

Index-based R-S Similarity Joins, p. 1, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Index-based R-S Similarity Joins

Spencer S. Pearson, Yasin N. Silva

Arizona State University, Glendale, AZ, USA
 {sspearso, ysilva}@asu.edu

Abstract. Similarity Joins are some of the most useful and powerful data pro-
cessing operations. They retrieve all the pairs of data points between different
data sets that are considered similar within a certain threshold. This operation is
useful in many situations, such as record linkage, data cleaning, and many other
applications. An important method to implement efficient Similarity Joins is the
use of indexing structures. The previous work, however, only supports self joins
or requires the joint indexing of every pair of relations that participate in a
Similarity Join. We present an algorithm that extends a previously proposed in-
dex-based algorithm (eD-Index) to support Similarity Joins over two relations.
Our approach operates over individual indices. We evaluate the performance of
this algorithm, contrast it with an alternative approach, and investigate the con-
figuration of parameters that maximize performance. Our results show that our
algorithm significantly outperforms the alternative one in terms of distance
computations, and reveal interesting properties when comparing execution time.

1 Introduction

The Similarity Join (SJ) is one of the most useful and studied data processing oper-
ators. It has applications in many different situations or domains, such as multimedia
applications, sensor networks, marketing analysis, and many others. Many different
implementations and algorithms for SJ have been proposed, ranging from on-the-fly
algorithms to index-based techniques. Index-based algorithms have the potential to
significantly reduce execution time since they store pre-computed information that
can be used during query execution. One such technique is the eD-Index [1]. This
index enables efficient similarity-aware operations such as similarity search and Self-
SJ. In this paper, we present an algorithm that significantly extends this technique to
support generic SJ queries over two relations. The main contributions of our work are:

 We implemented the Range Query Similarity Join (RQ-SJ) algorithm using succes-
sive similarity search operations for the case of SJ with two relations. This tech-
nique was previously proposed in [2] for the case of Self-SJ only.

 We designed and implemented an efficient algorithm, i-SimJoin to extend eD-
Index to support SJ operations over two relations using only the individual indices.

 We evaluated the performance of i-SimJoin and RQ-SJ. Our preliminary results
show that i-SimJoin significantly outperforms the alternative one in terms of dis-
tance computations and interesting properties when comparing execution time.

 We explore ways to tune the eD-Index parameters to improve performance.

The remaining part of the paper is organized as follows. Section 2 presents the re-
lated work. Section 3 gives a brief overview of the indexing structures we used in our
algorithms, the RQ-SJ algorithm, and a detailed explanation of our i-SimJoin algo-
rithm. Section 4 presents the performance evaluation of the i-SimJoin and RQ-SJ
algorithms. Section 5 presents the conclusions and future work directions.

2 Related Work

Significant work has been carried out on the study of Similarity Joins. Much of this
work has focused on standalone operators – both index-based and dynamic (on-the-
fly) – while some has focused on implementing Similarity Join operators inside of
database systems. The distance range join (retrieves all pairs whose distances are
smaller than or equal to μ) is one of the most studied Similarity Join types
[1,2,3,4,5,6,7,8]. This is the Similarity Join type focused on in this paper. Of the non-
index-based approaches, some of the most relevant algorithms are Epsilon Grid Order
(EGO) [4], Generic External Space Sweep (GESS) [5], and Quickjoin [6]. These algo-
rithms dynamically partition and cluster the data into smaller, easier to process sub-
sets in such a way that all similar pairs are still captured by the algorithm. The index-
based approaches include such algorithms as Pass-Join [7], an algorithm proposed for
string data, and the D-Index [2, 3], eD-Index [1] and List of Twin Clusters (LTC) [8],
which are indices that can apply to any metric space. Pass-join [7] partitions strings
into substrings and used inverted indices in order to efficiently prune dissimilar pairs.
LTC [8] is an indexing approach that constructs a combined index for both datasets
involved in the Similarity Join. This indexing structure consists of clusters of data
points within a fixed radius of given reference points. This structure allows Similarity
Join queries with a μ less than or equal to the radius of the clusters to be easily com-
puted. An important disadvantage of this approach is the need to build joint or com-
bined indices for every pair of datasets that can be joined. The D-Index [3] and eD-
Index [1] construct an index structure based around separate buckets arranged in a
hierarchical structure of levels. This index-structure allows for efficient similarity
search and Self-Similarity Join queries. Our work extends on the D-Index and eD-
Index, and focuses on algorithms to utilize the eD-Index functionality to efficiently
perform Similarity Joins between two relations in metric spaces.

3 The i-SimJoin Algorithm

3.1 The eD-Index

The structure of the D-Index and its extension, the eD-Index, are detailed in [3] and
[1] respectively. In brief, the eD-Index makes use of multiple levels where each level
is organized into separable buckets and an exclusion set. The top level partitions the
initial dataset. Each subsequent level after the first is created by partitioning the ex-

clusion set of the previous level. Separable buckets are constructed by picking n piv-
ots and a radius d from each pivot. d can be different for each pivot and is calculated
when constructing the index so as to attempt to balance the number of tuples in each
separable bucket. n can also vary between levels. Objects are placed in the appropriate
separable bucket or the exclusion set based on their distance from the pivots and the
global parameters ρ and ε, which determine the maximum query radius the eD-Index
can be used to answer efficiently. Objects with a distance between d + ρ and d – ρ
from a pivot are placed into the exclusion set. All other objects are placed into a sepa-
rable bucket determined by the objects’ distances from all pivots on that level. All
objects with a distance of between d ± ρ and d ± (ρ + ε) from a pivot are duplicated
into the exclusion set in addition to being placed in a separable bucket.

3.2 RQ-SJ: Range Query Similarity Join

The Range Query Similarity Join is an algorithm proposed in [2] for the case of Self-
SJ only. As part of our work, we implemented and evaluated the performance of this
algorithm for the case of SJ for two relations. This algorithm applies successive simi-
larity search operations over the indexed dataset R, using all elements of the dataset S
as the targets of the similarity searches. For each object s in S, the output is the collec-
tion of all objects in R that are within μ of s.

3.3 i-SimJoin: Index-based Similarity Join

i-SimJoin is an algorithm for performing Similarity Join operations over two datasets
indexed using the D-Index (individual indices). The indices are constructed so that
they share the same index structure – that is, that the index for relation S uses the
same number of levels and the same pivots for each level as relation R does. This
allows the indices to be treated as the same logical index containing two separate
relations while maintaining the index of each relation as a separate structure. On this
logical index, we can apply an extension of a Self SJ operation such as the sliding
window algorithm proposed in [1] with the added modification of awareness of which
relation the tuples originally came from. This last modification ensures that only
matches of pairs between both relations R and S will be returned.

To create the indices for the relations, an index is first created for relation R. The
index structure generated from this is then used to create the index for relation S. This
allows for the index of relation R to be used for Similarity Join queries with relation
S, while still allowing the index on relation R to be independently used for other simi-
larity-aware queries. Other approaches to create logical indices over the two relations
while maintaining independent physical indices is a task for future work.

The i-SimJoin algorithm consists of two routines. First, we process the indices
simultaneously, treating the corresponding buckets as a logical combined bucket as
shown in Algorithm 1. Algorithm 2 is the algorithm that is run on each combined
bucket. The getNextObject() function returns the next object in the combined bucket,
ordered by the pre-computed distance from the object to the pivot. upObject and
loObject are pointers to the current objects from each relation being compared – the

upObject is the highest-ordered of the two objects, while the loObject iterates through
the current sliding window. A marking system is used to correctly slide the window
through the combined bucket.

iSimJoin(indices, mu)

Input: indices (logical combined indices from relations), mu (query

radius)

Output: all the results of the Similarity Join operation R ⨝θμ(r,s) S

1 for each CombinedLevel L in indices

2 for each CombinedBucket b in L

3 b.iSimJoin_bucket(mu)

4 end for

5 end for

6 indices.exclusionSet.iSimJoin_bucket(mu)

Alg. 1. iSimJoin

iSimJoin_bucket(mu)

Input: mu (query radius)

Output: all the results of the Similarity Join operation R ⨝θμ(r,s) S for

one logical CombinedBucket

1 Object loObject = getNex-

tObject()

2 Object upObject = loObject

3 while(upObject.relation ==

loObject.relation)

4 upObject = getNextObject()

5 end while

6 if(loObject.relation == R)

7 markR = loObject

8 markS = upObject

9 else

10 markR = upObject

11 markS = loObject

12 end if

13 while(upObject != NULL)

14 while(upObject.distance –

loObject.distance > mu)

15 loObject = loObject.next()

16 end while

17 if(loObject.relation == R)

18 markR = loObject

19 else

20 markS = loObject

21 end if

22 while(loObject.distance <=

upObject.distance)

23 if(loObject.distance == upOb-

ject.distance &&

loObject.relation == S)

24 break

25 end if

26 if(dist(loObject, upObject)

<= mu

27 report (loObject, upObject)

28 end if

29 end while

30 upObject = getNextObject()

31 if(upObject.relation == R)

32 loObject = markS

33 else

34 loObject = markR

35 end if

36 end while

Alg. 2. iSimJoin_bucket

Lines 1-12 of the iSimJoin_bucket algorithm are the initial setup of the data struc-
tures and the marking system. Lines 14-21 advance the rear of the window as it slides
through the bucket and marking the new loObject appropriately. Lines 22-29 report
all similar matches in the current window. Additional checks are done here to prune
out dissimilar pairs before performing the final distance calculation on the candidate
matches. The check at line 23 ensures that no match will be added twice if the current
upObject and loObject have the same pre-computed distance. Lines 30-36 advance
the upObject to the next element in the bucket and set loObject to the correct marked
position for its relation.

4 Performance Evaluation

We implemented the i-SimJoin algorithm as a stand-alone application written in C++.
In this section, we present preliminary results comparing the i-SimJoin algorithm to
the Range Query (RQ-SJ) algorithm over two relations in terms of number of distance
computations and execution time.

All experiments are performed on an Intel Core I-5 1.70 GHz 4-core machine with
6GB of RAM running Linux (OpenSUSE 12.3 64-bit) as the operating system. The
dataset used for this experiment is a synthetically generated, 10-dimensional vector
dataset with randomly-generated values for each dimension ranging from 0 to 100.
This dataset contains 100K tuples per relation, or 200K in total. The Euclidean dis-
tance function is used to calculate distances between objects.

The strategy taken for constructing each index was to choose a number of pivots
for each level such that the number of objects in the largest separable bucket in that
level fell within the range of 5,000 to 10,000 objects, resulting in an index structure
with 3 levels and 9 pivots. The value of ρ was 0.5% of the maximum distance and the
value of ε was 1.0% of the maximum distance.

Fig. 1 presents the number of distance calculations needed for each algorithm as
the query radius increases. i-SimJoin requires a significantly lower amount of distance

Fig. 1. Comparing Distance Computations
while Increasing Query Radius

Fig. 2. Comparing Execution Time while
Increasing Query Radius

0

2

4

6

8

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is
ta
n
ce
 C
o
m
p
u
ta
ti
o
n
s
(1
0
0
k)

Query Radius (% Max Distance)

i‐SimJoin

RQ‐SJ

0
2
4
6
8
10
12
14
16
18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ex
e
cu
ti
o
n
 T
im

e
 (
s)

Query Radius (% Max Distance)

i‐SimJoin

RQ‐SJ

computations than the RQ-SJ algorithm, ranging from only 2.1% of the distance com-
putations of the RQ-SJ algorithm at a query radius of 0.1% of the maximum distance,
to 48.7% at a query radius of 1.0%.

Fig. 2 presents the execution time of the algorithms, with the execution time of i-
SimJoin being comparable to that of the Range Query algorithm. The execution time
of i-SimJoin ranges from 44.8% when the query radius is low to 148.3% of that of the
Range Query algorithm. Note that i-SimJoin performs better than RQ-SJ in terms of
execution time when the number of distance computations required for i-SimJoin is
very low compared to that of RQ-SJ.

As part of our initial tests, we also compared the original Self-SJ algorithms pro-
posed in [1] (range query and sliding window algorithms) and extended in this paper.
We used the described 10D vector dataset and Euclidean distance function. The re-
sults were very similar to the ones reported in this paper for the case of SJ over two
relations, i.e., while the sliding window technique performs significantly less distance
computations, both algorithms have similar execution times. Note that the work in [1]
only reports the number of distance computations and not the execution times.

The comparison of these approaches contrasting both distance computations and
execution time is actually quite revealing. These results highlight the fact that the
overhead required in processing these algorithms is a significant factor in the execu-
tion time. For instance, the i-SimJoin algorithm performs many tests to prune out
pairs that are not in the result set. Although these checks do not necessarily involve
distance computations, they still contribute to the processing that needs to be done.
Since the results reported in this paper were obtained from a 10-dimensional dataset,
the distance computations involved were not highly expensive. More complicated
distance functions over more complex data types can significantly increase the com-
plexity of the distance computations, and this would be expected to result in the num-
ber of distance computations being more significant in terms of the execution time.
While i-SimJoin is expected to outperform RQ-SJ for complex data types and dis-
tance functions, it is also important to observe that the simple RQ-SJ algorithm can be
the most efficient approach for simple data types and distance functions.

5 Conclusions

This paper presents i-SimJoin, an algorithm to perform Similarity Joins on two re-
lations using physically independent indexing structures. Our performance evaluation
shows that i-SimJoin requires far fewer distance calculations than an alternative SJ
algorithm, and has a comparable execution time. Our future work will include: (1)
extensive performance evaluations of more complex data types and distance functions
to investigate how this affects the execution times of i-SimJoin and RQ-SJ, and (2)
generalization of the i-SimJoin algorithm to the case of multiple SJ predicates.

References

1. V. Dohnal, C. Gennaro, P. Zezula, Similarity join in metric spaces using eD-Index, in:
Proceedings of the 25th European Conference on IR Research, ECIR’03, Springer-Verlag,
Berlin, Heidelberg, 2003, pp. 452-467

2. V. Dohnal, C. Gennaro, P. Savino, P. Zezula, Similarity join in metric spaces, in: Proceed-
ings of the 25th European Conference on IR Research, ECIR '03, Springer-Verlag, Berlin,
Heidelberg, 2003, pp. 452-467.

3. V. Dohnal, C. Gennaro, P. Savino, P. Zezula, D-Index: Distance searching index for metric
data sets, in: Multimeda Tools and Applications 21 (2003) 9-33.

4. C. Böhm, B. Braunmüller, F. Krebs, H.-P. Kriegel, Epsilon grid order: An algorithm for
the similarity join on massive high-dimensional data, in: Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data, SIGMOD '01, ACM, New
york, NY, USA, 2001, pp. 379-388.

5. J.-P. Dittrich, B. Seeger, Gess: A scalable similarity-join algorithm for mining large data
sets in high-dimensional spaces, in: Proceedings of the 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD '01, ACM, New York, NY,
USA, 2001, pp. 47-56.

6. E. H. Jacox, H. Samet, Metric space similarity joins, ACM trans. Database Syst. 33 (2008)
7:1-7:38.

7. Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. 2011. Pass-join: a partition-
based method for similarity joins. Proc. VLDB Endow. 5, 3 (November 2011), 253-264.

8. R. Paredes, N. Reyes, Solving similarity joins and range queries in metric spaces with the
list of twin clusters, J. of Discrete Algorithms 7 (2009) 18-35.

