
Integrating Big Data into the Computing Curricula

Yasin N. Silva
Arizona State University

ysilva@asu.edu

Suzanne W. Dietrich
Arizona State University
dietrich@asu.edu

Jason M. Reed
Arizona State University
jmreed3@asu.edu

Lisa M. Tsosie
Arizona State University
lmtsosi1@asu.edu

ABSTRACT
An important recent technological development in computer
science is the availability of highly distributed and scalable
systems to process Big Data, i.e., datasets with high vol-
ume, velocity and variety. Given the extensive and effective
use of systems incorporating Big Data in many application
scenarios, these systems have become a key component in
the broad landscape of database systems. This fact creates
the need to integrate the study of Big Data Management
Systems as part of the computing curricula. This paper
presents well-structured guidelines to perform this integra-
tion by describing the important types of Big Data systems
and demonstrating how each type of system can be inte-
grated into the curriculum. A key contribution of this pa-
per is the description of a wide array of course resources,
e.g., virtual machines, sample projects, and in-class exer-
cises, and how these resources support the learning outcomes
and enable a hands-on experience with Big Data technolo-
gies.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Design, Experimentation

Keywords
Databases curricula, big data management systems

1. INTRODUCTION
The development and extensive use of highly distributed

and scalable systems to process Big Data is widely consid-
ered as one of the recent key technological developments in
computer science [14, 10, 18]. These systems, here called Big
Data Management Systems (BDMSs), have been success-
fully used in many application scenarios, e.g., scientific data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE ’14 Atlanta, Georgia USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

analysis, social media data mining, recommendation sys-
tems, and correlation analysis on web service logs. BDMSs
are typically composed of large clusters of commodity ma-
chines and are often dynamically scalable, i.e., nodes can
be added or removed based on the workload. Examples of
such systems are: MapReduce [11], Hadoop [4], HBase [5],
and VoltDB [19]. The importance of BDMSs in the current
landscape of database systems creates the need to integrate
their study as part of the computing curricula, particularly
as part of database or data management courses. This pa-
per presents multiple guidelines to perform this integration.
The main contributions of the paper are:

• The identification of three important types of BDMSs
and the description of their core concepts, taxonomy,
sample systems, and guidelines about when to use them.

• Guidelines to integrate each type of BDMS as a course
unit and the description of the learning objectives.

• A detailed description of class resources for each unit
to enable a hands-on experience with BDMSs. These
resources include virtual machines, data generators,
sample programs, projects, and in-class exercises.

• Files of all the resources made available to instructors.
The goal is to enable instructors to use and extend
these resources based on their specific needs.

The rest of the paper is organized as follows. Section
2 describes three important types of BDMSs: MapReduce,
NoSQL, and NewSQL. Sections 3, 4, and 5 present the de-
tails of how each type of BDMS can be introduced as a learn-
ing unit. These sections describe many class resources and
how they support the learning outcomes. These resources
will be made available in [6]. Section 6 presents a discussion
of various facets of integrating the proposed units into the
computer science curricula. Section 7 concludes the paper.

2. BIG DATA LEARNING UNITS
While the area of BDMSs is relatively recent (the foun-

dational MapReduce paper [11] was published in 2004), it
has quickly developed and there are now dozens of BDMS-
related open-source and commercial products. One of the
first challenges for computer science educators is to organize
these different technologies and products into well-defined
learning units to be included into the computing curricula.
The authors propose the following units, where each unit
corresponds to a core type of BDMS:

• MapReduce. It is widely considered to be one of
the core programming models for Big Data processing.
MapReduce started the wave of BDMS systems. It
enables building highly distributed programs that run
on failure-tolerant and scalable clusters of commodity
machines. Some examples of MapReduce implemen-
tations are: Apache Hadoop [4], Google MapReduce
[11], and Microsoft’s Dryad [13].

• NoSQL. This type of BDMS comprises data stores
that have been designed to provide higher scalability
and availability than conventional relational databases.
Many NoSQL systems do not support the SQL query
language and implement a simplified transaction and
consistency model. Some examples of NoSQL data
stores are: Apache Cassandra [3], Google’s BigTable
[7], MongoDB [2], and Apache HBase [5].

• NewSQL. This type of BDMS aims to have the same
levels of scalability and availability of NoSQL systems
but still maintains the ACID properties (Atomicity,
Consistency, Isolation, Durability) and SQL query lan-
guage of traditional relational databases. Some exam-
ples of NewSQL systems are: VoltDB [19], NuoDB
[16], Google Spanner [9], and Clustrix [8].

As discussed in Section 6, the proposed units can be in-
tegrated into introductory and advanced database and dis-
tributed system courses.
In general, the student learning outcomes of these units

are that students are able to:

• recognize the key properties, strengths and limitations
of each type of BDMS (LO1),

• build applications using specific instances of each type
of BDMS (LO2), and

• understand when to use each type of BDMS (LO3).

3. DATA PROCESSING WITH MapReduce

3.1 The MapReduce Framework
MapReduce is an extensively used programming frame-

work for processing large data. MapReduce jobs run on
clusters of commodity machines that are dynamically scal-
able. The MapReduce framework quickly processes massive
datasets by splitting them into independent chunks that are
processed in parallel. The framework works by dividing the
processing task into two main phases: map and reduce. The
framework user is required to provide two functions (map
and reduce) with the following general form:

map: (k1,v1) → list(k2,v2)

reduce: (k2,list(v2)) → list(k3,v3)

Multiple map tasks process independent input chunks in
parallel. Eachmap call is given a key-value pair (k1,v1) and
produces a list of (k2,v2) pairs. The output of themap calls
is transferred to the reduce nodes (shuffle phase). All the
intermediate records with the same intermediate key (k2)

are sent to the same reducer node. At each reduce node, the
received intermediate records are sorted and grouped (all
the intermediate records with the same key form a single
group). Each group is processed in a single reduce call.

Algorithm WordCount

Map (line_number, line_contents)

 for each word in line_contents

 emit(word, 1)

Reduce (word, values[])

 sum = 0

 for each value in values

 sum = sum + value

 emit(word, sum)

Figure 1: MapReduce algorithm of WordCount.

3.2 MapReduce Learning Resources
A popular open-source implementation of the MapReduce

framework available to use in support of hands-on in-class
exercises and project assignments is Apache Hadoop [4]. Un-
fortunately, due to the nature of the MapReduce framework,
a computer cluster would be needed to directly enable such
interaction. Many institutions, however, do not have such
clusters available for teaching. Another option is the use
of Hadoop’s pseudo-distributed mode which allows running
MapReduce jobs on a single node where each Hadoop dae-
mon runs on a different Java process. This approach, how-
ever, still requires a significant installation and configuration
effort. One solution that the authors utilize and contribute
as part of the resources in [6] is the development of a vir-
tual machine (VM) with all the required packages already
installed and configured. This VM has the following compo-
nents: (1) Linux as the operating system, (2) Hadoop 1.0.4
using pseudo-distributed mode (this includes the Hadoop
MapReduce programming framework and the Hadoop dis-
tributed file system - HDFS), (3) the Eclipse development
environment and the Hadoop Eclipse plug-in [1], (4) data
generators and sample datasets, and (5) source code of mul-
tiple sample MapReduce programs.

3.2.1 Data Generators and Datasets
The MapReduce programs that will be presented in the

next sections make use of two datasets: MobyShakespeare
and MStation. MobyShakespeare contains the text of the
complete unabridged works of Shakespeare [17]. MStation,
a synthetic dataset prepared by the authors, contains mete-
orological station data. Each line of the MStation dataset
contains the following tab-separated attributes: station ID,
zip code, latitude, longitude, temperature, precipitation, hu-
midity, year and month. MStation’s data generator will be
made available to instructors [6].

3.2.2 MapReduce Program Template
To facilitate the process of writing MapReduce programs

in Hadoop, students could use a provided MapReduce tem-
plate (MapReduceShell.java). This template imports all the
required libraries, provides empty definitions of the Map
and Reduce methods, and includes a generic version of the
run method, which creates, configures, and runs a generic
Hadoop MapReduce job.

One of the first activities the authors suggest after intro-
ducing the MapReduce model is to describe the WordCount
problem. This is a very illustrative problem where the goal
is to count the number of times each word appears in the
input dataset (text files). Fig. 1 shows the pseudo-code of
the MapReduce WordCount algorithm and Fig. 2 shows the

Map Map Map

Reduce Reduce Reduce

Node 1 Node 2 Node 3

Input File

Write output to HDFS

Data in Hadoop Distributed File System (HDFS)

and I am line three

this is line one

but this is line two

Node 1 Node 2 Node 3

Map

Output:

<"this", 1>

<"is", 1>

<"line", 1>

<"one", 1>

Input:

this is line one

Map

Output:

<"but", 1>

<"this", 1>

<"is", 1>

<"line", 1>

<"two", 1>

Input:

but this is line two

Map

Output:

<"and", 1>

<"i", 1>

<"am", 1>

<"line", 1>

<"three", 1>

Input:

and I am line three

Reduce
Input:

<"this", [1, 1]>

<"but", [1]>

<"am", [1]>

<"two", [1]>

Reduce

Input:

<"is", [1, 1]>

<"one", [1]>

<"and", [1]>

Reduce
Input:

<"line", [1, 1, 1]>

<"i", [1]>

<"three", [1]>

Output:

<"this", 2>

<"but", 1>

<"am", 1>

<"two", 1>

Output:

<"is", 2>

<"one", 1>

<"and", 1>

Output:

<"line", 3>

<"i", 1>

<"three", 1>

Shuffle

a) Map, shuffle and reduce stages

b) Input and output of Map and Reduce tasks

Figure 2: WordCount - MapReduce Processing.

details of how this program is executed on the MapReduce
framework. Fig. 2.a provides a high-level representation of
how different chunks of the input dataset are processed by
different map tasks and the way intermediate data is sent
to the reduce tasks in the shuffle stage. This figure also
shows that the input and output datasets are stored in the
distributed file system. Fig. 2.b shows the distributed pro-
cessing details in this MapReduce job. Particularly, this
figure shows the input and output of each map and reduce
task. Since the WordCount code has been built using the
template described previously, this is also a good example to
show students how to extend the template to solve specific
problems using MapReduce. The WordCount example can
be run using the MobyShakespeare dataset or any other text
input file.

3.2.3 In-class Exercises and Assignments
The MStation dataset provides a basis for additional in-

class exercises for illustrating MapReduce programs [6].

• AverageTempByStation.java. This program ag-
gregates the data by station ID and outputs the av-
erage temperature for each station. The pseudo-code
of this MapReduce algorithm is presented in Fig. 3.

Algorithm AverageTempByStation

Map (line_number, MStation_line)

 load MStationRecord from MStation_line

 emit(MStationRecord.stationID,

 MStationRecord.temp)

Reduce (stationID, temp_values[])

 sum = 0

 count = 0

 for each value in temp_values

 sum = sum + value

 count = count + 1

 average = sum / count

 emit(stationID, average)

Figure 3: MapReduce algorithm of AverageTemp-
ByStation.

• AverageTempByZipCode.java. This MapReduce
program groups the data by zip code and outputs the
average temperature at each zip code.

• SortByStationID.java. This code sorts the input
data by station ID. The output data still contains all
the attributes of the input dataset.

Also, the MStation dataset can be used for class assign-
ments and projects to design and implement MapReduce
programs, such as: (1) the computation of the total rain-
fall grouping by zip code and year, (2) the computation of
the average rainfall and average temperature, grouping by
zip code and year while considering only years greater than
1950, and (3) the identification of the highest 10 temper-
ature readings reporting the temperature, zip code, month
and year.

Achieving learning objectives.
The authors have found that the use of diagrams, like

the one in Fig. 2, helps students to understand the steps
that take place at the various stages of a MapReduce job
(learning objective LO1). Also, the use of the described VM
provides students with hands-on experience with Hadoop
MapReduce (LO2) and reinforces the understanding of the
MapReduce features (LO1). The VM enables students to
focus on designing and implementing MapReduce programs
rather than installation and tedious configuration. Further-
more, the described data generator can be modified by in-
structors to generate datasets with different sizes or data
distribution properties that can be used in additional exer-
cises or projects.

To give students a better understanding of when to use
MapReduce, it is important to contrast it with other data
processing systems (LO3). For instance, in a database class,
MapReduce can be compared with traditional relational data-
bases. It should be highlighted that MapReduce systems do
not make older data processing technologies obsolete. In-
stead, different systems might be more suitable for different
tasks. For instance, in the scenario of a retail store, database
systems could be the right tool to process selling transactions
since these systems provide consistent and durable data pro-
cessing. On the other hand, a MapReduce system may be
the right tool to analyze and get useful insights, e.g., ag-
gregations, trends and correlations, from data that contains
selling operations for the last five years.

4. BIG DATA ANALYSIS WITH NoSQL

4.1 NoSQL Data Stores
NoSQL is a broad class of data stores that aims to pro-

vide higher scalability and availability compared to conven-
tional relational databases. In many cases, these systems
do not adhere to the relational database model, do not sup-
port SQL for data manipulation, and implement a simplified
transaction/consistency model. Some of the key properties
of NoSQL data stores are as follows: (1) they usually have a
distributed, fault-tolerant architecture where more machines
can be easily added, (2) data is partitioned among different
machines, (3) data replication is used for fault tolerance,
and (4) NoSQL data stores commonly provide a simplified
consistency model, for instance eventual consistency : given
a sufficiently long period of time in which no changes are
made, all the previous updates are expected to eventually
propagate through the system.
Several types of NoSQL systems are presented next:

• Document stores. Store documents that contain
data in some format (XML, JSON, binary, etc.). Ex-
amples: MongoDB, Oracle NoSQL Database, CouchDB,
and SimpleDB.

• Key-Value stores. Store the data in a schema-less
way (commonly key-value pairs). Data items could be
stored in a data type of a programming language or
an object. Examples: Cassandra, Dynamo, Riak, and
MemcacheDB.

• Graph databases. Stores graph data. For instance:
social relations, public transport links, road maps or
network topologies. Examples: AllegroGraph, Infinite-
Graph, Neo4j, and OrientDB.

• Tabular data stores. Stores tabular data with po-
tentially many columns and rows. Examples: HBase,
BigTable, and Hypertable.

4.2 NoSQL Learning Resources
Similarly to the case of MapReduce, one of the best ways

to introduce NoSQL data stores is to enable students to
interact with real NoSQL systems. To accomplish this, it
is important to incorporate the use of a specific NoSQL
database like Apache HBase [4], which is also included in the
provided VM. HBase is an open-source NoSQL distributed
database system written in Java and modeled after Google’s
BigTable [7]. It runs on top of HDFS and provides a fault-
tolerant way of storing and processing large amounts of
sparse tabular data. HBase provides efficient random reads
and writes on top of HDFS, which does not support random
writes. HBase has been used by companies like Yahoo! and
Facebook [15].
One of the key lessons about NoSQL systems is learning

about the different ways in which developers and applica-
tions can interact with the database. This can be accom-
plished with the following in-class activity where students
create an HBase table to maintain blog posts and interact
with the system using both shell commands and a Java ap-
plication. First, students use the HBase shell interface to
run the create and put commands to create an HBase ta-
ble and insert the blog posts data. Next, students use the
commands scan, get, and delete to print all the content of

Create an HBase table

Create 'blogposts', 'post', 'image'

Adding data to a table

put 'blogposts', 'post1', 'post:title', 'The Title'

put 'blogposts', 'post1', 'post:author', 'The Author'

put 'blogposts', 'post1', 'post:body', 'Body of a post'

put 'blogposts', 'post1', 'image:header', 'image1.jpg'

put 'blogposts', 'post1', 'image:bodyimage', 'image2.jpg'

List all the tables

list

Scan a table (show all the content of a table)

scan 'blogposts'

Show the content of a record (row)

get 'blogposts', 'post1'

Deleting (all the cells of a given row)

deleteall 'blogposts', 'post1'

Drop a table

disable 'blogposts'

drop 'blogposts'

Figure 4: Accessing HBase with shell commands.

the table, get the content of individual records, and delete
records, respectively. Fig. 4 shows sample shell commands
for this activity. In the second part of this activity students
programmatically access the HBase table created in the first
part. To this end, students first establish a connection with
the blog posts table, and use instances of the Put, Scan, and
Get classes to insert additional rows, list all rows, and re-
trieve the content of single rows, respectively. Fig. 5 shows
a fragment of the Java code that performs the described
tasks. In addition, complementary resources to incorporate
NoSQL using MongoDB [2] are described in [18].

Achieving learning objectives.
In the authors’ experience, the use of a VM with HBase

and the described in-class activity have been very important
tools to enable students to get a more concrete understand-
ing of the features of a NoSQL system (LO1), and to gain
hands-on experience about the different mechanisms to in-
teract with an HBase data store (LO2).

One of the key lessons about NoSQL data stores is when
they should be used (LO3). For this, it is important to high-
light that NoSQL databases should be considered when there
is a need to manage very large amounts of data (currently in
the order of terabytes or petabytes), the application scenario
does not use a fixed schema, and performance is more im-
portant than consistency (the application does not require
full ACID guarantees).

It is also important to observe that features and data types
supported by NoSQL systems differ, particularly in how the
system supports the various levels of consistency (C), avail-
ability (A), and network partition tolerance (P). In fact, the
CAP theorem states that a system has to pick two of these
three properties and that a system cannot have all three si-
multaneously while maintaining an acceptable latency [12].
For instance, HBase [5] prioritizes consistency and partition-
ing tolerance (CP), while Cassandra [3] values availability
and partitioning tolerance (AP).

NoSQL should also be contrasted against other types of
data processing systems (LO3). Traditional relational data-
bases for instance may be the right tool for a banking ap-
plication where all the data fits in a single server since they

//Use HTable object to connect to the blogposts table.

Configuration config = HBaseConfiguration.create();

HTable table = new HTable(config, "blogposts");

//Add a row (post2) to the table

Put p = new Put(Bytes.toBytes("post2"));

p.add(Bytes.toBytes("post"), Bytes.toBytes("title"),

 Bytes.toBytes("Title2"));

p.add(Bytes.toBytes("post"), Bytes.toBytes("author"),

 Bytes.toBytes("Author2"));

table.put(p);

//Retrieve the data of a row using Get

Get g = new Get(Bytes.toBytes("post2"));

Result r = table.get(g);

byte [] valTitle = r.getValue(Bytes.toBytes("post"),

 Bytes.toBytes("title"));

byte [] valAuthor = r.getValue(Bytes.toBytes("post"),

 Bytes.toBytes("author"));

System.out.println("GET: " + Bytes.toString(valTitle)+

 " " + Bytes.toString(valAuthor));

// Retrieve multiple rows using Scan (all titles)

Scan s = new Scan();

s.addColumn(Bytes.toBytes("post"),

 Bytes.toBytes("title"));

ResultScanner scanner = table.getScanner(s);

for (Result rr : scanner)

 System.out.println("Title: " + rr);

Figure 5: Accessing HBase table from Java.

provide full ACID guarantees. On the other hand, a NoSQL
system like HBase could be the right tool for web-scale mes-
saging or blogging systems since they deal with massive
amounts of data and prioritize performance over full con-
sistency. In fact, HBase is used to support the messaging
subsystem in Facebook [15]. While MapReduce and NoSQL
systems can process massive amounts of data in a highly dis-
tributed and scalable fashion, each system may be the best
option in different scenarios. Furthermore, it is important
to consider the specific features of NoSQL systems. For in-
stance, in the scenario of the messaging system, HBase may
be the right tool to run a query that quickly retrieves the
messages of a user (random access). In the same scenario,
the MapReduce framework could be the best tool to run a
job that processes the entire dataset to aggregate the num-
ber of messages by sender location.

5. BIG DATA PROCESSING WITH NewSQL

5.1 NewSQL Database Systems
NewSQL is a class of database systems that aims to pro-

vide the same levels of scalability and availability of NoSQL
systems while still maintaining the ACID guarantees and
SQL query language of traditional relational databases. Some
of the key properties of NewSQL systems are as follows:
(1) they are based on a distributed shared-nothing architec-
ture that can dynamically scale horizontally (adding cluster
nodes), (2) they support the relational data model, (3) they
provide ACID properties for transactions, and (4) they sup-
port SQL as the primary query language.
Several NewSQL systems have been built from scratch

to operate on distributed clusters of shared-nothing nodes.
Some of these systems, e.g., Google Spanner, NuoDB, and
Clustrix, are general purpose databases that support any
type of query. Other systems, e.g., VoltDB, are in-memory

C1: CREATE TABLE votes(phone_number bigint NOT NULL, state

 varchar(2) NOT NULL, contestant_number integer NOT NULL);

Q1: SELECT contestant_number, count(*) FROM votes

 GROUP BY contestant_number ORDER BY contestant_number;

Q2: SELECT state, COUNT(*) cnt FROM votes GROUP BY state

 order by cnt DESC;

Q3: SELECT contestant_number, state, COUNT(*) FROM votes

 GROUP BY contestant_number, state;

Figure 6: VoltDB SQL Queries.

databases that focus on supporting short-lived and repet-
itive queries that touch small fractions of the data. Other
NewSQL systems are based on optimized storage engines for
MySQL, e.g., TokuDB, MemSQL, and Akiban. While ap-
plications interact with these systems as if they were stan-
dard MySQL databases, they have better scalability prop-
erties. There are also some NewSQL systems that are based
on middleware components that automatically partition and
distribute existing databases, e.g., dbShards and ScaleBase.

5.2 NewSQL Learning Resources
VoltDB [19] is a well-documented, open-source NewSQL

system that can be used to support the introduction of
NewSQL technologies with the integration of hands-on ac-
tivities into the curriculum. VoltDB is an in-memory and
ACID-compliant database system that uses a shared noth-
ing architecture. VoltDB is supported on Linux and Mac OS
X and provides client libraries for Java, C++, C#, Python,
PHP, and Node.js.

The use of a VM is also a great way to enable a hands-on
interaction with NewSQL systems like VoltDB. In this case,
instructors can use the VM available at VoltDB’s web site
[19]. Besides the VoltDB software, this VM contains a set of
sample applications and tools for application development.
The sample applications are particularly useful resources to
teach about NewSQL and VoltDB. These applications in-
clude: (1) a system that simulates a telephone based vot-
ing process, (2) the implementation of a Key-Value store
backed by VoltDB, (3) an example that shows memcache-
like cache implemented using VoltDB, and (4) an application
that shows the use of flexible schema and JSON.

Instructors can use the following in-class activity working
with the voting process simulator. Students first analyze and
execute the provided scripts that start the database server,
create tables, and run a client application that simulates a
call center receiving the votes. Fig. 6 shows the SQL (C1)
that creates table votes. During the execution of the client
application, students use a provided web-based interface to
monitor in real-time the voting results and the current win-
ner in each state. Next, students use VoltDB Studio to write
and run SQL queries. For instance Fig. 6 shows queries pre-
pared by the authors to compute the total number of votes
obtained by each contestant (Q1), the total number votes
in each state (Q2), and the number of votes for each candi-
date in each state (Q3). This activity also provides a good
opportunity to highlight some of the key properties of this
type of NewSQL system, e.g., high transaction throughput
(transactions/second) and low latency (time to process a
vote).

Achieving learning objectives.
Similarly to the previous units, the use of the VM enables

students to get not only hands-on experience with VoltDB
(LO2) but also a better understanding of key features of
NewSQL systems (LO1), particularly the support of the re-
lational model and SQL.
It is also important to describe scenarios, beyond the vot-

ing system, where NewSQL systems can be the right type
of system to use (LO3). While NoSQL and NewSQL sys-
tems can handle datasets with massive size and high velocity,
NewSQL systems are particularly suitable for applications
that require support of the relational model, ACID guaran-
tees, and SQL. For instance, while an HBase (NoSQL) can
be the right data store for a web-scale blogging system, a
NewSQL system like VoltDB can be the right database to
process the rapid stream of stock exchange operations while
ensuring transactional consistency [20].

6. DISCUSSION
The three proposed modules can be integrated into sev-

eral introductory and advanced computer science courses.
For instance, an introduction to MapReduce could be in-
tegrated into introductory databases or distributed systems
courses. In this case, instructors can incorporate the in-class
exercises and activities suggested for the MapReduce mod-
ule. A high level exposure to NoSQL and NewSQL could also
be integrated into an introductory database course through
an assignment focused on exploring data management tech-
nologies beyond relational databases. The instructor could
complement the assignment with an in-class discussion that
highlights the key properties of the explored systems and
scenarios where they are the right systems to use. A more
extensive exposure of the three types of BDMSs can be in-
corporated in an advanced database class. In this case, in-
structors could incorporate the different hands-on activities
and projects described in this paper. MapReduce could also
be integrated into a programming course. This integration
should focus on presenting the MapReduce programming
model as a simple but effective approach to distribute the
execution of a program among multiple computers. The au-
thors have specifically incorporated the three modules into
an advanced database course and the MapReduce module
into an introductory distributed systems course.
To assess the integration of the three proposed modules

and the extent to which the learning objectives were achieved,
the authors used an end-of-class survey in the advanced
database class. While this was a small class, the results are
promising. The score distributions for the three modules
were very similar. The average scores are presented next
(1: Strongly agree - 5: Strongly disagree). To the ques-
tion “I am able to recognize the key properties, strengths and
limitations of MapReduce/NoSQL/NewSQL” (LO1), 50% of
students strongly agree and 50% agree. To the question “I
understand when to use MapReduce/NoSQL/NewSQL sys-
tems” (LO3), 67% of students strongly agree and 33% agree.
To the question “I am familiar with Hadoop/HBase/VoltDB
and can build applications that interact with these systems”
(LO2), 42% of students strongly agree, 42% agree, and 16%
gave lower scores. In the open ended questions, students
gave positive comments about the use of hands-on exer-
cises, VMs, and illustrative diagrams, e.g., “using the VMs
really captured my attention when using hands-on exercises
and working directly with the systems”, “the diagrams really
helped visualize relationships and comparisons between dif-
ferent technologies”, and“the hands-on exercises were great”.

7. CONCLUSIONS
Many application scenarios require processing massive da-

tasets in a highly scalable and distributed fashion and dif-
ferent types of BDMSs have been designed to address this
challenge. Graduating students gain employment in com-
panies that already use BDMSs or are eager to use them
to get better insights from the large datasets they manage.
Thus, it is important to integrate the study of these systems
as part of the computing curricula. This paper presents a
set of guidelines and a wide array of class resources to inte-
grate the study of three core types of BDMSs: MapReduce,
NoSQL, and NewSQL. The paper also reports results of in-
tegrating the proposed units into a database course.

8. REFERENCES
[1] Hadoop eclipse plug-in.

http://wiki.apache.org/hadoop/EclipsePlugIn.

[2] 10gen. Mongodb. http://www.mongodb.org/.

[3] Apache. Cassandra. http://cassandra.apache.org/.

[4] Apache. Hadoop. http://hadoop.apache.org/.

[5] Apache. Hbase. http://hbase.apache.org/.

[6] ASU. Big data management course resources.
http://www.public.asu.edu/~ynsilva/iBigData.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst.,
26(2):1–26, 2008.

[8] Clustrix. Clustrix. http://www.clustrix.com/.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In USENIX, 2012.

[10] A. Cron, H. L. Nguyen, and A. Parameswaran. Big
data. XRDS, 19(1):7–8, Sept. 2012.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. In OSDI, 2004.

[12] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51–59, June 2002.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In EuroSys, 2007.

[14] D. Kumar. Data science overtakes computer science?
ACM Inroads, 3(3):18–19, Sept. 2012.

[15] K. Muthukkaruppan. The underlying technology of
messages. https://www.facebook.com/note.php?
note_id=454991608919.

[16] NuoDB. Nuodb. http://www.nuodb.com/.

[17] M. Project. Moby shakespeare.
http://icon.shef.ac.uk/Moby/.

[18] A. Sattar, T. Lorenzen, and K. Nallamaddi.
Incorporating nosql into a database course. ACM
Inroads, 4(2):50–53, June 2013.

[19] VoltDB. Voltdb. https://voltdb.com/.

[20] VoltDB. Voltdb application gallery.
http://voltdb.com/no-limits/apps-gallery.php.

