifted by a random
vector vi ∈ Rn, i ∈ {1 . . . c}; that means, for any object with coordinates vector
p, the result value in copy Ci is equal to p+ vi. For database copy Ci, z-values
of modified objects are computed and sorted in a list Li.

When querying the database, the query object is shifted by each vi as well,
producing a vector of c z-values. For the i-th value, Li is queried and the k nearest
values are taken. Thus, c · k candidates are collected in total, their distance to
the query object is computed and k nearest candidates are returned.

The centralized solution has been adapted for the MapReduce framework and
was originally published in the paper by Zhang et al. [24]. Both the database
and query objects are stored in HDFS. The random vectors and multiple copies
approach is utilized as well. Moreover, to distribute the work among the nodes,
the objects in each copy are split in n partitions, depending on their z-value.
Inside each partition, we take all query objects and find k nearest database
object candidates. Each partition is processed by a separate reducer. Using a
suitable number of partitions and having data equally distributed, the portion
of data for each reducer is small enough to be stored in a node memory.

Every database object belongs to exactly one partition. We must be ensured,
however, that the partition contains all nearest neighbor candidates. That is,
in each partition, a query object with maximum z-value needs k database ob-
jects with higher z-values copied over (if any exist). Analogically for a query
object with minimum z-value. Since the intention is to distribute the objects
equally, the best boundary points would be 1

n ,
2
n , . . . ,

n−1
n quantiles of Li. In
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the MapReduce environment, however, this is expensive to compute: instead,
objects are sampled and depending on their values, approximate quantiles are
determined. The solution uses three MapReduce jobs. The first job, while initial-
izing, produces random vectors and saves them. The mappers compute z-values
for every object and shift, emitting tuples (objectId, shiftId, zValue) and writ-
ing them back to HDFS. In addition, with probability ε, the object is sampled
and the corresponding z-values are sent to the reduce phase. For every shift, a
reducer loads all sampled objects in the memory and, based on the distribution
of z-values, determines the range values for partitions and writes them back to
HDFS for the next step.

In the second job, a mapper takes a previously created tuple and emits a
<key, value> pair for every partition that the object belongs to. A reducer
accepts the data of one of the partitions and loads them in memory. Using the z-
values, it finds the k nearest database objects for each query object. Transforming
z-values of the objects, the coordinates are regained. Distances between a query
object and each candidate are determined using the original metric function d.
The algorithm emits tuples (objectId, candidateId, distance) and writes them
back to HDFS.

For every query object, this approach produces c ·k candidates. The purpose
of the third job is to compare the distances. For each query object, its k closest
candidates are considered as the output of the k-NN join.

Implementation revision The Java source code of the MapReduce solution
was provided by its authors. We modified it and adjusted the data structures to
fit our object representations. For the purposes of high-dimensional data com-
putation, it was important to find a compact way how to represent and serialize
z-values. In the original code, String objects were utilized; we edited the classes
to use BigInteger objects instead.

We also altered the behavior of the reducers used in the second phase. The
original source code caches the objects of a partition in a local (node) file system.
This method is advantageous for large partition sizes. For our data, however, we
found it better to load the objects directly to a node memory. This approach
has the advantage of faster running times.

The original z-curve functions assume integer dimension values. Since our
datasets contain float values, we transformed and rescaled all values to fit integer
structures. Notice this does not change the nearest neighbors sets.

The algorithm itself has not been modified.

3.3 Locality sensitive hashing approach

Locality Sensitive Hashing (LSH) [8, 4] is another technique that has been used
in the context of k-NN Similarity Join algorithms. Specifically, Stupar et al. pro-
posed RankReduce [20], a MapReduce-based approximate algorithm to solve the
k-NN Similarity Join problem using LSH. The key idea behind the RankReduce
approach is to integrate hashing techniques to assign similar objects to similar
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fragments in the distributed file system. This distribution enables an effective
generation of candidate neighbors to identify the k nearest neighbors.

RankReduce is composed of a pre-processing step and a single MapReduce
job. During the pre-processing step, an LSH index is built using a set of j hash
functions of the form ha,B(v) = b(a·v+B)/W c. The evaluation of these functions
on each input record v generates a result vector of length j. Each different value
of this vector represents a bucket of data in the LSH index (containing all the
associated records).W is a tuning parameter and affects the number of generated
buckets. After this step, the algorithm applies the same set of hash functions to
the query points and identifies the subset of buckets that will be used in the
MapReduce job.

The Map function of the MapReduce job receives a subset of records vn ∈ S
and the set of query points R, and computes the distance between the record and
each query point. The Map stage keeps track of the local k-nearest neighbors
of each query point qi. The cleanup subroutine of the Map stage outputs the
local k-nearest neighbors of each query point qi. The Map output has the form
〈(qi, dist(qi, vn)), vn〉.

The Reduce function receives all the local k nearest neighbors identified in
multiple Map nodes and selects the global k nearest neighbors.

Implementation revision Since we could not obtain the source code from
the authors of the original paper, we implemented this algorithm from scratch.
We closely followed the algorithm presented in [20]. However, we made specific
choices during the implementation process. For the distributions of query points
to all the Map nodes, we used the Distributed Cache feature of Hadoop. This
query distribution technique is one of weaker links of the method as it assumes
relatively small number of query objects, all queries are sent to all Mappers and
is not scalable. We would like to address this issue in our future work.

Regarding the dataset, it is not clear in the original paper [20], how general
(non-binary) datasets should be pre-processed to work with the algorithm. In
our experiments, we found that directly using our test datasets would generate
a single bucket. To increase the number of buckets, we pre-processed our dataset
applying the standard normal transformation.

In addition, the pre-processing steps were also implemented using MapRe-
duce. As a result, the overall process is composed of three MapReduce jobs. The
first one gathers statistics for the transformation, the second one transforms the
objects, computes the hash values and filters the objects out and the last one
performs the join. While the MapReduce jobs speed up the pre-processing steps,
there are some issues as well. In the second job, the bucket of each hash value
has to be materialized in memory. Therefore, a larger amount of node memory
is needed. In our future work, we would also like to implement a secondary sort
comparator in the k-NN join reducer to improve the performance.

When utilizing more hashing tables, some database objects are chosen mul-
tiple times. In our measurements, for higher W values the number of processed
database objects almost doubled. Authors in the original paper discussed this
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topic and their conclusion was that it is not worth it to pre-process and filter
unique database data. But, in higher dimensions the similarity computations are
more expensive, and this approach should be reconsidered in future work.

3.4 Exact k-NN similarity join approach

In order to be able to evaluate the performance of approximate methods, an
exact k-NN similarity join was performed. We used the pivot space approach
(Subsection 3.1) with ReplicationThreshold parameter set to the number of
pivots (thus, all database objects were replicated to all reducers) and the filter
parameter explained in the original paper [2] was set to the value 1 (meaning all
Voronoi cells Ci are processed on each reducer).

4 Experimental evaluation

In this section, we experimentally evaluate and compare the presented MapRe-
duce k-NN similarity join algorithms. Main emphasis is put on scalability, pre-
cision and time complexity of all solutions for high-dimensional data. First, we
describe the test datasets and a platform, then we find the best parameters for
all the methods and, finally, we compare the performance of all the approaches
in multiple testing scenarios.

4.1 Description of datasets and test platform

In the experiments, we perform k-NN similarity joins on three vector datasets
with various number of dimensions: 200, 512 and 1000.

The 200 and 1000-dimensional datasets contain histogram vectors which were
formed from a few key features located in HTTPS proxy logs collected by the
Cisco cloud. Features were transformed into vectors using two techniques. The
dataset with 200 dimensions was created by uniform feature mapping into a 4-
dimensional hypercube [10]. In the dataset with 1000 dimensions, each HTTPS
communication feature was assigned to the closest pre-trained Gaussian utiliz-
ing a well known density estimation technique called Gaussian Mixture Model
(GMM) [13]. The result vectors are histograms of occurrences of each Gaussian.
This feature extraction algorithm is also implemented in the MapReduce frame-
work and is described in detail in the paper [2] and is inspired by works [10]
and [14]. The algorithm processes all HTTPS communication features in par-
allel, groups them by a given key and applies a specific feature transformation
strategy to produce final descriptors (vectors).

The last dataset consists of 335944 officially provided key frames from the
TRECVid IACC.3 video dataset [1]. The descriptors for each key frame were
extracted from the last fully connected layer of the pretrained VGG deep neural
network [18] and further reduced to 512 dimensions by the PCA.

All datasets are divided into the database S and query points R. The number
of database objects ranges from about |S| =150 000 to 450 000 objects. The size
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of the query part ranges from about |R| =180 000 to 320 000 objects in every
dataset. Every object contains an ID and a vector of values stored in the space
saving format presented in the paper [2]. The size of datasets vary accordingly
to dimensions from 0.5GB to 3GB of data in text format. The size of datasets
is smaller on purpose because for larger data volumes the LSH method and
exact search could not be computed on our cluster due to limitations discussed
in Section 3. We employ the Euclidean (L2) distance metric as the similarity
measure.

The experiments ran on a virtualized Hadoop 2.6.0 cluster with 20 worker
nodes, each having 6GB RAM and 2 core CPU (Intel(R) Xeon(R) running at
2.20GHz) and were implemented in Java 1.7.

4.2 Fine tuning of experimental methods

In this subsection, we investigate parameters for every tested algorithm. Note
that all time values include not only k-NN similarity join job running time but
also preprocessing time complexity. The parameter tuning tests ran on the 1000-
dimensional dataset and the k value was set to 5.
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In Figure 2, we compare the ReplicationThreshold and MaxRecDepth pa-
rameters for the pivot-based (Voronoi) approach described in Section 3.1. Al-
though lower parameter values run faster, they don’t achieve convincing accu-
racy. For the rest of the experiments, we fixed MaxRecDepth parameter to
the value 10 which promises the best precision and running time trade off. In
comparative experiments, we didn’t employ the ReplicationThreshold at all. In
general, the Voronoi space partitioning approach used 2000 randomly preselected
pivots, Voronoi cells Ci were grouped into 18 distinct groups Gl and the filter
parameter [2] was set to 0.05.

You may notice that total running time for some lower parameter values is
longer than for following higher values, e.g. ReplicationThreshold = 3 and 5 or
MaxRecDepth = 1 and 3. Despite more replications, shorter k-NN evaluation
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time is caused by the effective candidates processing in the actual algorithm
evaluation on each reducer where parent filtering and lower bound filtering tech-
niques in a metric space are utilized [2, 23]. This means the closer k objects to
each query are found quicker (the range of a k-NN search is tighter), more can-
didates are filtered out by the triangle inequality and the total number of actual
distance computations is lower.

Figure 3 displays precision and time complexity for the Z-curve approach
for growing number of random vector shifts presented in Section 3.2. We may
observe that more shifts slightly increases approximation precision, but, on the
other hand, running time is prolonged significantly. In other experiments, we
fixed the number of shifts to value 5. We used 40 partitions, in order to fit the
number of reducers. The Z-curve parameter ε was set to 0.008: greater values
led to uneven sizes of partitions, whereas smaller values caused reducers in the
first phase to die due to the lack of memory (too many objects were sampled).
Notice that in the paper [24], different ε values did not affect the results.

In Figure 4, we examine the influence of the parameterW to the performance
of the LSH method described in Section 3.3. With growingW , both precision and
time complexity increase substantially. For other experiments, we fixedW to the
value 10 in which the precision is acceptable and running time is comparable to
the Z-curve approach. Generally, we used two hash tables (each one containing
20 hashing functions). In the performance tests presented in the paper [20], two
to four hash tables were found to produce efficient results. For our data, using
more values than two did not significantly alter the performance.

4.3 Comparison of methods
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We propose multiple testing scenarios designed to test main aspects of each
k-NN approximate similarity join algorithm.
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dataset: precision

Size-dependent computation Each of the datasets, both train and test vec-
tors, were sampled in order to create subsets containing 1

4 ,
1
2 ,

3
4 and all of the

original data. The methods were tested on each sample. The graphs 5, 6 and
7 show that the running time generally increases with higher dimensionality
and dataset size. Observe that for the LSH method, the running time for 200-
dimensional dataset is higher than the time for 512-dimensional dataset. The
reason for this unexpected behavior is that in the former case few objects were
filtered out in the hash-filtering phase. Surprisingly, the Z-curve method is some-
times slower than the exact algorithm. With the exception of the smallest (0.25)
samples, the pivot space method shows to be the fastest.

As we can see in the figures 8, 9 and 10, the approximation precision of
the methods does not significantly change with the size when each dataset is
considered separately. In all cases, the precision of the pivot space method is
clearly the highest, ranging from 73% for the 200-dimensional dataset up to
88% for the 1000-dimensional dataset. For 1000 dimensions, the precision of the
Z-curve and LSH methods is very similar, fluctuating between 29% and 36%.
On the other hand, on the 200 and 512-dimensional datasets the LSH approach
outperforms the Z-curve in the precision aspect (about 50% to 20%), but runs
substantially longer.

K-dependent computation In the graphs 11 and 12, we investigate the in-
fluence of increasing the parameter k (from the k nearest neighbors) to the
precision and total similarity join time. All experiments were executed on the
1000-dimensional dataset. In general, the precision stays the same or slowly de-
creases, whereas time complexity is gradually increasing, but the difference is
only marginal. The results of the different approximation methods follow trends
identified in the previous graphs. The pivot space approach outperforms other
algorithms in both precision and time aspects, the LSH approach presents only
a slightly better precision compare to the Z-curve, and the Z-curve approach is
the algorithm with the second best execution time. Remember that the LSH ap-
proach requires sending all query objects to all mappers. Maintaining the local
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k nearest neighbors is quite memory demanding. Due to this limitation we were
not able to measure the LSH performance for higher k values on our cluster.
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Fig. 11: k-dependent computation: pre-
cision

2
4

6
8

10

K

tim
e 

[s
ec

*1
00

0]

● ● ● ● ● ● ●

● ● ● ● ●
●

●
● ● ●

●
●

2 4 8 16 32 64 128

Fig. 12: k-dependent computation:
time

4.4 Discussion

In the experiments, three related approximate MapReduce-based k-NN simi-
larity joins on Hadoop were investigated using settings recommended from the
original papers. Note that both Z-curve and LSH related papers used mainly
just low-dimensional datasets during the design of the approaches (30 dimen-
sions in [24], 32 an 64 dimensions in [20]). In the experiments, the pivot-based
approach using the repetitive Voronoi partitioning significantly outperformed
the other two methods in both precision and efficiency. Our hypothesis is that
for high-dimensional data the Z-curve and LSH methods suffer from the random
shifts and hash functions that do not reflect data distributions. We verified this
hypothesis on our synthetic 10-dimensional dataset in which all three methods
provided expected behavior, as presented in the original papers. Note that spe-
cific subsets of the dataset could potentially reside in low-dimensional manifolds.
Hence, finetuning specific parameters of the two methods (number of shifts in
Figure 3 andW in Figure 4) do not provide a significant performance boost (i.e.,
for effective retrieval the computational time is extremely long, even longer than
naive similarity join). In the future, we plan to investigate both Z-curve and LSH
methods more thoroughly and try to design more effective approximate k-NN
similarity join strategies.

On the other hand, the Pivot-based approach uses representatives from the
data distribution and employs pairwise distances to determine data replication
strategies. As demonstrated also by metric access methods for simple k-NN
search [23, 17], it seems that the distance-based approach can be also directly
used as a robust and intuitive method for approximate k-NN similarity joins in
high-dimensional spaces.
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5 Conclusions

In the paper, we have focused on approximate k-NN similarity joins in the
MapReduce environment on Hadoop. Although comparative studies have been
proposed for the considered approaches, the studies focused mainly on low-
dimensional data. According to our findings, the dimensionality affects the con-
clusions about the compared approaches. Two out of three methods previously
tested for low-dimensional data did not perform well under their original recom-
mended design and settings.

In the future, we plan to thoroughly analyze and track the bottlenecks of
all the methods and try to provide a theoretically sound explanation about the
performance limits and approximation errors of all the tested approaches. We
also consider implementing algorithms in other MapReduce framework such as
Spark and observe performance differences. Findings in the very recent paper [9]
promises significant improvements.
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