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Abstract—Many companies now routinely run massive data
analysis jobs – expressed in some scripting language – on large
clusters of low-end servers. Many analysis scripts are complex
and contain common subexpressions, that is, intermediate results
that are subsequently joined and aggregated in multiple different
ways. Applying conventional optimization techniques to such
scripts will produce plans that execute a common subexpression
multiple times, once for each consumer, which is clearly wasteful.
Moreover, different consumers may have different physical re-
quirements on the result: one consumer may want it partitioned
on a column A and another one partitioned on column B. To
find a truly optimal plan, the optimizer must trade off such
conflicting requirements in a cost-based manner. In this paper
we show how to extend a Cascade-style optimizer to correctly
optimize scripts containing common subexpression. The approach
has been prototyped in SCOPE, Microsoft’s system for massive
data analysis. Experimental analysis of both simple and large
real-world scripts shows that the extended optimizer produces
plans with 21 to 57% lower estimated costs.

I. INTRODUCTION

The analysis of massive amounts of data is a routine activity
in many commercial and academic organizations. Internet
companies, for instance, collect large amounts of data such
as content produced by web crawlers, service logs and click
streams. Analyzing these data sets may require processing tens
or hundreds of terabytes of data. To perform this task, many
companies rely on highly distributed software systems running
on large clusters of commodity machines. Important examples
of such systems are: Google’s File System [1], MapReduce
[2], [3], Bigtable [4], Apache Hadoop [5], Microsoft’s Dryad
[6], and SCOPE/Cosmos [7], [8]. The implementation of these
systems presents multiple challenges and possibilities for the
optimization of the queries or scripts used for analysis, here
called cloud queries.

SCOPE [7], [8] is a SQL-like scripting language used
within Microsoft for massive-scale data analysis. Thousands of
SCOPE jobs run daily in Microsoft’s data centers, processing
petabytes of data and utilizing thousands of machines. Many
SCOPE scripts are large and contain multiple queries. These

queries can have many common subexpressions due to the
nature of the analysis performed. For instance, many scripts
first extract data from one or more input files and perform
some initial aggregations. An aggregated result is often used in
several places in the script where it might be further aggregated
or joined. A conventional optimizer that does not deal with
common subexpressions will produce a plan where the expres-
sions are evaluated multiple times. In this paper we consider
the problem of exploiting common subexpressions to optimize
SCOPE scripts. Our framework allows the identification of
common subexpressions and enables the generation of query
plans where common subexpressions are executed once and
their results used by multiple consumers. The selection of the
best plan is performed in a cost-based fashion.

The SCOPE optimizer is based on the Cascades frame-
work [9] but does not exploit common subexpressions. Di-
rect extension of mechanisms proposed earlier for similar
subexpressions [10], [11], [12] will generally fail to find the
optimal plans. Let us illustrate the problems of applying these
techniques to optimize the following SCOPE script.
R0 = EXTRACT A,B,C,D FROM "...\test.log"

USING LogExtractor;
R = SELECT A,B,C,Sum(D) as S FROM R0

GROUP BY A,B,C;
R1 = SELECT A,B,Sum(S) as S1 FROM R GROUP BY A,B;
R2 = SELECT B,C,Sum(S) as S2 FROM R GROUP BY B,C;
OUTPUT R1 TO "result1.out";
OUTPUT R2 TO "result2.out";

The operator DAG of this script is shown in Figure 1(a).
The script initially extracts columns A to D from file test.log.
The result of this step is named R0. Next, the rows of R0
are grouped using A, B and C as the grouping attributes. The
result of this step is referenced as R. The rows of R are further
aggregated to form R1 (grouping on A and B) and R2 (grouping
on B and C). Finally, The contents of R1 and R2 are stored
in files result1.out and result2.out, respectively. If a script has
several terminal operators, e.g., the Output operators in the
previous script, they are connected by a Sequence operator.
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(b) Different ways to repartition the out-
put of node 1.

Fig. 1. Simple SCOPE script – operator DAG and repartitioning options.

The SCOPE optimizer [7], [8] constructs plans recursively
and bottom up, that is, the plan for a node is built after building
the plans for its input nodes. Every time a node is processed, it
receives a set of physical requirements that the rows produced
by the plan must satisfy and it also generates the physical
requirements to be imposed on its input nodes. At each node
N the optimizer selects the lowest-cost plan for the expression
rooted at N. For example, the grouping operator in node 2
requires its input data to be partitioned on {A,B,C} or any
subset thereof. Note that if the data is partitioned on {B}, or
any subset of {A,B,C}, it is also partitioned on {A,B,C} [8]. In
fact, the SCOPE optimizer specifies partitioning requirements
using a range, e.g., [∅ , {A,B,C}]. Figure 1(b) shows two
ways to repartition at node 2. Furthermore, without loss of
generality, let us assume that the cost of repartitioning on
{A,B,C} at node 2 is smaller than the cost of repartitioning in
any other way.

Node 2 in Figure 1(a) has two consumers, nodes 3 and 4.
The crux of the problem is that the consumers may choose
different optimal plans for the subexpression rooted at node
2. For example, for node 3 the best plan may be to partition
on {A,B} and for node 4 it may be to partition on {B,C}.
These two partition requirements are incompatible forcing the
subexpression to be evaluated twice. Allowing each consumer
to make the best local choice does not guarantee an overall
optimal plan. What is needed is a way to reconcile competing
requirements and guarantee an overall optimal plan, which is
what we provide in this paper. We describe our solution in the
context of the SCOPE optimizer but the technique is applicable
to other types of optimizers as well.

Applying previous work on optimization using similar
subexpressions [10], [11], [12] to SCOPE queries will not
consistently generate the best global plan. These techniques
can identify common subexpressions but will select the plan
that locally minimizes the cost of the shared subexpression,
i.e., the one with repartitioning on {A,B,C}. Note that in this
case, the results of node 2 will need to be repartitioned to
execute the grouping operations in nodes 3 and 4.

The algorithms presented in this paper identify common
subexpressions and create additional alternatives that use the

same physical properties at the shared node. They consider
multiple properties for the shared node and generate, for
instance, a plan with repartitioning on {B} at node 2. This plan
is not locally optimal but has the potential to be part of the
globally optimal plan because the grouping operators on {A,B}
and {B,C} can be executed without additional repartitioning.
Note that, since the data is partitioned on {B}, it is also
partitioned on {A,B} and {B,C} [8].

The remaining part of this paper is organized as follows.
Section II presents the related work. Section III presents an
overview of the system architecture. Section IV describes the
use of query fingerprints to identify common subexpressions.
The way physical properties are recorded is explained in sec-
tion V. Section VI describes the propagation of the information
about share nodes and the identification of least common
ancestor nodes. Section VII describes the re-optimization
phase enforcing physical properties. Section VIII presents
several techniques to handle large scripts. Section IX presents
experimental results of the use of our framework, and Section
X presents the conclusions.

II. RELATED WORK

The presence of similar subexpressions has been exploited
in several areas of query processing and optimization. In par-
ticular, it has been applied to optimization of multiple related
queries [11], [13], [14], [15], [16], [12], and materialized view
selection [17], [18].

The problem of optimizing multiple related queries (multi-
query optimization) has received significant amount of work
[11], [13], [14], [15], [16], [12]. The initial work on multi-
query optimization [13], [15], [16] proposed solutions that
were not fully integrated with the query optimizer and uti-
lized primarily exhaustive algorithms. The work in [11], [12]
identifies common subexpressions as a post-optimization task.
Only the best plans of the individual queries are considered,
thus missing important optimization opportunities. The work
in [14] proposes an approach to multi-query optimization
that is integrated into an optimizer built on the Volcano [19]
framework. The integration requires many fundamental modi-
fications to the optimizer. Furthermore, the work in [14] uses a
greedy approach that fails to consider important optimization
cases and does not always find the optimal solution [10]. The
work in [17], [18] exploits similar subexpressions to improve
the performance of materialized views maintenance. The work
in [18] proposes the use of a covering subexpression that
covers all similar subexpressions and forces all consumers
to use this subexpression As explained in [10], this is not
always the best solution. It may, for example, be better to use
one covering subexpression for some of the consumers and
a different one for other consumers. In our work all possible
evaluation plans are compared in a fully cost-based manner.
The work in [10] proposed a comprehensive framework to
use common subexpressions for multi-query optimization and
materialized view selection in conventional databases.

None of the earlier techniques take into account competing
physical requirements from different consumers. In fact, they



completely ignore the physical properties of the result and
simply consider the result to be a set of rows. The importance
of exploiting physical properties such as sort order and parti-
tioning of result sets is well known in traditional optimization.
Our main contribution is to show how to trade off competing
physical requirements in a way that leads to a globally optimal
plan.

The work in [20] presents a parallel algorithm to answer
composite aggregate queries. However, this work focuses on
the specialized problem of answering correlated aggregations
over sliding windows. We focus on the optimization of general
queries that (i) may or may not have aggregations, and (ii) are
evaluated over the entire content of large input relations.

We present the implementation of our solution in the query
optimizer of SCOPE [7], [8]. SCOPE scripts are used exten-
sively at Microsoft for massive data analysis and data mining
tasks. The work in [7] presents the main language elements
of SCOPE. The work in [8] describes the incorporation of
partitioning and parallel plans into the SCOPE optimizer.

III. SYSTEM ARCHITECTURE

The framework we present is integrated into the
transformation-based optimizer used by SCOPE. Conceptually,
the optimizer generates all possible rewritings of a query
and selects the one with the lowest estimated cost. The
optimization process may generate a large number of query
rewritings which are stored in very compact form in a memo
structure [9]. Each node of the memo is known as a group
and is composed of a set of equivalent group expressions. All
the group expressions of a group generate the same set of
tuples. Each expression is associated with a single operator.
An operator references its children or input expressions using
group numbers, i.e., unique group identifiers. Each group in
the memo can be referenced by multiple group expressions.
The optimization process is performed in multiple phases.
Earlier phases use a smaller number of transformation rules
than later phases. The optimizer is also given a budget that
controls how much time can be spent during optimization.
Ideally, the earlier optimization phases should apply fast but
high-yielding transformation rules.

Figure 2 illustrates the steps in the processing of a query.
The SCOPE script is first parsed by the SCOPE compiler
which produces an initial logical operator DAG for the script.
The SCOPE optimizer identifies the best physical plan it
can find. This best plan is later executed by the lower level
Dryad and Cosmos subsystems. Figure 2 also shows the
four main steps of the optimization process for queries with
common subexpressions. The optimization process consists
of two phases. The original SCOPE optimizer uses only one
optimization phase (phase 1). Phase 2 is a new phase added
to re-optimize the query exploiting the presence of common
subexpressions.

Step 1: Identifying common subexpressions. This step is
performed before the first optimization phase. In this step,
subexpression fingerprints are employed to quickly identify
common subexpressions. A subexpression fingerprint is a
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Fig. 2. Query processing steps.

highly compressed representation of a subexpression. Finger-
prints for every subexpression are constructed in a bottom-up
fashion and stored in a hash table. Then, the hash table is
used to identify the common subexpressions. The root group
of each identified common subexpression is marked as such.

Step 2: Recording physical properties. This step is per-
formed during the original optimization phase, i.e., phase 1.
The conventional optimization is extended to record the history
of physical properties used in the shared groups identified in
Step 1. The history of physical properties is stored as a linked
list at every group that is the root of a shared subexpression.

Step 3: Propagating information about shared groups and
identifying LCAs. This step is performed right before the re-
optimizations begin in phase 2. The information about shared
groups is propagated bottom-up from the shared groups to the
root. The process also identifies, for each shared subexpression
S, the least common ancestor group (LCA) of the consumers
of S. The LCA of a set of groups or nodes L is the lowest
group in the DAG that is traversed by every path from the root
to any group in L. The information about shared groups and
LCAs is used to guide the final optimization step.

Step 4: Re-optimizing the query enforcing physical prop-
erties. This is the new phase added to re-optimize the script
exploiting common subexpressions. This step re-optimizes the
query enforcing physical properties at the shared groups. When
the optimizer processes a group G that is not an LCA, the
optimization process continues as usual. When a group G that
is the LCA of the consumers of a shared expression S is
found, the process re-optimizes the subexpression rooted in
G propagating a set of physical properties to be used in S
anytime S is optimized. This step considers sub-optimal local
plans that can generate a global optimal plan.

IV. EXPRESSION FINGERPRINTS

The first step quickly identifies the common query subex-
pressions and is executed before the first optimization phase.
This task computes the fingerprints of all the subexpressions
in the script. A fingerprint is a highly accurate summary
of an expressions that can be quickly and incrementally



Algorithm 1 IdentifyCommonSubexpressions(M )
Require: Memo M
Ensure: The root groups of all common subexpressions in M

are marked as being shared
1. IdentifyExplicitCommSubexpr(M )
2. H ← empty hash table
3. Compute the fingerprint of each subexpression S in M

using a bottom-up traversal of M ’s groups and store a
reference to the root group of S in H using FS as the
hash function

4. for every non-empty bucket B of H do
5. Compare all the colliding entries of B to identify

common subexpressions
6. if a set of common subexpressions is identified then
7. Remove from M all but one of the subexpressions

(R)
8. Add a SPOOL node on top of R and make all the

consumers point to this new node
9. Mark the SPOOL node as shared

10. end if
11. end for

computed using a bottom-up approach. Two expressions that
have the same fingerprint are equal with high probability. Two
expressions that have different fingerprints are not equal.

Definition 1: (Expression Fingerprints) The fingerprint of
an expression E rooted in R is denoted as FE and is computed
as follows:
(1) If R represents an operation that directly reads from a data
file, then

FE = R.F ileID mod N

(2) Otherwise,

FE = (R.OpID ⊕ (
k⊕

i=1

FR.child[i])) mod N

In Definition 1, ⊕ denotes the XOR operator. N is a prime
number large enough to prevent collisions among the values
of FileIDs and OpIDs. FileID is the unique identifier of a
data file. OpID is the unique identifier of an operation, e.g.,
all group-by operations have the same OpID. If the same
operation or file is used in multiple parts of an expression, the
same identifier is used in all the occurrences.

Algorithm 1 summarizes the process of identifying all com-
mon subexpressions in a query memo. A memo subexpression
is a rooted sub-DAG of the memo DAG. Given that all the
group expressions of a given group generate the same set
of results, the property of being or not shared is assigned
to groups. The algorithm identifies in line 1 the common
subexpressions explicitly given in the query. A common subex-
pression is explicitly given when a group is directly referenced
from 2 or more different groups, e.g., node 2 in Figure
1(a). Routine IdentifyExplicitCommSubexpr counts the

number of different parent groups of each group G of the
memo. When the number of parent groups is greater than 1, a
SPOOL operator (special SCOPE operator to materialize an
intermediate result) is added on top of G, and the SPOOL
group is marked as shared. In general, common subexpressions
are not always explicitly given. The remaining part of the
algorithm identifies all other common subexpressions. This
part has two main steps. The first one consists on computing
all the memo subexpression fingerprints using a bottom-up
approach (lines 2-3). To compute the fingerprint of a memo
subexpression S rooted at group G, we use the initial and
only group expression that G has at this stage. The properties
of the operation associated with the initial group expression
of G, e.g., OpID or FileID, and the fingerprints of the
children groups of this group expression are used to compute
the fingerprint of S following Definition 1. The fingerprint of
each memo subexpression S is used as the index in a hash table
where a reference to the root group of S is stored. Colliding
entries in this hash table represent memo subexpressions that
are potentially equal. The second step compares, for each non-
empty bucket of the hash table, the memo subexpressions
corresponding to the colliding entries (lines 4-11). If a set of
equal subexpressions is identified, the algorithm removes from
the memo all but one of them, adds a SPOOL operator on
top of the remaining subexpression, makes all the consumers
point to this new group, and marks the SPOOL group as
shared.

V. RECORDING PHYSICAL PROPERTIES

The next step in the optimization process is the identification
of the physical properties that are requested by different
consumers at the shared groups. This task is performed during
the conventional optimization phase, i.e., phase 1. Every time
the optimization routine is called for a shared group during
this phase, the routine stores the requested properties for this
group. The history of requested properties of a given group G
is stored using a linked list. The head of this list is referenced
from G. Each node of the list contains a set of required
physical properties, that is, partitioning, sorting, and columns.

The transformation-based optimization of an expression can
be considered as composed of two steps: logical exploration
and physical optimization. The logical exploration step applies
the transformation rules of the current optimization phase
to generate logically equivalent expressions. The physical
optimization step transforms the logical operators, e.g., join
and aggregation, to physical operators associated with specific
implementation algorithms, e.g., merge join, hash join, hash-
based aggregation, and sort-based aggregation.

Algorithm 2 presents a simplified version of the group
optimization routine. The algorithm receives a group G, a
set of required properties P , and the current optimization
phase ph as parameters. The main optimization routine calls
OptimizeGroup for the root memo group once for each op-
timization phase. At each phase, calling OptimizeGroup for
the root group triggers the optimization of the entire query
since the routine recursively optimizes the lower level groups.



The operations to record the physical properties of shared
groups are presented in lines 1-3. The remaining part of
the algorithm corresponds to conventional group optimization.
Additional changes to this routine will be introduced in the
next sections. The conventional group optimization process
generates first the equivalent logical expressions (line 6). Next,
implementation rules are used to transform the root nodes
of the logical expressions into physical operators (line 8).
Then, the child nodes of each physical operator physE are
recursively optimized (line 14). The properties to be requested
at the child nodes are generated calling the DetChildProp
(line 12) routine. These properties depend on the type of the
physical operator physE and P . The physical plans generated
for the child expressions are used to derive the delivered
properties of the plan rooted at physE by the UpdateDlvdProp
routine (line 16). Next, for each physical operator, the routine
verifies that the delivered properties satisfies the required
properties P calling the PropertySatisfied routine (line 18). In
general, compensating predicates could be added at this stage
to try to generate a plan that satisfy the required properties
P . If the required properties are satisfied, the plan is added to
the list of valid plans (line 19). The valid plan with the lowest
cost is selected (line 23) and compared with the previous best
plan of group G (line 24). The best plan of G is updated if
needed and returned by the OptimizeGroup routine.

Section I stated that partitioning requirements in SCOPE
are specified using a range, e.g., [∅, {A,B,C}]. It was also
observed that a partitioning scheme that generates a local
optimal plan may generate a global plan with a higher cost
than selecting an alternative partitioning scheme. To help
address this problem, every time a partitioning requirement
needs to be stored (line 2), our system stores multiple entries
corresponding to the different partitioning schemes that satisfy
the original requirement. For instance, if an optimization task
is called for a shared group with the partitioning requirement
[∅, {A,B,C}], the system stores the following entries in the
history of properties: [{A}, {A}], [{B}, {B}], [{C}, {C}],
[{A,B}, {A,B}], [{B,C}, {B,C}], [{A,C}, {A,C}], [{A,B,C},
{A,B,C}]. The way this information is used to find the global
optimal plan is presented in Section VII.

VI. PROPAGATING INFORMATION ABOUT SHARED
GROUPS AND IDENTIFYING LCAS

The propagation of information about shared groups and
the identification of the least common ancestors are performed
before the re-optimization phase of the optimization process
exploiting common subexpressions. The information about the
presence of shared groups is propagated bottom-up from the
shared groups to the root group. After the propagation, every
group is “aware” of the shared groups below itself. This
information will be used to guide the optimization process
during the re-optimization phase, i.e., phase 2.

As explained and exemplified in Section I, conventional
optimization of a shared group G considers the physical
requirements that locally optimize G but does not consider the
effect of this selection on the groups that belong to the paths

Algorithm 2 OptimizeGroup(G, P , ph)
Require: Group G, ReqProp (required properties) P ,

OptPhase ph
Ensure: The local best plan for G found up to this phase (ph)

is returned. In phase 1, the history of properties for shared
groups is saved.

1. if ph=1 ∧ G is shared ∧ P is not in the history of
properties of G then

2. Add P to the history of properties of G
3. end if
4. PlanList validP lans
5. /*Logical exploration (applies log. transformations)*/
6. for each possible logical expression logE for G using the

transformation rules of phase ph do
7. /*Physical optimization*/
8. for each possible physical implementation physE of

the root of logE do
9. DlvdProp dlvdProp

10. for each child group C of physE do
11. /*Determine required properties for child*/
12. ReqProp cProp← DetChildProp(physE, C, P )
13. /*Optimize child expression*/
14. QueryPlan cP lan OptimizeGroup(C, cProp,

ph)
15. /*Update delivered properties of physE*/
16. UpdateDlvdProp(dlvdProp, cP lan)
17. end for
18. if PropertySatisfied(P , dlvdProp) then
19. Add plan rooted at physE to validP lans
20. end if
21. end for
22. end for
23. QueryPlan plan← cheapestPlan(validP lans)
24. UpdateBestPlan(G, P , plan)
25. return G.bestPlan

from the consumers of G to the root, i.e., the consuming paths.
Furthermore, the different consumers may select different best
plans for the shared expression. This would result on an overall
query plan that executes the shared subexpressions multiple
times.

To address both problems, we re-optimize the expression
that contains G and the consuming paths of G while prop-
agating downwards a set of requirements for G that will be
enforced every time G is visited. A possible group to start this
re-optimization step is the root group since all the consuming
paths converge at this group. However, in general, this is
not necessary nor efficient. The re-optimization process can
start at the lowest group where the consuming paths of the
shared group intersect. This special group is known as the
least common ancestor (LCA) of the consumers of the shared
group.

Definition 2: (Least Common Ancestor) The Least Common
Ancestor (LCA) of a set of groups or nodes L in a rooted
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operator DAG D is the lowest group in D that is included in
every path from an element of L to the root of D.

Figure 3 shows the operator DAGs of three scripts with
common subexpressions and the corresponding LCAs. Note
that the LCA of a set of groups is not necessarily their lowest
common ancestor. Figure 3(c) illustrates this scenario. Group
6 is the lowest common ancestor of groups 4 and 5 but the
LCA of these groups is group 10. The reason is that there are
paths from the consumer groups to the root that do not contain
the lowest common ancestor, e.g., 4-7-10.

Algorithm 3 performs both propagation of the information
about shared groups and identification of the LCA of the
consumers of each shared group. This algorithm receives a
group G as a parameter and recursively processes the groups
below G. A group B is said to be below another group A if
A belongs to an always ascending path from B to the root.
The information about the shared groups below a group G1 is
stored using a list of nodes of type ShrdGrp. A list is attached
to every group G1 that has one or more shared groups below
itself. Each ShrdGrp node of G1 contains a reference to the
associated shared group S and the list of consumers of S that
are located below G1.

The algorithm initially ensures that a group is not processed
twice (lines 1-5). If G is a shared group the algorithm adds a
ShrdGrp node to G (lines 6-10). The associated shared group
in this case is G itself. Then, for each input group inputG
of G, the algorithm makes a recursive call with inputG as
parameter (line 12) and propagates the information of shared
groups from inputG to G (lines 14-37). The propagation
is performed in the following way. For each shared group
shrdGrpI of inputG, the algorithm searches a corresponding
ShrdGrp node shrdGrpG in G (lines 15-27). If a match is
found, the algorithm propagates the information about con-
sumer groups from shrdGrpI to shrdGrpG (line 19). After
this propagation, the algorithm checks if all the consumers of
the shared expression associated with shrdGrpG were found
(line 20). If this is the case the algorithm sets G as the LCA
of this shared expression (line 22). If another LCA was found

previously, the routine SetLCA will overwrite that information
and set G as the new LCA. If no match for shrdGrpI is
found in G, the algorithm adds a copy of shrdGrpI to the
list of shared groups of G (line 30). If inputG is a shared
group and is also the group associated with shrdGrpI , the
algorithm records that a consumer of this shared group was
found (line 33). The consumer in this case is G itself.

The correctness of Algorithm 3 relies on the following
invariant: For each shared group S below a group G (not
necessarily the root), after calling the algorithm passing G
as parameter, the algorithm has identified the LCA of the
consumers of S in the rooted sub-DAG that contains G (root
of the sub-DAG) and all the groups below it.

The main optimization routine calls Algorithm 3 passing the
root group as the parameter. This single call will propagate the
information about all shared groups and will identify the LCA
for each shared group. The query expressions in Figure 3 show
the content of the lists of ShrdGrp nodes attached to each
group by Algorithm 3. The graphical notation is presented in
Figure 3(a). Figures 3(a) and 3(c) have a single shared group:
group 3, while Figure 3(b) has two shared groups: groups 5
and 6. In the latter case, group 15 is the LCA of the consumers
of both shared groups.

VII. RE-OPTIMIZING WHILE ENFORCING PHYSICAL
PROPERTIES

This step re-optimizes the query enforcing physical proper-
ties at the shared groups. This task is performed in a new
optimization phase, i.e., phase 2, and uses the information
generated in previous steps. When the optimization process
reaches a group G that is the LCA associated with a shared
group S, the process re-optimizes the sub-DAG rooted at G
for every possible physical property set that can be enforced
at S. This task uses the history of physical properties of S
identified in Step 2 (Section V). The optimizer propagates
downwards the properties to be enforced at the shared groups.
This propagation is done only to the paths that will eventually
reach the shared groups and uses the information of shared
groups under each group identified in Step 3 (Section VI).



Algorithm 3 PropagateSharedGrpInfoAndFindLCA(G)
Require: Group G
Ensure: Information of the shared groups is propagated

(bottom-up). The LCA of each shared group is identified.
1. if G.alreadyVisited then
2. return
3. else
4. G.alreadyVisited ← true
5. end if
6. if G.isShared then
7. /*add new shared group to G*/
8. ShrdGrp ng ← newShrdGrp(G.grpNo, G.parents)
9. G.sharedGroups.add(ng)

10. end if
11. for each input (child) group inputG of G do
12. PropagateSharedGrpInfoAndFindLCA(inputG)
13. /*Update info of shared groups of G*/
14. for each shared group shrdGrpI of inputG do
15. sharedGrpFound← false
16. for each shared group shrdGrpG of G do
17. if shrdGrpI .grpNo = shrdGrpG.grpNo then
18. /*propagate information of consumer groups*/
19. propConsGrps(shrdGrpG, shrdGrpI)
20. if shrdGrpG.allConsumGrpsFound() then
21. /*G is a potential LCA of shrdGrpG*/
22. SetLCA(G, shrdGrpG)
23. end if
24. sharedGrpFound← true
25. break
26. end if
27. end for
28. if !sharedGrpFound then
29. /*add shrdGrpI to list of shared groups of G*/
30. ShrdGrp ngI ← copyShrdGrp(shrdGrpI)
31. if inputG.grpNo = shrdGrpI .grpNo then
32. /*G is a consumer of inputG*/
33. ngI .setConsumGrpAsFound(G);
34. end if
35. G.sharedGroups.add(ngI)
36. end if
37. end for
38. end for

Since the property set to be enforced in S is propagated from
the LCA G, all paths that reach S enforce the same property
in S. This ensures that the resulting plan will execute the
common expression once. Furthermore, the plans obtained at
the LCA G consider the effects of the physical properties of S
on the consuming paths. This allows finding the global optimal
plan for G. The changes to implement this step are presented in
algorithms 4 and 5. These algorithms are an updated version of
the routine OptimizeGroup presented previously in Algorithm
2. The code of the original routine has been divided in two
routines to simplify the presentation.

Algorithm 4 presents the extended OptimizeGroup routine.

Algorithm 4 OptimizeGroup(G, P , ph)
Require: Group G, ExtReqProp (extended required prop-

erties, includes properties to be enforced at the shared
groups) P , OptPhase ph

Ensure: The best plan for G found up to this phase (ph) is
returned. In phase 1, the history of properties for shared
groups is saved. Phase 2 optimizes exploiting common
sub-expressions.

1. if ph=1 ∧ G is shared ∧ P is not in the history of
properties of G then

2. Add P to the history of properties of G
3. end if
4. if ph=2 ∧ G is the LCA corresponding to shared groups

ShrdG then
5. /*Optimization enforcing physical properties*/
6. PlanList newV alidP lans
7. for each combination ShrdGrpProps of physical

properties for ShrdG do
8. SetPropForSharedGrps(P , ShrdGrpProps)
9. QueryPlan newPlan← LogPhysOpt(G, P , ph)

10. Add newPlan to newV alidP lans
11. end for
12. QueryPlan plan← cheapestPlan(newV alidP lans)
13. else
14. QueryPlan plan← LogPhysOpt(G, P , ph)
15. end if
16. UpdateBestPlan(G, P , plan)
17. return G.bestPlan

This routine receives three parameters: G, the group to opti-
mize, P , the set of required properties, and ph, the current op-
timization phase. The only change on the parameters is on the
data type of the second parameter (P ), which is now of type
ExtReqProp. ExtReqProp is an extension of ReqProp
that has an additional field named PropForSharedGrps. This
field is used to store the properties to be enforced at the
shared groups. Lines 1-3 of Algorithm 4 record the history
of properties at the shared groups during phase 1. If the
group being optimized, i.e., G, is the LCA associated with
one or more shared groups and the optimization phase is 2,
then the routine re-optimizes G enforcing physical properties
at the shared groups (lines 6-12). Otherwise, it calls the
routine LogPhysOpt to perform regular logical and physical
optimization of G (line 14). To re-optimize enforcing physical
properties, the OptimizeGroup routine generates all possible
combinations of the physical property sets to be enforced at
the shared groups (line 7). The combinations of property sets
are generated changing initially the property sets for the first
shared group and using initial property sets for the remaining
groups. Then, the next property set is assigned to the second
group and a new combination is generated for every possible
property set that can be assigned to the first group, and so
on. For instance, if G is the LCA of groups 3 and 4 and
their history of property sets are {p1, p2} and {q1, q2},



respectively, the routine generates the following combinations
of properties: {(3, p1), (4, q1)}, {(3, p2), (4, q1)}, {(3, p1), (4,
q2)} and {(3, p2), (4, q2)}. The generation of combinations of
properties is improved in Section VIII to handle large scripts.
For each possible combination, the OptimizeGroup routine sets
the properties to be enforced in the PropForSharedGrps field
of P (line 8) and re-optimizes G calling LogPhysOpt (line 9).
LogPhysOpt will enforce the physical properties at the shared
groups. We refer to each re-optimization process as a round.
The new plans obtained from the different rounds are added
to a list of valid plans (line 10) and, after processing all the
rounds, the routine selects the plan with the smallest cost (line
12). The plan found in lines 12 or 14 is compared with the
previous best plan of G. The best plan of G is updated if
needed (line 16) and returned (line 17).

As stated in Section III, the actual implementation of the
optimization routines uses an optimization budget that controls
the time to be spent during optimization. We extended this
feature to the new optimization phase to allow the optimizer
to stop at an intermediate round and use the best plan found
up to that point.

Algorithm 5 presents the LogPhysOpt routine. This routine
has the same parameters as Algorithm 4 and is an extended
version of the code in lines 4-24 of the original Optimize-
Group routine (Algorithm 2). The routine performs the logical
exploration and physical optimization of a given group G and
returns the plan for G with the lowest cost. In addition, in
phase 2, the routine also propagates downwards the proper-
ties to be enforced at the shared groups and enforces these
properties when it reaches the shared groups. The difference
with respect to the code of the original OptimizeGroup is on
the way the routine determines the required properties for the
child groups of G (lines 9-17). Line 9 initializes the properties
cProp that will be used to optimize the child being considered
(C). If the current phase is 2 and C is shared, the routine
enforces the physical property set propagated from the LCA
for C (line 11). This operation will load the conventional
fields of cProp with the information of the property set to
be enforced at C. This information is obtained from the
PropForSharedGrps field of P . If the current phase is not 2 or
C is not shared, the conventional fields of cProp are loaded as
in the original OptimizeGroup routine, i.e., calling the routine
DetChildProp (line 13). In phase 2, the routine also propagates
downwards the properties for shared groups from P to cProp
(line 16). The routine PropagPropForSharedGrps propagates
all the property sets from the field PropForSharedGrps of P to
the one of cProp. The only property set that is not propagated
is the one for the group child C when C is shared. In this case,
a shared group has been reached.

Figure 4 shows the operator DAGs of two SCOPE scripts.
The operator DAG in Figure 4(a) has two shared groups that
are associated with different LCAs. The one in Figure 4(b)
has two shared groups associated with the same LCA. These
figures represent the operation of the re-optimization phase
based on Algorithms 4 and 5. The figures show the information
about shared groups under each group. This is presented

Algorithm 5 LogPhysOpt(G, P , ph)
Require: Group G, ExtReqProp (extended required prop-

erties, includes properties to be enforced at the shared
groups) P , OptPhase ph

Ensure: Performs logical exploration and physical optimiza-
tion. In phase 2, propagates downwards the properties to
be enforced at the shared groups

1. PlanList validP lans
2. /*Logical exploration (applies log. transformations)*/
3. for each possible logical expression logE for G using the

transformation rules of phase ph do
4. /*Physical optimization*/
5. for each possible physical implementation physE of

the root of logE do
6. DlvdProp dlvdProp
7. for each child group C of physE do
8. /*Determine required properties for child*/
9. ExtReqProp cProp

10. if ph=2 ∧ C is shared then
11. cProp← EnforcePhysProp(C, P )
12. else
13. cProp← DetChildProp(physE, C, P )
14. end if
15. if ph=2 then
16. PropagPropForSharedGrps(cProp, C, P )
17. end if
18. /*Optimize child expression*/
19. QueryPlan cP lan OptimizeGroup(C, cProp,

ph)
20. /*Update delivered properties of physE*/
21. UpdateDlvdProp(dlvdProp, cP lan)
22. end for
23. if PropertySatisfied(P , dlvdProp) then
24. Add plan rooted at physE to validP lans
25. end if
26. end for
27. end for
28. QueryPlan plan← cheapestPlan(validP lans)
29. return plan

using the same graphical notation explained in Figure 3(a).
In addition, they show the properties to be enforced at the
shared groups for each possible round, the history of properties
of the shared groups, and the propagation of the properties
to be enforced at the shared groups during round 1. Figure
4(a) presents the notation of the additional graphical elements.
The label attached to an edge that is not incident to a shared
group represents the property sets for shared groups being
propagated. If an edge is incident to a shared group, the
label represents the property set being enforced at the shared
group. For example, in the DAG of Figure 4(a), group 11
is the LCA associated with shared group 5. The history of
physical properties of group 5 has two property sets p1 and p2.
When group 11 is reached in phase 2, the optimizer generates
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Fig. 4. Re-optimization enforcing physical properties

two optimization rounds corresponding to the two possible
combinations of properties for group 5: {(5, p1)} and {(5,
p2)}. The label {(5, p1)} attached to the edge between groups
11 and 7 represents that this requirement is propagated from
group 11 to 7 during round 1. The label {(5, p1)} attached to
the edge between groups 7 and 5 represents that property set
p1 is being enforced to optimize group 5 during round 1.

The plans generated in the re-optimization phase (phase 2)
are different from the ones generated in the initial optimization
pase (phase 1). The optimizer will select the plan with the
lowest cost. This plan could have been generated in any phase.

VIII. HANDLING LARGE SCRIPTS

If the optimization budget is sufficiently large, the opti-
mization process described in the previous sections evaluates
all the possible plans and finds the global optimal plan. In
real world scripts, when the number of groups and shared
groups is not very large, the process will potentially find a
good global solution that executes the shared subexpressions
once using a similar total budget as the one used for normal
query optimization. However, scripts may also have a large
number of groups and shared groups. Under this scenario, the
presented optimization routines would generate a very large
number of optimization rounds during the re-optimization
phase. In this section we present several extensions of the
proposed framework to handle large scripts. The proposed
extensions aim to reduce the number of rounds and to evaluate
the most promising ones early.

A. Exploiting Independent Shared Groups

When several shared groups are associated with the same
LCA group L, the number of rounds to optimize L can be
dramatically reduced if the shared groups are independent as
specified in the following definition.

Definition 3: (Independent Shared Groups) A set of shared
groups that are associated with the same LCA group L are
independent if the sub-DAGs constructed for each shared

group S including all the groups in the consuming paths of S
share only the group L and possibly groups above L.

Figure 5 shows an operator DAG with two independent
shared groups (5 and 6). The identification of independent
shared groups is performed after completing Step 3 (Section
VI) and uses the information of shared groups under each input
group of LCAs. Note that, if a group L is the LCA associated
with two shared groups G1 and G2, has two input groups I1
and I2, and the lists of shared groups below I1 and I2 are
ShrdGrpsI1 and ShrdGrpsI2, respectively; G1 and G2 are
independent if none of the lists (ShrdGrpsI1, ShrdGrpsI2)
contains both shared groups (G1 and G2). We can generalize
this property to identify the disjoint independent sets of shared
groups for any LCA L as follows. We create a copy of the
sets of shared groups under each input of L and use this copy
in the next steps. Next, we remove all the groups that do not
have L as their associated LCA. Then, we iteratively merge
the sets that share at least one element. The final sets represent
the independent sets of shared groups.

If multiple shared groups are independent, they can be
re-optimized independently. To do this, the way rounds are
generated (line 7 of Algorithm 4) is modified as follows. The
optimizer generates first the rounds for the different property
sets that can be enforced in the first shared group while using
the initial property sets for the other groups. When these
rounds are completed, the optimizer has identified the best
property set bestP1 to optimize the first group. Further rounds
will only use bestP1 as the property set for the first group. The
process continues generating rounds for the different property
sets of the second shared group and so on.

Let us consider for example the expression with two shared
groups (5 and 6) illustrated in Figure 5. Group 5 has eight
property sets in its history of properties: p1 to p8. Group 6
has also eight property sets in its history: q1 to q8. Without
the changes presented in this section, the OptimizeGroup
routine generates, at group 15, as many rounds as the number
of combinations of properties for the shared groups. This
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Fig. 5. Two independent shared groups.

would generate 64 rounds. However, since groups 5 and 6 are
independent shared groups, the extended routine will generate
the following rounds. A round is generated for each of the
eight property sets that can be enforced in group 5 while using
the initial property set q1 for group 6. This step will generate
rounds for the following required properties: {(5, p1), (6, q1)},
{(5, p2), (6, q1)}, ..., {(5, p8), (6, q1)}. After these rounds are
executed, the routine has identified the best property Pbest for
group 5, i.e., the property that generated the smallest cost in
the first eight rounds. Next, the routine generates rounds for the
properties that can be enforced in group 6 while using always
Pbest for group 5. This generates rounds for the following
required properties: {(5, Pbest), (6, q2)}, {(5, Pbest), (6, q3)},
..., {(5, Pbest), (6, q8)}. After this new set of rounds, the
routine will have identified the best combination of properties
to re-optimizes group 15. The extended routine generates only
15 rounds.

B. Ranking Shared Groups

The goal of this extension is to perform the more promis-
ing rounds early. This extension considers the fact that the
optimization of different shared groups may provide different
reductions in the overall plan cost. The potential repartitioning
savings of a group is used as an indicator of how beneficial
optimizing the groups is.

RepartSav(G) = (NoConsumers(G)−1)∗RepartCost(G)

Note that the more consumers a group has and the higher
the repartitioning cost associated with the group is, the higher
the repartitioning savings will be. When a given group L is
the LCA associated with multiple shared groups, the shared
groups are ranked based on their repartitioning savings (high
to low). The new order of the shared groups is used to generate
the optimization rounds in line 7 of Algorithm 4. Given that
the OptimizeGroup routine generates first the rounds for the
property sets to be enforced at the first shared groups, the
process will identify early the plans that optimize these highly
beneficial groups.

C. Ranking Shared Group Properties

Similarly to the technique presented in Section VIII-B, this
extension aims to improve the generation of re-optimization
rounds to process the more promising ones early. In this case,
we use the fact that multiple property sets in the history of
properties of a shared group can yield different benefits in the
overall plan cost. We use the number of times a property set
P generated a best local plan during phase 1 as an indicator of
how beneficial P can be in phase 2. For each shared group S,
we rank the elements in its history of properties from high to
low associated frequency. This task is performed right before
the re-optimization phase. The new order of elements in the
history of property sets is used during the generation of rounds
(line 7 of Algorithm 4). The optimizer will evaluate the rounds
for potentially highly beneficial properties first.

IX. EXPERIMENTAL RESULTS

We have extended Microsoft’s SCOPE optimizer with the
algorithms for exploiting common subexpressions presented
in Sections III to VII. We also implemented the techniques
to handle large scripts discussed in Section VIII. This section
presents several experimental results of our implementation.
We run the SCOPE optimizer on an Intel Dual Core 2GHz
machine with 2GB RAM using Microsoft Windows as oper-
ating system.

Figure 6 shows the scripts used in the experimental evalua-
tion. Scripts S1 to S4 are small SCOPE scripts designed to test
different configurations of shared groups and their associated
LCA groups. Figure 6 presents the text and the corresponding
operator DAGs of these scripts. S1 is the motivating script
used in Section I. It has a single shared group with two
consumers. S2 is similar to S1 but it has three consumers. S3
has two shared groups with different associated LCAs. S4 has
also two shared groups but they have the same associated LCA
group. The shared groups of S4 are non-independent. Scripts
LS1 and LS2 are large real world SCOPE scripts. They
are both used to analyze large logs generated by Microsoft
online services. Figure 6 presents important properties of these
scripts. The initial memo structure of LS1 has 101 groups, 4
of them are shared groups. LS2 is significantly larger than
LS1, its initial memo has 1034 groups and 17 shared groups.

Figure 7 presents the results of optimizing the queries of
Figure 6 with and without the framework to exploit common
subexpressions. The presented estimated costs are computed
by the optimizer using techniques to accurately represent query
execution times. Note that these cost estimation techniques are
not modified in this paper. The cost of the plan for S1 using
only conventional optimization is 8185. The cost using our
framework to exploit common subexpressions is 5037, this is
only 62% of the original cost. Figure 8 shows the plans for S1
generated by the conventional and extended optimizers. The
edges with multiple arrows represent that multiple instances
of the operators are running in parallel on multiple machines.
The shaded groups represent operations that exchange data
among the cluster machines. These operations are in general
very costly. A sequence of non-shaded operators where every



S1: Single shared group with two consumers

R0 = EXTRACT A,B,C,D FROM "...\test.log" 

USING LogExtractor;

R = SELECT A,B,C,Sum(D) as S FROM R0 GROUP BY A,B,C;

R1 = SELECT A,B,Sum(S) as S1 FROM R GROUP BY A,B;

R2 = SELECT B,C,Sum(S) as S1 FROM R GROUP BY B,C;

OUTPUT R1 TO "result1.out";

OUTPUT R2 TO "result2.out";

S2: Single shared group with three consumers

R0 = EXTRACT A,B,C,D FROM "...\test.log" 

USING LogExtractor;

R = SELECT A,B,C,Sum(D) as S FROM R0 GROUP BY A,B,C;

R1 = SELECT B,A,Sum(S) as S1 FROM R GROUP BY B,A;

R2 = SELECT A,C,Sum(S) as S2 FROM R GROUP BY A,C;

R3 = SELECT A,Sum(S) as S3 FROM R GROUP BY A;

OUTPUT R1 TO "result1.out";

OUTPUT R2 TO "result2.out";

OUTPUT R3 TO "result3.out";

S3: Two shared groups with different LCA

R0 = EXTRACT A,B,C,D FROM "...\test.log" 

USING LogExtractor;

R = SELECT A,B,C,Sum(D) as S FROM R0 

GROUP BY A,B,C;

R1 = SELECT B,C,Sum(S) as S1 FROM R GROUP BY B,C;

R2 = SELECT B,A,Sum(S) as S2 FROM R GROUP BY B,A;

RR = SELECT R1.B,A,C,S1,S2 FROM R1,R2 

WHERE R1.B=R2.B;

T0 = EXTRACT A,B,C,D FROM "...\test2.log" 

USING LogExtractor;

T = SELECT A,B,C,Sum(D) as S FROM T0 

GROUP BY A,B,C;

T1 = SELECT B,C,Sum(S) as S1 FROM T GROUP BY B,C;

T2 = SELECT B,A,Sum(S) as S2 FROM T GROUP BY B,A;

TT = SELECT T1.B,A,C,S1,S2 FROM T1,T2 

WHERE T1.B=T2.B;

OUTPUT RR TO "result1.out";

OUTPUT TT TO "result2.out";

S4: Two non-independent shared groups

R0 = EXTRACT A,B,C,D FROM "...\test.log" 

USING LogExtractor;

R = SELECT A,B,C,Sum(D) as S FROM R0 GROUP BY A,B,C;

R1 = SELECT B,C,Sum(S) as S1 FROM R GROUP BY B,C;

R2 = SELECT B,A,Sum(S) as S2 FROM R GROUP BY B,A;

RR = SELECT R1.B,A,C FROM R1,R2 

WHERE R1.B=R2.B;

OUTPUT R1 TO "result1.out";

OUTPUT R2 TO "result2.out";

OUTPUT RR TO "result3.out";

LS1: Large real-world script 1

4 shared groups

3 of them have 2 consumers, 1 has 3 consumers

101 operators in the initial operator DAG (before phase 1)

LS2: Large real-world script 2

17 shared groups

15 of them have 2 consumers, 1 has 4 consumers, 1 has 5 consumers

1034 operators in the initial operator DAG (before phase 1)
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pair is connected with multiple arrows represent that multiple
machines execute the sequence of operations. A Sequence
operator on top of a plan does not process the data generated
by its input operators. It just specifies that the overall plan is
composed of several sub-plans.

The conventional optimizer generates a plan that executes
the common subexpression twice (Figure 8(a)). Each time the
shared group is reached by the OptimizeGroup routine, the
requirements to optimize this group are different and conse-
quently the plans generated for the common subexpression
are also different. The plan is composed of two independent
subplans that perform the same sequence of operations, (1) to
(7), but using different attributes.

• (1) to (3). test.log is partitioned and distributed twice
across all machines in the cluster. After extracting the
attributes A, B, C and D, the input is sorted and aggre-
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Fig. 8. Script plan comparison for S1.

gated (at each machine) on attributes {B,A,C} in the left
subplan and {C,B,A} in the right subplan.

• (4). To group all the data on {A,B,C}, all the records
with the same values of A, B and C should be located
in the same machine. This is obtained repartitioning on
{B,A} in the left subplan and on {C,B} in the right one.
Next, each machine sorts its data on {B,A,C} in the left
subplan and on {C,B,A} in the right one.

• (5). Each machine aggregates its data grouping on
{B,A,C} in the left subplan and on {C,B,A} on the right
subplan. This step computes the values of S.

• (6). Each machine further aggregates its intermediate data
grouping on {B,A} in the left subplan and on {C,B} on
the right subplan. This step computes the values of S1
and S2 in the left and right subplans, respectively.



• (7). The resulting data is stored in parallel building the
distributed files result1.out and result2.out.

Our extended optimizer generates a plan that executes the
common subexpression once and uses its results twice (Figure
8(b)).

• (1) to (3). The input file is partitioned and distributed
once across all machines in the cluster. After extracting
the attributes A, B, C and D, the input is sorted and
aggregated on {B,A,C} at each machine.

• (4). The data is repartitioned once on {B}. After that,
each machine sorts its data on {B,A,C}.

• (5). Each machine aggregates its data grouping on
{B,A,C}. The values of S are computed.

• (6). The intermediate results are materialized.
• (7) and (8). The left operator further aggregates the

materialized data on {B,A}. The right operators sort and
aggregate the materialized data on {C,B}. S1 and S2 are
computed in (8).

• (9). The resulting data is stored in parallel building the
distributed files result1.out and result2.out.

Figure 7 shows also that the extended optimizer reduces
the cost of S2 by 55%. This result shows that the reduction
depends on the number of consumers. The reductions on the
cost of the two-shared-group scripts S3 and S4 are 45% and
57%, respectively. The execution time of the optimization
process for queries S1 to S4 was smaller than one second.
Our tests also showed significant saving on the large real
world scripts. The savings on scripts LS1 and LS2 are of
21% and 45%, respectively. The optimization of these scripts
benefited from the extensions to handle large scripts. The time
budgets to optimize LS1 and LS2 were of 30 and 60 seconds,
respectively. In all the evaluated scripts the overall time budged
used for optimization is a small fractions of the execution time
of the produced plan (smaller than 1%).

X. CONCLUSIONS

Scripts for cloud-based massive data analysis, e.g., using
Microsoft’s SCOPE or Yahoo!’s Pig Latin, often contain
common subexpressions. The optimization of these scripts
using conventional query optimization techniques generates
plans that execute the common subexpressions as many times
as they are consumed. In this paper, we present a frame-
work to correctly optimize cloud scripts that contain common
subexpressions. The framework produces plans that execute
common expressions only once. The optimization process is
extended with a new re-optimization phase that enforces phys-
ical properties at the shared groups. Our approach reconciles
competing physical requirements in a way that leads to a
globally optimal plan. Our framework was designed to be
integrated with optimizers that use the common Cascades
model. We prototyped the framework in SCOPE and the
experimental analysis shows that it reduced significantly (from
21 to 57%) the estimated cost of simple and large real-world
scripts.
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