
Hippocratic PostgreSQL*
Jalaja Padma1, Yasin N. Silva1, Muhammad U. Arshad2, Walid G. Aref1

1Department of Computer Science
Purdue University, West Lafayette, IN, USA

{jpadma, ysilva, aref}@cs.purdue.edu
2Department of Electrical & Computer Engineering

Purdue University, West Lafayette, IN, USA
{marshad}@ecn.purdue.edu

Abstract—Privacy preservation has become an important
requirement in information systems that deal with personal data.
In many cases this requirement is imposed by laws that recognize
the right of data owners to control whom their information is
shared with and the purposes for which it can be shared.
Hippocratic databases have been proposed as an answer to this
privacy requirement; they extend the architecture of standard
DBMSs with components that ensure personal data is handled in
compliance with its associated privacy definitions. Previous work
in Hippocratic databases has proposed the design of some of
these components. Unfortunately, there has not been much work
done to implement these components as an integral part of a
DBMS and study the problems faced to realize the Hippocratic
databases. The main goal of the ‘Hippocratic PostgreSQL’
project is to perform this implementation and study. The project
includes the implementation of components to support limited
disclosure, limited retention time, and management of multiple
policies and policy versions. This demo presents the use of these
components both from a terminal-based SQL command interface
and through a Web-based healthcare application that makes use
of the implemented database-level privacy features. Hippocratic
PostgreSQL has the novel feature of augmenting both k-
anonymity and generalization hierarchies into the Hippocratic
DBMS engine functionality. Several interesting problems emerge
as a result and their solutions are presented in the context of this
demo.

I. INTRODUCTION
Privacy has become an important component in systems

that handle personal data. Several research efforts have
studied ways to make data management systems aware of
privacy requirements, e.g., Hippocratic databases,
anonymization and generalization, and privacy-preserving
data mining.

Agrawal et al. proposed the Hippocratic database model to
address the privacy requirements inside of DBMSs [1]. One of
the main benefits of the Hippocratic database model is that
privacy requirements are fulfilled at the database-level.
Companies and organizations that use a Hippocratic database
can make use of these privacy-preserving features instead of
implementing ad-hoc application-level systems to comply
with privacy laws, e.g., the Health Insurance Portability and
Accountability Act (HIPAA) in the U.S.A., or the Access to
Health Records Act in the United Kingdom. Advantages of

* This work is partially supported by NSF Grant Number IIS-
0811954.

the implementation of authorization mechanisms at the
database-level are further discussed in [7].

A general design has been proposed for some of the key
components of the Hippocratic database [1]-[4]. The main
Hippocratic database guidelines are introduced in [1] while
the work in [2] presents an initial design for the limiting
disclosure. Research has been conducted to study the
problems in realizing Hippocratic databases, e.g., [4], [6].
Previous implementations have the form of middleware
systems between the application and database levels rather
than integral components of a DBMS. A demonstration of
some Hippocratic database features is presented in [6], which
focuses only on the support of limited disclosure on the
SELECT operation, support of a single policy, and limited
data collection. Chaudhuri et al. propose extending the SQL
Grant command to allow fine-grained authorization [7]. Fine-
grained authorization is a step towards enforcing privacy-
based limited disclosure at the database-level. However, fine-
grained authorization needs to be extended to support privacy
policies as a unit, which may contain multiple fine-grained
authorization commands. In contrast, a Hippocratic database
operates on an input privacy policy and treats it as a unit, e.g.,
translate, enable, disable, or comply with it. Anonymization is
another area of active research related to privacy. Several
algorithms have been proposed to achieve k-anonymity. To
the best of our knowledge, none of these algorithms have been
implemented at the database-level. We study the functioning
of the same at the database-level and propose and implement
an algorithm for it within the PostgreSQL engine. The
generalization of sensitive attributes based on personal
preferences, and its implementation outside of the database
engine are proposed in [9].

The main contributions of our work are (i) the design of
several Hippocratic database privacy components – policy
management, limited disclosure, limited retention time that
integrate and improve previous work, (ii) the design of
generalization and k-anonymity components that work
together with limited disclosure and their implementation as
integral sub-systems of a DBMS, (iii) the study of realization-
related problems faced during this implementation. The first
stage of the Hippocratic PostgreSQL project focuses on the
implementation of components to support limited disclosure
on multiple DML operations, sensitive attribute generalization,
k-anonymity, limited retention time, and support for multiple
policies and policy versions.

 The demonstration of Hippocratic PostgreSQL shows the
use of the new and extended SQL commands and privacy
facilities from both a terminal-based interface and a Web-
based healthcare application. The healthcare application
allows doctors and nurses to handle medical electronic records
and allows the patients to specify their preferences. The
Hippocratic PostgreSQL can support multiple applications
from different domains. The only effort to be put in would be
the creation of appropriate data tables and new policies.

II. HIPPOCRATIC POSTGRESQL ARCHITECTURE
Table 4 in Fig. 2 presents the schema and partial content of

table Patient used in our examples. This table stores one
row per data owner. The primary key of this table identifies
uniquely a data owner in the whole database. We call this
table the primary table. The architecture of Hippocratic
PostgreSQL is given in Fig. 1.

Policy
Translator

Privacy
Policy

Metadata

DML Operation + Purpose
+ Recipient

Data-
owner

Choices

Privacy Aware
Query Processor

Storage System

Privacy Policy
Translation Catalog

Signature
Date
Table

Base Data
Tables

Parser

Privacy Aware
Planner

Executor with k-
anonymity support

DBMS

Privacy
Policy

Limited Disclosure and Retention
Query Generator

Fig. 1 Hippocratic PostgreSQL Architecture

A. Privacy Policy Management
The ‘Policy Translator’ module translates an electronic

version of the privacy policy into its database equivalent. In
general, a policy can be specified using any privacy policy
specification language. The current version of Hippocratic
PostgreSQL supports P3P [5], a standard language proposed
by the W3C. The following Hippocratic PostgreSQL
command is used to perform the translation:
TRANSLATE POLICY <policy-path> [FROM
<language>] [POLICY_ID <policy-id>
POLICY_VERSION <policy-version>]

where <policy-path> is the path of the privacy policy in the
underlying file system. The default value of <language> is
P3P. Additionally, the policy id and policy version can be
specified directly. Otherwise, the translator will assign a
policy id and a version number automatically.

Given that a privacy policy is expressed in terms of data
elements and retention time periods using the terminology of a
specific privacy language, the translation process requires
information to map this terminology to tables, columns, and

specific time periods in the database. The mapping
information is stored in the ‘Privacy Policy Translation
Catalog’ (Fig. 2, Table1). The result of the translation process,
i.e., the database version of the policy, is stored in the
‘Privacy Policy Metadata’ tables (Fig. 2, Table 2-3).

Several policies can be active simultaneously as long as
each policy has a different primary table, e.g., Doctors,
Contractors, etc. Furthermore, Hippocratic PostgreSQL
supports multiple versions of the same policy simultaneously.
This feature requires extending the primary table with an
additional attribute that specifies the current policy associated
with each data owner. The support for multiple policies and
policy versions is a key feature for real world systems. As
stated in [4], 80% of the organizations use a different privacy
policy for employees and clients while 75% require support of
policy versions. Information about the current policies
translated into Hippocratic PostgreSQL and their status can be
obtained by querying the system table
PG_PrivacyPolicy.

B. Integrated Limited Disclosure
Hippocratic PostgreSQL’s ‘Privacy-Aware Query

Processor’ is an extension of the regular query engine which
ensures that any database access complies with the active
privacy policies stored in the ‘Privacy Policy Metadata’
tables and the data owner preferences. The design and
implementation of the Privacy Aware Query Processor
integrates and extends the ideas in [1], [2], [4]. All the DML
operations are extended to allow the specification of their
associated purposes and recipients in the following way
<DML-Operation> PURPOSE <Purpose>
RECIPIENT <Recipient>

The following SELECT operation obtains information about
patients and their diseases that will be shared with a research
lab.
SELECT P.name, P.sex, P.disease FROM
PATIENT P PURPOSE research RECIPIENT lab

The result of the previous SELECT operation will be
restricted to include only the columns that the combination of
purpose and recipient is allowed to access according to the
policy specification. It will be further restricted to include
only data of patients who opted-in to share their disease
information with research labs, if such an opt-in choice is
allowed by the policy. Intermediate Result 1 in Fig 2 is an
example depicting limited disclosure.

For other DML operations, i.e., INSERT, UPDATE, and
DELETE, the recipient represents the entity that triggers the
operation. The execution of an INSERT, UPDATE or
DELETE operation can be allowed, denied or allowed with
limited effect by the Privacy-Aware Query Processor. In this
case, the effect of the operation is restricted to the subset of
the data to which a user has access to, i.e., allowed by the
policy, data owner preferences and retention time
specifications. An INSERT operation on Table T requires the
user executing the operation to have access to all the columns
of T except the ones that receive the value NULL.

PRIVACY
MAPPINGS

purpose recipient P3P type table_name col_name
Treatment Doctors #patient.pno options_patient pno_option

Table 1: Stores the mappings between P3P element and database table.

 POLICIES
policy_id primary table id_column_name
Medical PatientPolicy1.0.0.1 PATIENT pno

Table 2: Stores the policies (could be active/inactive)

PATIENT_CHOICES
 pno pno_

option
name_
option

birthsex_
option

SA
Gen-
Level

phone_
option

P1 t t t 1 t
P2 t f t 1 t
P3 t t f 0 f
P4 t f f 0 f

Table 3: Stores the opt-in/out choices of each data owner. (One/more tables
specific to each application

PATIENT
 pno name birth sex phone disease

P1 N1 1965 M 765 111 1111 Gastritis
P2 N2 1966 M 765 222 2222 Bronchitis
P3 N3 1967 F 765 333 3333 Stomach Ulcer
P4 N4 1966 F 765 444 4444 Indigestion

Table 4: Primary table that stores the data owner’s data.

Example Scenario:
(a) The above tables are created and populated. Domain Generalization Hierarchy for the Sensitive Attribute ‘Disease’ is stored in another table.
(b) The P3P policy gets translated into the metadata tables POLICIES, PATIENT_CHOICES and a few more not given above.

 (c) Query: SELECT pno, phone, disease from patient;

pno phone disease
P1 765 111 1111 Gastritis
P2 765 222 2222 Bronchitis
P3 Stomach Ulcer
P4 Indigestion
Intermediate Result 1: Opt-in/out choices
specified in the policy are ensured through
limited disclosure component.

pno phone disease
P1 765 xxx xxxx Gastritis
P2 765 xxx xxxx Bronchitis
P3 Stomach Ulcer
P4 Indigestion
Intermediate Result 2: After 2-
anonymization of Intermediate Result 1.

pno phone disease
P1 765 xxx xxx Stomach Infection
P2 765 xxx xxx Respiratory Infection
P3 Stomach Ulcer
P4 Indigestion

Final Result: After Sensitive Attribute Generalization of
Intermediate Result 2.

Fig. 2 Hippocratic PostgreSQL Metadata Table and Healthcare Application Data Tables

Alternatively, if the keyword STRICT is specified after
INSERT, the user executing the operation is required to have
access to all the columns of T. An UPDATE operation on
Table T requires the user to have access to all columns of T
being updated. A DELETE operation on Table T requires the
user to have access to all columns of T.

C. Integrated Limited Retention
As per the definition for ‘Limited Retention’ stated in [1], data
should be retained only as long as necessary for the fulfillment
of the purposes for which it was collected. Even though the
deletion of all data items that have outlived their purpose
would help comply with Limited Retention, completely
forgetting information in a database without affecting
recovery is non-trivial. Our approach to support retention time
is through the privacy policy retention specification. The
period for which the information should be accessible is
specified through the Retention element in the P3P policy.
This element can have several predefined values: no-retention,
stated-purpose, legal-requirement, constant value etc., The
mapping between P3P retention value (Rt), purpose and actual
time period is stored in the privacy catalog table
PRIVMAP_RETENTION.
SELECT P.name, P.birth, P.sex, P.disease
FROM PATIENT P

The above query gets translated internally into the following
query to comply with the specified retention period (90 days
in this example):
SELECT P.name, P.birth, P.sex, P.disease
FROM PATIENT P WHERE current_date <=
((SELECT signature_date from
PATIENT_SIGNATURE_DATE WHERE
PATIENT_SIGNATURE_DATE.pno=P.pno) + 90)

The query translator builds a condition that ensures that the
date in which a command is executed falls within Rt days of
the date when the policy was signed.

III. INTEGRATED SENSITIVE ATTRIBUTE GENERALIZATION AND

K-ANONYMITY
Privacy through k-anonymization ensures that the data

owner remains anonymous among at least k persons. The idea
of Sensitive Attribute Generalization [9] adds the notion of
personalized privacy to the concept of k-anonymity. We
propose and implement both k-anonymity and sensitive
attribute generalization at the database level. The
anonymization algorithm implemented in our system is
inspired by the Datafly algorithm [10]. We assume that the
data holder has the knowledge of the quasi-identifiers [8] in
the data set. The algorithm works by generalizing the quasi-
identifiers in the tuples and merging the tuples with the same
combination of quasi-identifier values into QI groups; the

process is repeated until every QI group has a frequency > k.
In our algorithm, each user can specify his/her own k value
and the generalization level. The generic steps of the
anonymization query node are presented in Fig 3. The output
of the anonymization node (Fig. 2, Intermediate Result 2) is
passed on to the Sensitive Attribute (SA) Generalization Node
that modifies the value of the sensitive attribute according to
the privacy preferences of the data owner (Fig. 2, Table3).
The final output complies with opt-in/opt-out preferences,
sensitive attribute generalization preferences and is k-
anonymous.

QI Attribute
Selection

QI Attribute
Generalization

QI Groups Merger

Fully Anonymized
Tuples

SA Gen. Node

Selection/
Projection/
GroupBy
Nodes

Query

Final Ouput

A
no

ny
m

iz
at

io
n

no
de

Fig. 3 Query Execution flow with k-anonymity and SA Generalization

IV. HIPPOCRATIC POSTGRESQL IN A HEALTHCARE
APPLICATION

The demonstration of Hippocratic PostgreSQL includes the
presentation of all the commands described in Section II using
PostgreSQL’s psql terminal-based interface. Additionally, the
demonstration presents a Web-based healthcare application
that shows how the Hippocratic PostgreSQL privacy related
features can be used in practice.

The Web-based healthcare application has two main
components. The first one is a system designed to be used by
doctors and nurses to manage electronic medical records. This
application manages basic information of patients’ as-well-as
clinic and medication data. The privacy policy allows the
doctors of a patient to access all his medical information.
Nurses have limited access to certain data elements like home
or email addresses. Furthermore, the initial policy requires
users to agree to share clinical information for research
purposes performed in the medical centre labs. Fig. 4 shows a
screen shot of this application where some data items are not
released to the nurse reviewing the medical record. To
demonstrate the simultaneous use of multiple policy versions,
we simulate a change in the privacy law that requires the
policy to allow new patients to choose whether or not they
want to share their clinic information for research purposes.

The report of patients and diseases generated for a research
lab releases clinic data of (i) all patients who signed the first
version of the policy, and (ii) patients who opted-in to share
this information and signed the second version of the policy.

The second component of the presented healthcare
application is a system designed to be used by patients. This
application gives access to multiple services. Specifically it
allows patients to specify or update their personal preferences
for the opt-in/opt-out choices allowed by the policy they
signed.

 Fig. 4 Use of Hippocratic PostgreSQL at Application Level

V. FUTURE WORK

The second stage of the Hippocratic PostgreSQL: Stage-II
project will focus on the design and implementation of other
important components like: (i) support for openness, (ii)
limited collection, (iii) safety, (iv) compliance and (v) limited
use.

 REFERENCES
[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic databases,”

In VLDB, 2002.
[2] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan and Y. Xu,

“Limiting disclosure in Hippocratic databases,” In VLDB, 2004.
[3] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan, and W. Rjaib,

“Extending relational database systems to automatically enforce privacy
policies,” In ICDE, 2005.

[4] Y. Laura-Silva and Walid G. Aref, “Realizing privacy-preserving
features in Hippocratic databases,” In Third International Workshop on
Privacy Data Management, ICDE, 2007.

[5] L. Cranor, M. Langheinrich, M. Marchiori, M. Pressler-Marshall, and J.
Reagle, “The platform for privacy preferences 1.0 (P3P1.0)
specification,” W3C Recommendation, 2002.

[6] R. Agrawal, A. Kini, K. LeFevre, A. Wang, Y. Xu, and D. Zhou.
“Managing healthcare data hippocratically,” In SIGMOD, 2004. (Demo
paper)

[7] S. Chaudhuri, T. Dutta, and S. Sudarshan, “Fine grained authorization
through predicated grants,” In ICDE, 2007.

[8] L. Sweeney, “k-Anonymity: A model for protecting privacy,”
International Journal on Uncertainty, Fuzziness and Knowledge-based
Systems, 10(5): 557-570, 2002.

[9] X. Xiao and Y.Tao, “Personalized Privacy Preservation,” In SIGMOD,
2006.

[10] L. Sweeney, “Guaranteeing anonymity when sharing medical data, the
datafly system,” Journal of the American Medical Informatics
Association, 1997.

