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ABSTRACT
Cloud enabled systems have become a crucial component
to efficiently process and analyze massive amounts of data.
One of the key data processing and analysis operations is
the Similarity Join, which retrieves all data pairs whose
distances are smaller than a predefined threshold ε. Even
though multiple algorithms and implementation techniques
have been proposed for Similarity Joins, very little work has
addressed the study of Similarity Joins for cloud systems.
This paper focuses on the study, design and implementation
techniques of cloud-based Similarity Joins. We present MR-
SimJoin, a MapReduce based algorithm to efficiently solve
the Similarity Join problem. This algorithm efficiently par-
titions and distributes the data until the subsets are small
enough to be processed in a single node. MRSimJoin is
general enough to be used with data that lies in any met-
ric space, thus it can be used with multiple data types and
distance functions. We present guidelines to implement the
algorithm in Hadoop, an open-source cloud system. The ex-
perimental evaluation of MRSimJoin shows that it has very
good execution time and scalability properties.

Categories and Subject Descriptors
H.2.4 [Database management]: Systems—query process-
ing, parallel databases

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Similarity Join, MapReduce, Hadoop, Metric Space

1. INTRODUCTION
Similarity Join is one of the most useful data processing

and analysis operations. It retrieves all data pairs whose
distances are smaller than a predefined threshold ε. Multi-
ple application scenarios need to perform this operation over
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large amounts of data. Internet companies, for instance, col-
lect massive amounts of data such as content produced by
web crawlers or service logs, and can use similarity queries
to gain valuable understanding of the use of their services,
e.g., identify customers with similar buying patterns, gen-
erate recommendations, perform correlation analysis, etc.
Cloud systems and MapReduce [5], its main framework for
distributed processing, constitute an answer to the require-
ments of processing massive amounts of data in a highly scal-
able and distributed fashion. Cloud systems are composed of
large clusters of commodity machines and are often dynam-
ically scalable, i.e., nodes can be added or removed based on
the workload. The MapReduce framework quickly processes
massive datasets by splitting them into independent chunks
that are processed in parallel. Multiple Similarity Join algo-
rithms have been proposed. They range from approaches for
only in-memory or external memory data to techniques that
make use of database operators to answer Similarity Joins.
Unfortunately, there has not been much work on the study of
this operation on cloud systems. This paper focuses on the
design and implementation of MapReduce-based Similarity
Joins for metric spaces. Our contributions are:

• We present MRSimJoin, an efficient MapReduce-based
Similarity Join algorithm. MRSimJoin extends the
single-node QuickJoin algorithm [9] by adapting it to
the MapReduce framework and integrating grouping,
sorting and parallelization techniques.

• The proposed algorithm is general enough to be used
with any dataset that lies in a metric space. The algo-
rithm can be used with various distance functions and
data types e.g., numerical data, vector data, text, etc.

• We present guidelines to implement the algorithm in
Hadoop [1], a highly used open-source cloud system.

• We thoroughly evaluate the performance and scalabil-
ity properties of the implemented operation with syn-
thetic and real-world data. We show that MRSimJoin
performs significantly better than an adaptation of
the state-of-the-art MapReduce Theta-Join algorithm
[11] (up to 15 times faster). MRSimJoin scales very
well when important parameters like epsilon, data size,
number of nodes, and number of dimensions increase.

The rest of the paper is organized as follows. Section
2 presents the related work. Section 3 describes the MR-
SimJoin algorithm. The guidelines to implement MRSimJoin
in Hadoop are described in Section 4. Section 5 presents the
performance evaluation and Section 6 concludes the paper.



2. RELATED WORK
Most of the work on Similarity Join has considered the

case of non-distributed solutions, e.g., EGO [3] and Quick-
Join [9]. The Quickjoin algorithm [9], which has been shown
to outperform EGO, recursively partitions the data until the
subsets are small enough to be efficiently processed using
a nested loop join. The algorithm makes recursive calls
to process partitions and the windows around the parti-
tions’ boundaries. The MRSimJoin approach presented in
this paper extends the single-node QuickJoin algorithm by
adapting it to the distributed MapReduce framework and
integrating grouping, sorting and parallelization techniques
(physical partitioning and distribution of data in a computer
cluster). Also of importance is the work on Similarity Join
techniques in the context of database systems. Some work
focused on answering Similarity Join queries using standard
database operators [4, 7]. More recently, Similarity Joins
have been studied as first-class database operators [12].
The MapReduce framework was introduced in [5]. The

Map-Reduce-Merge variant [17] extends this framework with
a merge phase after the reduce stage to facilitate the imple-
mentation of operations like join. Map-Join-Reduce [10] is
another MapReduce variant that adds a join stage before
the reduce stage. In this approach, mappers read from in-
put relations, the output of mappers is distributed to joiners
where the actual join task takes place, and the output of
joiners is processed by the reducers. Most of the previous
work on MapReduce-based Joins considers the case of equi-
joins. The two main types of MapReduce-based joins are
Map-side joins (e.g., Map-Merge and Broadcast Join) and
Reduce-side joins (e.g., Repartition join). The Map-Merge
approach [16] has two steps: in the first one, input relations
are partitioned and sorted, and in the second one, mappers
merge the intermediate results. Broadcast Join [2] considers
the case where one of the relations is small enough to be sent
to all mappers and maintained in memory. In the Reparti-
tion join approach [16], the mappers augment each record
with a label that identifies the relations where it comes from.
All the records that have the same join attribute value are
sent to the same reducer. Reducers in turn produce the join
pairs.
Recently, a MapReduce-based approach was proposed to

implement Theta-joins [11]. This previous work proposed
a randomized algorithm that requires some basic statistics
(input cardinality). The approach proposes a model that
partitions the input relations using a matrix that considers
all the combinations of records that would be required to
answer a cross product. The matrix cells are then assigned
to reducers in a way that minimizes job completion time.
A memory-aware variant is also proposed for the common
scenario where partitions do not fit in memory. This previ-
ous work represents the state-of-the-art approach to answer
arbitrary joins in MapReduce.
A related work that also addresses the problem of Simi-

larity Joins in the context of cloud systems is the one pre-
sented in [15]. The work in [15], however, focuses on the
study of a different and more specialized type of Similarity
Join (Set-Similarity Join) which constrains its applicability
to set-based data. The main differences between the work in
[15] and the work in this paper are: (1) we consider the case
of the most extensively used type of Similarity Join (distance
range join), and (2) our approach can be used with data that
lies in any metric space, i.e., our approach can be used with

a wide variety of data types and distance functions.
A demonstration paper that shows the use of MRSimJoin

in several real-world scenarios is presented in [13]. The con-
tributions of this paper that go beyond what was presented
in [13] include: (1) algorithmic details of the different MR-
SimJoin functions (map, reduce, compare), (2) an extensive
evaluation of MRSimJoin’s performance, and (3) additional
key information about MRSimJoin, e.g., how it is affected
by the number of pivots and an expression to compute a
good value for this parameter.

3. THE MRSimJoin ALGORITHM
The MapReduce framework works by dividing the process-

ing task into two phases: map and reduce. The framework
user is required to provide two functions (map and reduce).
These functions have the following general form:

map: (k1,v1) → list(k2,v2)

reduce: (k2,list(v2)) → list(k3,v3)

Multiple map tasks process independent input chunks in
parallel. Each map call is given a pair (k1,v1) and pro-
duces a list of (k2,v2) pairs. The output of the map calls
is transferred to the reduce nodes (shuffle phase). All the
intermediate records with the same intermediate key (k2)
are sent to the same reducer node. At each reduce node, the
received intermediate records are sorted and grouped. Each
formed group is processed in a single reduce call. The pro-
cesses of transferring the map outputs to the reduce nodes,
sorting the records at each reduce node, and grouping these
records are driven by the following functions, respectively:

partition: k2 → partitionNumber

sortCompare: (k21,k22) → {-1, 0, 1}

groupCompare: (k21,k22) → {-1, 0, 1}

The default partition function receives an intermediate
key (k2) as input and generates a partition number based
on a hash value for k2. When the default comparator func-
tions are used, the intermediate records in a reduce node are
sorted by the intermediate key and a group is formed for
each different value.

The Similarity Join (SJ) operation between two datasets
R and S is defined as R ◃▹θε(r,s) S = {⟨r, s⟩|θε(r, s), r ∈
R, s ∈ S}, where θε(r, s) is the SJ predicate (dist(r, s) ≤ ε).
In general, the input data can be given in one or multiple
distributed files. Each input data file contains a sequence of
key-value records of the form (id, (id, elem)) where id con-
tains two components: the id of the dataset or relation this
record belongs to (id.relID) and the id of the record in the
relation (id.uniqueKey).

The MRSimJoin algorithm iteratively partitions the in-
put data into smaller partitions until each partition is small
enough to be efficiently processed by a single-node Similar-
ity Join routine, i.e., the entire partition can be stored in
memory in a single machine. The overall process is divided
into a sequence of rounds. The initial round partitions the
input data while any subsequent round partitions the data
of a previously generated partition. Each round corresponds
to a MapReduce job. The input and output of each job is
read from or written to the distributed file system. The out-
put of a round includes: (1) result pairs (links) for the small
partitions that were processed in a single-node, and (2) in-
termediate data for the partitions that will require further
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Figure 1: Partitioning a base partition.
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Figure 2: Partitioning a window-pair partition.

partitioning. The main routine of MRSimJoin executes the
required rounds until all the input and intermediate data is
processed.
Data partitioning is performed using a set of K pivots,

i.e., a random subset of the data records to be partitioned.
The process generates two types of partitions: base parti-
tions and window-pair partitions. A base partition contains
all the records that are closer to a given pivot than to any
other pivot. A window-pair partition contains the records
in the boundary between two base partitions. In general,
the window-pair records should be a superset of the records
whose distance to the hyperplane that separates the base
partitions is at most ε. Unfortunately, this hyperplane does
not always explicitly exist in a metric space. Instead, the hy-
perplane is implicit and known as a generalized hyperplane.
Since the distance of a record t to the generalized hyper-
plane between two partitions with pivots P0 and P1 cannot
always be computed exactly, a lower bound is used [8]:

gen hyperplane dist(t, P0, P1) = (dist(t, P0)−dist(t, P1))/2

This distance is replaced with an exact distance if this can
be computed, e.g., in Euclidean spaces.
Processing the window-pair partitions guarantees the iden-

tification of the links between records that belong to differ-
ent base partitions. A round that further repartitions a base
partition or the initial input data is referred to as a base par-
tition round, a round that repartitions a window-pair parti-
tion is referred to as a window-pair partition round. At the
logical level, the data partitioning in MRSimJoin is similar

Algorithm 1 MRSimJoin(inDir, outDir, numPiv, eps,
memT )

Input: inDir (input directory with the records of datasets
R and S), outDir (output directory), numPiv (number
of pivots), eps (epsilon), memT (memory threshold)

Output: outDir contains all the results of the Similarity
Join operation R ◃▹θε(r,s) S

1. intermDir ← outDir + “/intermediate”
2. roundNum← 0
3. while true do
4. if roundNum = 0 then
5. job inDir ← inDir
6. else
7. job inDir ← GetUnprocessedDir(intermDir)
8. end if
9. if job inDir = null then

10. break
11. end if
12. pivots← GeneratePivots(job inDir, numPiv)
13. if isBaseRound(job inDir) then
14. MR Job(Map base, Reduce base, Partition base,

Compare base, job inDir, outDir, pivots,
numPiv, eps, memT , roundNum)

15. else
16. MR Job(Map windowPair, Reduce windowPair,

Partition windowPair, Compare windowPair,
job inDir, outDir, pivots, numPiv, eps, memT ,
roundNum)

17. end if
18. roundNum++
19. if roundNum > 0 then
20. RenameFromIntermToProcessed(job inDir)
21. end if
22. end while

to the one in the Quickjoin algorithm [9]. The core differ-
ence, however, is that in MRSimJoin the partitioning of the
data, the generation of the result links, and the storage of
intermediate results is performed in a fully distributed and
parallel manner. Fig. 1 represents the repartitioning of a
base partition. In this case, the result of the Similarity Join
operation on the dataset T is the union of the links in P0
and P1, and the links in P0 P1 where one element belongs
to window A and the other one to window B. We refer to
this last type of links as window links. Fig. 2 represents the
repartitioning of the window-pair partition P0 P1 of Fig. 1.
In this case, the set of window links in P0 P1 is the union
of the window links in Q0, Q1, Q0 Q1{1} and Q0 Q1{2}.
Note that windows C and F do not form a window-pair par-
tition since their window links are a subset of the links in
Q0. Similarly, the window links between E and D are a
subset of the links in Q1. MRSimJoin inherits correctness
from the Quickjoin algorithm.

The remaining part of this section presents the algorith-
mic details of the main MRSimJoin routine, and the base
partition and window-pair partition rounds.

3.1 The Main Algorithm
The main routine of MRSimJoin is presented in Algo-

rithm 1. The routine uses an intermediate directory (line 1)
to store the partitions that will need further repartitioning.
Each iteration of the while loop (lines 3 to 22) corresponds



Algorithm 2 Map base()

Input: (k1, v1). k1 = id, v1 = (id, elem)
Output: list(k2, v2). k2 = (part, win), v2 =

(id, elem, part)
1. p← GetClosestPivotIndx(elem, pivots)
2. output ((p,−1), (id, elem,−1))
3. for i = 0→ numPiv − 1 do
4. if i ̸= p then
5. if (dist(elem, pivots[i])−dist(elem, pivots[p]))/2 ≤

eps then
6. output ((p, i), (id, elem, p))
7. end if
8. end if
9. end for
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Figure 3: Output of Map function - base round.

to one round and executes a MapReduce job. In each round,
the initial input data or a previously generated partition is
repartitioned. If a newly generated partition is small enough
to be processed in a single node, the Similarity Join links are
obtained running a single-node Similarity Join algorithm. In
our implementation we use Quickjoin [9]. Larger partitions
are stored as intermediate data for further processing.
For each round, the routine sets the values of the job input

directory (lines 4 to 8) and randomly selects numPivots piv-
ots from this directory (line 12). Then the routine executes
a base partition MapReduce job (line 14) or a window-pair
partition MapReduce job (line 16) based on the type of the
job input directory. The routine MR Job sends the pivots to
all mappers as explained in Section 4 and starts a MapRe-
duce job that will use the provided map, reduce, partition
and compare functions. The partition function will be used
to replace the default partition function. The compare func-
tion will be used to replace the default sortCompare and
groupCompare functions.

3.2 Base Partition Round
A base partition round processes the initial input data

or a base partition previously generated by a base partition
round. The goal of a base partition MapReduce job is to
partition its input data and produce: (1) the result links for
partitions that are small enough to be processed in a single
node, and (2) intermediate data for partitions that require
further processing.

Algorithm 3 Partition base()

Input: k2. k2 = (part, win)
Output: k2’s partition number
1. if win = −1 then // base partition
2. partition← (part× C1) mod NUMPARTITIONS
3. else // window-pair partition
4. minV al← min(part, win)
5. maxV al← max(part, win)
6. partition ← (minV al × C2 + maxV al × C3) mod

NUMPARTITIONS
7. end if

Map base, the map function for the base partition rounds,
is presented in Algorithm 2. We use the value -1 when a
given parameter is not applicable or will not be needed in
the future. The MapReduce framework divides the job input
data into chunks and creates map tasks in multiple nodes
to process them. Each map task is called multiple times
and each call executes the Map base function for a given
record (id, (id, elem)) of the input data. The Map base
function identifies the closest pivot p to elem (line 1). The
function then outputs one intermediate key-value pair of
the form ((p,−1), (id, elem,−1)) for the base partition that
elem belongs to (line 2) and one key-value pair of the form
((p, i), (id, elem, p)) for each window-pair partition (corre-
sponding to pivots p and i) that elem belongs to (lines 3 to
9). Fig. 3 shows an example of the intermediate key-value
pairs generated by the map tasks.

The MapReduce framework partitions the intermediate
data generated by map tasks. This partitioning is per-
formed calling the Partition base function presented in Al-
gorithm 3. Partition base receives an intermediate key, i.e.,
k2 = (part, win), as input and generates the correspond-
ing partition number. C1 − C3 are constant prime num-
bers and NUMPARTITIONS is the maximum number of
partitions set by the MapReduce framework. The partition
number for an intermediate key that corresponds to a base
partition is computed using a hash function on part (line
2). When the key corresponds to a window-pair partition,
the partition number is computed using a hash function on
min(part, win) and max(part, win) (line 6). This last hash
function will generate the same partition number for all in-
termediate records of a window-pair partition independently
of the specific window they belong to.

After identifying the partition numbers of intermediate
records, the shuffle phase of the MapReduce job sends the
intermediate records to their corresponding reduce nodes.
The intermediate records received at each reduce node are
sorted and grouped using the Compare base function pre-
sented in Algorithm 4. The main goal of the Compare base
function is to group the intermediate records that belong
to the same partition. The function establishes the order
of partitions shown in Fig. 4.a. Base partitions have lower
order than window-pair partitions. Multiple base partitions
are ordered based on their pivot indices. Multiple window-
pair partitions are ordered based on the two associated pivot
indices of each partition. Fig. 4.b shows the order of parti-
tions generated by Compare base for the scenario with two
pivots presented in Fig. 3. Fig. 4.c shows the order of
partitions for the case of a base round with three pivots.

After generating the groups in a reduce node, the MapRe-
duce framework calls the reduce function Reduce base once



Algorithm 4 Compare base()

Input: k21, k22. k21 = (part1, win1), k22 = (part2, win2)
Output: 0 (k21 and k22 belong to the same group), −1

(group number of k21 < group number of k22), or +1
(group number k21 > group number of k22)

1. if (win1 = −1) ∧ (win2 = −1) then // basePart-
basePart

2. if (part1 = part2) then
3. return 0
4. else
5. return (part1 < part2)?− 1 : +1
6. end if
7. else if (win1 = −1) ∧ (win2 ̸= −1) then // basePart-

winPart
8. return -1
9. else if (win1 ̸= −1) ∧ (win2 = −1) then // winPart-

basePart
10. return +1
11. else // (win1 ̸= −1) ∧ (win2 ̸= −1), winPart-winPart
12. min1,max1 ← min(part1, win1),max(part1, win1)
13. min2,max2 ← min(part2, win2),max(part2, win2)
14. if (min1 = min2)∧(max1 = max2) then // elements

belong to the same window-pair
15. return 0
16. else // elements do not belong to the same window-

pair
17. if min1 = min2 then
18. return (max1 < max2)?− 1 : +1
19. else
20. return (min1 < min2)?− 1 : +1
21. end if
22. end if
23. end if

for each group. This function is presented in Algorithm 5.
The function receives as input the key-value pair (k2, v2List).
k2 is the intermediate key of one of the records of the group
being processed and v2List is the list of values of all the
records of the group. If the size of the list is small enough to
be processed in a single node, the algorithm calls a single-
node SJ routine, i.e., InMemorySimJoin, to get the links in
the current partition (lines 1 to 2). Otherwise all the records
of the group are stored in an intermediate directory for fur-
ther partitioning. If the current group is a base partition,
the algorithm stores its records in a directory that will be
processed in a future base partition round (lines 4 to 7).
Likewise, the records of a window-pair partition are stored
in a directory that will be processed in a future window-pair
partition round (lines 8 to 12). In the scenario represented
in Fig. 3, the MapReduce framework calls the Reduce base
function for each partition of Fig. 4.b: P0, P1 and P0 P1.

3.3 Window-pair Partition Round
A window-pair partition round processes a window-pair

partition generated by a base round or any partition gener-
ated by a window-pair round. Like base partition rounds,
window-pair partition rounds generate result links and in-
termediate data. However, the links generated in a window-
pair round are window links, i.e., links between records of
different previous partitions. A window-pair round uses
the functions Map windowPair, Reduce windowPair, Parti-
tion windowPair and Compare windowPair in a similar way

Algorithm 5 Reduce base()

Input: (k2, v2List). k2 = (kPart, kWin), v2List =
list(id, elem, part)

Output: SJ matches or intermediate data. Intermediate
data = list(k3, v3). k3 = id, v3 = (id, elem[, part])

1. if sizeInBytes(v2List) ≤ memT then
2. InMemorySimJoin(v2List, outDir, eps)
3. else
4. if kWin = −1 then
5. for each element e of v2List do
6. output (e.id, (e.id, e.elem)) to outDir/

intermediate/B ⟨roundNum⟩ ⟨kPart⟩
7. end for
8. else
9. for each element e of v2List do

10. output (e.id, (e.id, e.elem, e.part)) to outDir/
intermediate/W ⟨roundNum⟩ ⟨kPart⟩ ⟨kWin⟩

11. end for
12. end if
13. end if
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Figure 4: Group formation in a base round.

their counterparts are used in a base partition round. This
section explains these functions highlighting the differences.
Additional details appear in a technical report [14].

Like Map base, Map windowPair outputs intermediate re-
cords for the base and window-pair partitions that a record
belongs to. The difference is in the format of the records.
The format of the input key-value pair, i.e., k1, v1, is: k1 =
id, v1 = (id, elem, prevPart), and the format of the in-
termediate key-value pairs, i.e., k2, v2, is: k2=(part, win,
prevPart), v2=(id, elem, part, prevPart). The informa-
tion of the previous partition of a record is maintained to
identify the new window-pair partitions that the record be-
longs to. Fig. 5 shows an example of the generated records.

Partition windowPair is similar to Partition base but re-
ceives an intermediate key of the form k2 = (part, win,
prevPart) and distinguishes between the two window-pair
partitions of any pair of pivots. In the scenario of Fig. 5,
Partition windowPair generates the same partition number
for all the intermediate keys that correspond to partition
Q0 Q1{1}. The number at the end of a window-pair parti-
tion name is referenced as the window-pair sequence.

Compare windowPair groups all the records that belong
to the same partition establishing the order of partitions
shown in Fig. 6.a. The algorithm considers all the possible
combinations of the intermediate keys. All the cases are
processed as in Compare base with the exception of the case
where both keys belong to window-pair partitions. In this
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Figure 5: Output of Map function - window-pair
round.
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Figure 6: Group formation in a window-pair round.

case, Compare windowPair orders them based on the tuple
(minimum pivot index, maximum pivot index, window-pair
sequence) using lexicographical order. Fig. 6.b shows the
order of partitions generated by Compare windowPair for
the scenario with two pivots presented in Fig. 5. Fig. 6.c
shows the order of partitions for the case of a window-pair
round with three pivots.
Reduce windowPair is similar to Reduce base, but in this

case, all partitions that need further processing are set to
be repartitioned by a future window-pair partition round.
This is the case because the links generated in a window-
pair round or in any of its generated partitions should be
window links. In the scenario of Fig. 5, the MapReduce
framework calls the Reduce windowPair function for each
partition of Fig. 6.b: Q0, Q1, Q0 Q1{1} and Q0 Q1{2}.

4. IMPLEMENTATION IN HADOOP
The MRSimJoin algorithm is generic enough to be imple-

mented in any MapReduce framework. This section presents
additional guidelines for its implementation on Hadoop [1].

Distribution of atomic parameters. MR Job sends the
atomic parameters, i.e., outDir, numPiv, eps and memT ,
to every node that will be used in the MapReduce job. This
is done using Hadoop’s job configuration jobConf object.

Distribution of pivots. MR Job sends the pivots to
every node that executes map tasks. This is done using
DistributedCache, a facility that allows the efficient distri-
bution of application-specific, large, read-only files.

Renaming directories. The main MRSimJoin routine
renames a directory to flag it as already processed. This
is done using the rename method of Hadoop’s FileSystem
class. The method will change the directory path in the
distributed file system without physically moving its data.

5. PERFORMANCE EVALUATION

5.1 Test Configuration
We implemented MRSimJoin using Hadoop 0.20.2 and

performed the experiments using a Hadoop cluster running
on the Amazon Elastic Compute Cloud (EC2). Unless oth-
erwise stated, we used a cluster of 10 nodes (1 master + 9
worker nodes) with the following specifications: 15 GB of
memory, 4 virtual cores with 2 EC2 Compute Units each,
1,690 GB of local instance storage, 64-bit platform. We set
the block size of the distributed systems to 64 MB and the
total number of reducers to: 0.95×⟨no. worker nodes⟩×⟨max
reduce tasks per node⟩. We use the following datasets:

SynthData . This is a synthetic vector dataset (up to
16D). The components of each vector are randomly gener-
ated numbers in the range [0 - 1,000]. The dataset for scale
factor 1 (SF1) contains 5 million records (1.3 GB).

ColorData . This dataset contains 9D feature vectors ex-
tracted from a Corel image collection [6]. The vector com-
ponents are in the range [-4.8 - 4.4]. The original dataset
contains 68,040 records. The SF1 dataset contains 5 million
records (390 MB) and was generated following the same pro-
cess to generate datasets for higher SFs.

The datasets for SF greater than 1 were generated in
such a way that the number of links of any SJ operation
in SFN are N times the number of links of the operation in
SF1. Specifically, the datasets for higher SFs were obtained
adding shifted copies of the SF1 dataset such that the sep-
aration between the region of new vectors and the region
of previous vectors is greater than the maximum value of ε
used in our tests. Half of the records of each dataset belong
to R and the remaining ones to S. We use the Euclidean dis-
tance with both datasets. The available memory to perform
the in-memory SJ algorithm (QuickJoin) was 32 MB.

We compare the performance of MRSimJoin with the one
of MRThetaJoin, an adaptation of the memory-aware 1-
Bucket-Theta algorithm proposed in [11] that uses the single-
node QuickJoin algorithm [9] in the reduce function. We did
not include the execution time of MRThetaJoin when the al-
gorithm took a relatively long time (more than 3 hours).

5.2 Performance Evaluation with SynthData
Increasing Scale Factor . Fig. 7 compares the way

MRSimJoin and MRThetaJoin scale when the data size in-
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creases (SF1-SF5). This experiment uses 8D vectors and a
value of epsilon of 1.5% of the maximum possible distance.
The core results in this figure is that MRSimJoin performs
and scales significantly better than MRThetaJoin. The ex-
ecution time of MRThetaJoin grows from being 2.4 times
the one of MRSimJoin for SF=1 to 11.4 times for SF=3.
The execution time of MRThetaJoin is significantly higher
than that of MRSimJoin because the total size of all the
partitions of MRThetaJoin is significantly larger than that
of MRSimJoin.
Increasing Epsilon . Fig. 8 shows how the execution

time of MRSimJoin and MRThetaJoin increase when epsilon
increases (0.5%-4.0%). The performance of MRSimJoin is
better than the one of MRThetaJoin for all the values of ep-
silon. Specifically, the execution time of MRThetaJoin is be-
tween 1.5 to 3 times the one of MRSimJoin. We can also ob-
serve that, in general, the execution time of both algorithms
grows slowly when epsilon grows. The increase in execution
time is due to a higher number of distance computations
in both algorithms and slightly larger sizes of window-pair
partitions in the case of MRSimJoin.
Increasing Number of Dimensions. The execution

time of MRSimJoin and MRThetaJoin for several numbers
of dimensions (4D-10D) is presented in Fig. 9. The figure
shows that MRSimJoin performs better than MRThetaJoin
for all the numbers of dimensions considered. The execution
time of MRThetaJoin is 20% higher than that of MRSimJoin
for 4D and 200% higher for 10D. Observe also that, in gen-
eral, the execution time of both algorithms decreases when
the dimensionality increases. This is the case because the
dataset gets more sparse when the number of dimensions
increases (we maintain a constant number of tuples). Con-
sequently, the number of records in the output decreases
significantly in higher dimensions. The output size is about
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46 million for 4D and less than 100 records for 10D.
Increasing Number of Pivots. The execution time and

number of rounds for MRSimJoin, as the number of pivots
increases, is presented in Fig. 10. The figure shows that
smaller number of pivots generate higher number of rounds.
We also observe that, in general, the execution time de-
creases when the number of rounds decreases. We found
that in most of the experiments presented in this section,
the best execution time is achieved using a single round. To
compute the number of pivots (P ) that will generate a sin-
gle round for values of epsilon smaller than 25%, we can use
the fact that the space needed for the in-memory QuickJoin
algorithm is about twice the size of the input data [9]. Thus,
to ensure that the average MRSimJoin base partition (and
window-pair partition) can be solved using the in-memory
QuickJoin we need: P = 2× k ×D/T , where D is the total
input size, T is the available memory for QuickJoin, and k
is a factor that compensates the effect of data skewness on
the size of partitions (we used k = 2). Using this expres-
sion, the value of P for this experiment is 166. This value
of P generates a single round and an execution time that is
only 8% higher than the best execution time (obtained with
P=125).

5.3 Performance Evaluation with ColorData
Increasing Scale Factor . Fig. 11 compares the way

MRSimJoin and MRThetaJoin scale when the data size in-
creases. The results for ColorData are similar to the ones we
found for the case of synthetic vector data. The execution
time of MRThetaJoin grows from being 1.6 times of that of
MRSimJoin for SF1 to 13.3 times for SF4.

Increasing Epsilon . Fig. 12 shows how the execution
times of MRSimJoin and MRThetaJoin increase when ep-
silon increases. The results of this test are also inline with
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the ones of the test with SynthData. The execution times of
both algorithms grow slowly and in all cases the execution
time of MRSimJoin is about 60% of that of MRThetaJoin.
Increasing Number of Nodes and Scale Factor . One

of the goals of cloud-based operations is to scale efficiently
when the number of nodes and the data size increase propor-
tionally. Ideally, the execution time should remain constant.
Fig. 13 shows the execution time of MRSimJoin and MR-
ThetaJoin when the data size and the number of nodes in-
crease from (SF1, 2 nodes) to (SF5, 10 nodes). MRSimJoin
follows the ideal execution time much more closely than MR-
ThetaJoin. MRSimJoin’s execution time for (SF5, 10) is 2.8
times the one for (SF1, 2). MRThetaJoin’s execution time
for (SF5, 10) is 9.8 times the one for (SF1, 2).

6. CONCLUSIONS
We present MRSimJoin, a MapReduce-based algorithm

to efficiently solve the Similarity Join problem. MRSimJoin
iteratively partitions the data until the partitions are small

enough to be efficiently processed in a single node. Each
iteration executes a MapReduce job that processes the gen-
erated partitions in parallel. The proposed algorithm can be
used with any dataset that lies in a metric space. We imple-
mented MRSimJoin using the Hadoop MapReduce frame-
work. An extensive performance evaluation of MRSimJoin
with synthetic and real-world data shows that it scales very
well when important parameters increase. Furthermore, we
show that MRSimJoin performs significantly better than an
adaptation of the state-of-the-art MapReduce-based algo-
rithm to answer arbitrary joins.
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