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Abstract. Similarity Joins are some of the most useful and powerful data pro-
cessing operations. They retrieve all the pairs of data points between different 
data sets that are considered similar within a certain threshold. This operation is 
useful in many situations, such as record linkage, data cleaning, and many other 
applications. An important method to implement efficient Similarity Joins is the 
use of indexing structures. The previous work, however, only supports self joins 
or requires the joint indexing of every pair of relations that participate in a 
Similarity Join. We present an algorithm that extends a previously proposed in-
dex-based algorithm (eD-Index) to support Similarity Joins over two relations. 
Our approach operates over individual indices. We evaluate the performance of 
this algorithm, contrast it with an alternative approach, and investigate the con-
figuration of parameters that maximize performance. Our results show that our 
algorithm significantly outperforms the alternative one in terms of distance 
computations, and reveal interesting properties when comparing execution time. 

1 Introduction 

The Similarity Join (SJ) is one of the most useful and studied data processing oper-
ators. It has applications in many different situations or domains, such as multimedia 
applications, sensor networks, marketing analysis, and many others. Many different 
implementations and algorithms for SJ have been proposed, ranging from on-the-fly 
algorithms to index-based techniques. Index-based algorithms have the potential to 
significantly reduce execution time since they store pre-computed information that 
can be used during query execution. One such technique is the eD-Index [1]. This 
index enables efficient similarity-aware operations such as similarity search and Self-
SJ. In this paper, we present an algorithm that significantly extends this technique to 
support generic SJ queries over two relations. The main contributions of our work are: 

 We implemented the Range Query Similarity Join (RQ-SJ) algorithm using succes-
sive similarity search operations for the case of SJ with two relations. This tech-
nique was previously proposed in [2] for the case of Self-SJ only. 

 We designed and implemented an efficient algorithm, i-SimJoin to extend eD-
Index to support SJ operations over two relations using only the individual indices. 

 We evaluated the performance of i-SimJoin and RQ-SJ. Our preliminary results 
show that i-SimJoin significantly outperforms the alternative one in terms of dis-
tance computations and interesting properties when comparing execution time.  



 

 

 We explore ways to tune the eD-Index parameters to improve performance.   

The remaining part of the paper is organized as follows. Section 2 presents the re-
lated work. Section 3 gives a brief overview of the indexing structures we used in our 
algorithms, the RQ-SJ algorithm, and a detailed explanation of our i-SimJoin algo-
rithm. Section 4 presents the performance evaluation of the i-SimJoin and RQ-SJ 
algorithms. Section 5 presents the conclusions and future work directions. 

2 Related Work 

Significant work has been carried out on the study of Similarity Joins. Much of this 
work has focused on standalone operators – both index-based and dynamic (on-the-
fly) – while some has focused on implementing Similarity Join operators inside of 
database systems. The distance range join (retrieves all pairs whose distances are 
smaller than or equal to μ) is one of the most studied Similarity Join types 
[1,2,3,4,5,6,7,8]. This is the Similarity Join type focused on in this paper. Of the non-
index-based approaches, some of the most relevant algorithms are Epsilon Grid Order 
(EGO) [4], Generic External Space Sweep (GESS) [5], and Quickjoin [6]. These algo-
rithms dynamically partition and cluster the data into smaller, easier to process sub-
sets in such a way that all similar pairs are still captured by the algorithm. The index-
based approaches include such algorithms as Pass-Join [7], an algorithm proposed for 
string data, and the D-Index [2, 3], eD-Index [1] and List of Twin Clusters (LTC) [8], 
which are indices that can apply to any metric space. Pass-join [7] partitions strings 
into substrings and used inverted indices in order to efficiently prune dissimilar pairs. 
LTC [8] is an indexing approach that constructs a combined index for both datasets 
involved in the Similarity Join. This indexing structure consists of clusters of data 
points within a fixed radius of given reference points. This structure allows Similarity 
Join queries with a μ less than or equal to the radius of the clusters to be easily com-
puted. An important disadvantage of this approach is the need to build joint or com-
bined indices for every pair of datasets that can be joined. The D-Index [3] and eD-
Index [1] construct an index structure based around separate buckets arranged in a 
hierarchical structure of levels. This index-structure allows for efficient similarity 
search and Self-Similarity Join queries. Our work extends on the D-Index and eD-
Index, and focuses on algorithms to utilize the eD-Index functionality to efficiently 
perform Similarity Joins between two relations in metric spaces. 

3 The i-SimJoin Algorithm 

3.1 The eD-Index 

The structure of the D-Index and its extension, the eD-Index, are detailed in [3] and 
[1] respectively. In brief, the eD-Index makes use of multiple levels where each level 
is organized into separable buckets and an exclusion set. The top level partitions the 
initial dataset. Each subsequent level after the first is created by partitioning the ex-



 

 

clusion set of the previous level. Separable buckets are constructed by picking n piv-
ots and a radius d from each pivot. d can be different for each pivot and is calculated 
when constructing the index so as to attempt to balance the number of tuples in each 
separable bucket. n can also vary between levels. Objects are placed in the appropriate 
separable bucket or the exclusion set based on their distance from the pivots and the 
global parameters ρ and ε, which determine the maximum query radius the eD-Index 
can be used to answer efficiently. Objects with a distance between d + ρ and d – ρ 
from a pivot are placed into the exclusion set. All other objects are placed into a sepa-
rable bucket determined by the objects’ distances from all pivots on that level. All 
objects with a distance of between d ± ρ and d ± (ρ + ε) from a pivot are duplicated 
into the exclusion set in addition to being placed in a separable bucket. 

3.2 RQ-SJ: Range Query Similarity Join 

The Range Query Similarity Join is an algorithm proposed in [2] for the case of Self-
SJ only. As part of our work, we implemented and evaluated the performance of this 
algorithm for the case of SJ for two relations. This algorithm applies successive simi-
larity search operations over the indexed dataset R, using all elements of the dataset S 
as the targets of the similarity searches. For each object s in S, the output is the collec-
tion of all objects in R that are within μ of s. 

3.3 i-SimJoin: Index-based Similarity Join 

i-SimJoin is an algorithm for performing Similarity Join operations over two datasets 
indexed using the D-Index (individual indices). The indices are constructed so that 
they share the same index structure – that is, that the index for relation S uses the 
same number of levels and the same pivots for each level as relation R does. This 
allows the indices to be treated as the same logical index containing two separate 
relations while maintaining the index of each relation as a separate structure. On this 
logical index, we can apply an extension of a Self SJ operation such as the sliding 
window algorithm proposed in [1] with the added modification of awareness of which 
relation the tuples originally came from. This last modification ensures that only 
matches of pairs between both relations R and S will be returned. 

To create the indices for the relations, an index is first created for relation R. The 
index structure generated from this is then used to create the index for relation S. This 
allows for the index of relation R to be used for Similarity Join queries with relation 
S, while still allowing the index on relation R to be independently used for other simi-
larity-aware queries. Other approaches to create logical indices over the two relations 
while maintaining independent physical indices is a task for future work.  

The i-SimJoin algorithm consists of two routines. First, we process the indices 
simultaneously, treating the corresponding buckets as a logical combined bucket as 
shown in Algorithm 1. Algorithm 2 is the algorithm that is run on each combined 
bucket. The getNextObject() function returns the next object in the combined bucket, 
ordered by the pre-computed distance from the object to the pivot. upObject and 
loObject are pointers to the current objects from each relation being compared – the  



 

 

upObject is the highest-ordered of the two objects, while the loObject iterates through 
the current sliding window. A marking system is used to correctly slide the window 
through the combined bucket. 

iSimJoin(indices, mu) 

Input: indices (logical combined indices from relations), mu (query 

radius) 

Output: all the results of the Similarity Join operation R ⨝θμ(r,s) S 

1 for each CombinedLevel L in indices 

2  for each CombinedBucket b in L 

3   b.iSimJoin_bucket(mu) 

4  end for 

5 end for 

6 indices.exclusionSet.iSimJoin_bucket(mu) 

Alg. 1. iSimJoin 

iSimJoin_bucket(mu) 

Input: mu (query radius) 

Output: all the results of the Similarity Join operation R ⨝θμ(r,s) S for 

one logical CombinedBucket 

1  Object loObject = getNex-

tObject() 

2  Object upObject = loObject 

3  while(upObject.relation == 

loObject.relation) 

4   upObject = getNextObject() 

5  end while 

6  if(loObject.relation == R) 

7   markR = loObject 

8   markS = upObject 

9  else 

10  markR = upObject 

11  markS = loObject 

12 end if 

13 while(upObject != NULL) 

14  while(upObject.distance – 

loObject.distance > mu) 

15   loObject = loObject.next() 

16  end while 

17  if(loObject.relation == R) 

18   markR = loObject 

19  else 

20   markS = loObject 

21  end if 

22  while(loObject.distance <= 

upObject.distance) 

23   if(loObject.distance == upOb-

ject.distance && 

loObject.relation == S) 

24    break 

25   end if 

26   if(dist(loObject, upObject) 

<= mu 

27    report (loObject, upObject) 

28   end if 

29  end while 

30  upObject = getNextObject() 

31  if(upObject.relation == R) 

32   loObject = markS 

33  else 

34   loObject = markR 

35  end if 

36 end while 

Alg. 2. iSimJoin_bucket 



 

 

Lines 1-12 of the iSimJoin_bucket algorithm are the initial setup of the data struc-
tures and the marking system. Lines 14-21 advance the rear of the window as it slides 
through the bucket and marking the new loObject appropriately. Lines 22-29 report 
all similar matches in the current window. Additional checks are done here to prune 
out dissimilar pairs before performing the final distance calculation on the candidate 
matches. The check at line 23 ensures that no match will be added twice if the current 
upObject and loObject have the same pre-computed distance. Lines 30-36 advance 
the upObject to the next element in the bucket and set loObject to the correct marked 
position for its relation. 

4 Performance Evaluation 

We implemented the i-SimJoin algorithm as a stand-alone application written in C++. 
In this section, we present preliminary results comparing the i-SimJoin algorithm to  
the Range Query (RQ-SJ) algorithm over two relations in terms of number of distance 
computations and execution time. 

All experiments are performed on an Intel Core I-5 1.70 GHz 4-core machine with 
6GB of RAM running Linux (OpenSUSE 12.3 64-bit) as the operating system. The 
dataset used for this experiment is a synthetically generated, 10-dimensional vector 
dataset with randomly-generated values for each dimension ranging from 0 to 100. 
This dataset contains 100K tuples per relation, or 200K in total. The Euclidean dis-
tance function is used to calculate distances between objects. 

The strategy taken for constructing each index was to choose a number of pivots 
for each level such that the number of objects in the largest separable bucket in that 
level fell within the range of 5,000 to 10,000 objects, resulting in an index structure 
with 3 levels and 9 pivots. The value of ρ was 0.5% of the maximum distance and the 
value of ε was 1.0% of the maximum distance. 

Fig. 1 presents the number of distance calculations needed for each algorithm as 
the query radius increases. i-SimJoin requires a significantly lower amount of distance 

Fig. 1. Comparing Distance Computations 
while Increasing Query Radius 

Fig. 2. Comparing Execution Time while 
Increasing Query Radius 
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computations than the RQ-SJ algorithm, ranging from only 2.1% of the distance com-
putations of the RQ-SJ algorithm at a query radius of 0.1% of the maximum distance, 
to 48.7% at a query radius of 1.0%. 

Fig. 2 presents the execution time of the algorithms, with the execution time of i-
SimJoin being comparable to that of the Range Query algorithm. The execution time 
of i-SimJoin ranges from 44.8% when the query radius is low to 148.3% of that of the 
Range Query algorithm. Note that i-SimJoin performs better than RQ-SJ in terms of 
execution time when the number of distance computations required for i-SimJoin is 
very low compared to that of RQ-SJ. 

As part of our initial tests, we also compared the original Self-SJ algorithms pro-
posed in [1] (range query and sliding window algorithms) and extended in this paper. 
We used the described 10D vector dataset and Euclidean distance function. The re-
sults were very similar to the ones reported in this paper for the case of SJ over two 
relations, i.e., while the sliding window technique performs significantly less distance 
computations, both algorithms have similar execution times. Note that the work in [1] 
only reports the number of distance computations and not the execution times. 

The comparison of these approaches contrasting both distance computations and 
execution time is actually quite revealing. These results highlight the fact that the 
overhead required in processing these algorithms is a significant factor in the execu-
tion time. For instance, the i-SimJoin algorithm performs many tests to prune out 
pairs that are not in the result set. Although these checks do not necessarily involve 
distance computations, they still contribute to the processing that needs to be done. 
Since the results reported in this paper were obtained from a 10-dimensional dataset, 
the distance computations involved were not highly expensive. More complicated 
distance functions over more complex data types can significantly increase the com-
plexity of the distance computations, and this would be expected to result in the num-
ber of distance computations being more significant in terms of the execution time. 
While i-SimJoin is expected to outperform RQ-SJ for complex data types and dis-
tance functions, it is also important to observe that the simple RQ-SJ algorithm can be 
the most efficient approach for simple data types and distance functions.  

5 Conclusions 

This paper presents i-SimJoin, an algorithm to perform Similarity Joins on two re-
lations using physically independent indexing structures. Our performance evaluation 
shows that i-SimJoin requires far fewer distance calculations than an alternative SJ 
algorithm, and has a comparable execution time. Our future work will include: (1) 
extensive performance evaluations of more complex data types and distance functions 
to investigate how this affects the execution times of i-SimJoin and RQ-SJ, and (2) 
generalization of the i-SimJoin algorithm to the case of multiple SJ predicates. 
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