
Exploiting MapReduce-based Similarity Joins

Yasin N. Silva
Arizona State University

4701 W. Thunderbird Road
Glendale, AZ 85306, USA

ysilva@asu.edu

Jason M. Reed
Arizona State University

4701 W. Thunderbird Road
Glendale, AZ 85306, USA

jmreed3@asu.edu

ABSTRACT
Cloud enabled systems have become a crucial component
to efficiently process and analyze massive amounts of data.
One of the key data processing and analysis operations is
the Similarity Join, which retrieves all data pairs whose
distances are smaller than a pre-defined threshold ε. Even
though multiple algorithms and implementation techniques
have been proposed for Similarity Joins, very little work has
addressed the study of Similarity Joins for cloud systems.
This paper presents MRSimJoin, a multi-round MapReduce
based algorithm to efficiently solve the Similarity Join prob-
lem. MRSimJoin efficiently partitions and distributes the
data until the subsets are small enough to be processed in
a single node. The proposed algorithm is general enough
to be used with data that lies in any metric space. We
have implemented MRSimJoin in Hadoop, a highly used
open-source cloud system. We show how this operation can
be used in multiple real-world data analysis scenarios with
multiple data types and distance functions. Particularly,
we show the use of MRSimJoin to identify similar images
represented as feature vectors, and similar publications in
a bibliographic database. We also show how MRSimJoin
scales in each scenario when important parameters, e.g., ε,
data size and number of cluster nodes, increase. We demon-
strate the execution of MRSimJoin queries using an Amazon
Elastic Compute Cloud (EC2) cluster.

Categories and Subject Descriptors
H.2.4 [Database management]: Systems—query process-
ing, parallel databases

Keywords
Similarity Join, MapReduce, Hadoop

1. INTRODUCTION
The analysis of massive amounts of data is a routine ac-

tivity in many companies and scientific labs. Internet com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD Š12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

panies, for instance, collect large amounts of data such as
content produced by web crawlers, service logs and click
streams. Analyzing these datasets may require processing
tens or hundreds of terabytes of data. Cloud systems con-
stitute an answer to the requirements of processing massive
amounts of data in a highly scalable and distributed fashion.
These systems are composed of large clusters of commod-
ity machines and are often dynamically scalable, i.e., clus-
ter nodes can be added or removed based on the workload.
The main software framework for distributed processing over
cloud systems is MapReduce [4]. This framework processes
massive datasets by splitting them into independent chunks
that are processed in a highly parallel fashion. The work in
[11] extended this framework with a merge phase to facili-
tate the implementation of regular join operations.

One of the most useful data processing and analysis opera-
tions is the Similarity Join (SJ), which retrieves all data pairs
whose distances are smaller than a pre-defined threshold ε.
Similarity Joins have been studied and extensively used in
multiple application domains. Several Similarity Join algo-
rithms and implementation techniques have been proposed.
They range from approaches for only in-memory or external
memory data [5, 8] to techniques that make use of database
operators to answer Similarity Joins [3, 9]. Unfortunately,
there has not been much work on the study of this opera-
tion on cloud systems. To the best of our knowledge, the
only work that addressed the problem of Similarity Joins in
this context is the one presented in [10]. The work in [10],
however, focuses on the study of a different and more spe-
cialized type of Similarity Join (Set-Similarity Join) which
constrains its applicability to set-based data.

This paper presents MRSimJoin, a MapReduce based al-
gorithm that solves the Similarity Join problem by itera-
tively partitioning and distributing the data until the sub-
sets are small enough to be processed in a single node. We
have implemented MRSimJoin in Hadoop [2], a highly used
open-source cloud system. The proposed approach is gen-
eral enough to be used with any dataset that lies in a metric
space. We show how this operation can be used in mul-
tiple real-world data analysis scenarios with multiple data
types and distance functions. Particularly, we show the use
of MRSimJoin to identify: (1) similar images represented
as feature vectors, and (2) publications in the DBLP biblio-
graphic database with similar titles.

The remaining part of this paper is organized as follows.
Section 2 describes the MRSimJoin algorithm. Section 3
describes the demonstration scenarios. Section 4 presents
the conclusions and future research directions.

Input/Intermediate Data

Map Map Map

Reduce Reduce Reduce

Shuffle

Map

Reduce

These partitions require

further repartitioning

Distributed File System

...

Final Output

Pivots

Node 1 Node 2 Node 3

Pivots Pivots

This partition was small

enough to find the links

on a single node

Figure 1: A MRSimJoin round.

2. THE MRSinJoin ALGORITHM
The Similarity Join (SJ) operation between two datasets

R and S is defined as R ◃▹θε(r,s) S = {⟨r, s⟩|θε(r, s), r ∈
R, s ∈ S}, where θε(r, s) represents the SJ predicate, i.e.,
dist(r, s) ≤ ε. The result pairs ⟨r, s⟩ are referenced as links.
The input data can be given in one or multiple distributed

files and each file can contain records of both R and S. Each
record contains the id of the dataset that the record belongs
to and the id of the record in the dataset.
MRSimJoin iteratively partitions the input data into smaller

partitions until each partition is small enough to be effi-
ciently processed by a single-node SJ routine. The process
is divided into a sequence of rounds. The initial round parti-
tions the input data while any subsequent round repartitions
a previously generated partition. Each round corresponds to
a MapReduce job. The input and output of each job is read
from or written to the distributed file system (DFS). The
output of a round includes: (1) result links for the small
partitions that were processed in a single-node, and (2) in-
termediate data for partitions that require further partition-
ing. Fig. 1 represents the execution of a single round and
shows that data partitioning and the generation of interme-
diate and final results are performed in parallel by multiple
nodes. The main MRSimJoin routine executes the required
rounds until all the input and intermediate data is processed.
Data partitioning is performed using a set of K pivots,

which are a subset of the records to be partitioned. The
process generates two types of partitions: base partitions
and window-pair partitions. A base partition contains all
the records that are closer to a given pivot than to any
other pivot. A window-pair partition contains the records
in the boundary between two base partitions. In general,
the window-pair records should be a superset of the records
whose distance to the hyperplane that separates the base
partitions is at most ε. However, this hyperplane does not
always explicitly exist in a metric space. Instead, it is im-
plicit and known as a generalized hyperplane. Since the dis-
tance of a record t to the generalized hyperplane between
two partitions with pivots P0 and P1 cannot always be com-
puted exactly, a lower bound of the distance is used [7]:

gen hyperplane dist(t, P0, P1) = (dist(t, P0)−dist(t, P1))/2

This distance can be replaced with an exact distance if
this can be computed, e.g., in Euclidean spaces.

Base Partitions Window-pair Partition

P0 P1

P0 P1

t3

t1

P0_P1

T

A B

A B

t2

t4t5 t6

t3

t1

t5

t2

t4t6 t5 t6

Figure 2: Repartitioning a base partition.

Base Partitions
Window-pair

Partitions

Q0

Q1

Q1

Q0

Q0_Q1{2}

Q0_Q1{1}

P0_P1

A B A B

C

D

E

F

E D

F

C

t1
t2

t3

t4

t5
t6

t1 t2

t3

t4

t5

t6

t3
t4

t1

t5

Figure 3: Repartitioning a window-pair partition.

Processing the window-pair partitions guarantees the iden-
tification of the links between records that belong to different
base partitions. At the logical level, the data partitioning in
MRSimJoin is similar to the one in the Quickjoin algorithm
[8]. The core difference, however, is that in MRSimJoin the
partitioning of the data, the generation of the result links,
and the storage of intermediate results is performed in a
fully distributed and parallel manner.

Fig. 2 represents the repartitioning of a base partition us-
ing two pivots. In this case, the result of the Similarity Join
operation on the dataset T is the union of the links in P0
and P1, and the links in P0 P1 where one element belongs
to window A and the other one to window B. We refer to
this last type of links as window links. Fig. 3 represents the
repartitioning of the window-pair partition P0 P1 of Fig. 2.
In this case, the set of window links in P0 P1 is the union
of the window links in Q0, Q1, Q0 Q1{1} and Q0 Q1{2}.
Note that windows C and F do not form a window-pair par-
tition because their window links are a subset of the window
links in Q0. Similarly, the window links between E and D
are a subset of the window links in Q1.

Rounds that aim to identify all the similarity links in the
input data are referred to as base rounds. Rounds that iden-
tify only the window links, i.e., links between records that
correspond to different previous partitions, are referred to
as window-pair rounds.

Algorithm 1 MRSimJoin(inDir, outDir, numPiv, eps,
memT)

Input: inDir (input directory with the records of datasets
R and S), outDir (output directory), numPiv (number
of pivots), eps (epsilon), memT (memory threshold)

Output: outDir contains all the results of the Similarity
Join operation R ◃▹θε(r,s) S

1. intermDir ← outDir + “/intermediate”
2. roundNum← 0
3. while true do
4. if roundNum = 0 then
5. job inDir ← inDir
6. else
7. job inDir ← GetUnprocessedDir(intermDir)
8. end if
9. if job inDir = null then

10. break
11. end if
12. pivots← GeneratePivots(job inDir, numPiv)
13. if isBaseRound(job inDir) then
14. MR Job(Map base, Reduce base, Partition base,

Compare base, job inDir, outDir, pivots,
numPiv, eps, memT , roundNum)

15. else
16. MR Job(Map windowPair, Reduce windowPair,

Partition windowPair, Compare windowPair,
job inDir, outDir, pivots, numPiv, eps, memT ,
roundNum)

17. end if
18. roundNum++
19. if roundNum > 0 then
20. RenameFromIntermToProcessed(job inDir)
21. end if
22. end while

2.1 The Main MRSimJoin Routine
The main routine of MRSimJoin is presented in Algo-

rithm 1. The routine uses an intermediate directory (line
1) to store the partitions that will need further repartition-
ing. Each iteration of the while loop (lines 3-22) corresponds
to one round and executes a MapReduce job. In each round,
the initial input data or a previously generated partition is
repartitioned. If a generated partition is small enough to be
processed in a single node, the SJ links are obtained running
a single-node SJ algorithm (we use Quickjoin [8]).
At each round, the main routine sets the values of the job

input directory (lines 4-8) and randomly selects numPivots
pivots from this directory (line 12). Then the routine exe-
cutes a base partition MapReduce job (line 14) or a window-
pair partition MapReduce job (line 16) based on the type of
the job input directory. The MapReduce job uses the pro-
vided map, reduce, partition and compare functions. The
MR Job routine makes sure that the outDir, numPiv, eps
and memT parameters are available at every node that will
be used in the MapReduce job and that the pivots are avail-
able at each node that will execute map tasks. Each MapRe-
duce job is executed as follows.
Map. The MapReduce framework divides the job input

data into chunks and creates map tasks in multiple nodes
to process them. The corresponding map function is called
once for each input record. The function identifies the parti-

Input Data

MR1

MR2

P1 P2 P3

MR3 MR4

P5 P6P4 P8 P9P7 P12P10

MR5

P14 P15P13

MR6

P11

P17 P18P16

Single-node

Distributed

The partition is small enough to be solved in a

single node. Results written to final output in DFS.

The partition will need to be further re-partitioned

in additional MapReduce rounds. Intermediate

data is written to DFS.

Figure 4: Example of the MapReduce rounds and
partitions generated by MRSimJoin.

tion of the record and generates one intermediate record for
each base or window-pair partition the record belongs to.

Partitioning. The MapReduce framework partitions the
intermediate data generated by map tasks. This partition-
ing is performed calling the partition function. One partition
is generated for each base or window-pair partition. After
identifying the partition numbers of intermediate records,
the shuffle phase of the MapReduce job sends the interme-
diate records to their corresponding reduce nodes.

Sorting and Grouping. The intermediate records re-
ceived at each reduce node are sorted and grouped using
the corresponding compare function. This function groups
the intermediate records that belong to the same partition.

Reduce. After generating the groups in a reduce node,
the MapReduce framework calls the corresponding reduce
function once for each group. The function receives as input
the list of all the records of the group. If the list size is small
enough to be processed in a single node, the algorithm calls
the single-node Similarity Join routine to get the links in
the current partition. Otherwise, all the group records are
stored in an intermediate directory for further partitioning.
Intermediate data is generated such that the new base parti-
tions generated in a base round are processed in future base
rounds, and all other partitions in window-pair rounds.

If a round is processing a previously generated partition,
after the MapReduce job finishes, the main routine renames
the job input directory to be located under the processed
directories (line 20).

Fig. 4 shows an example of the multiple rounds that are
executed by the main routine. Each node in the tree with
name MRN represents a MapReduce job. This figure also
shows the partitions generated by each job. Light gray par-
titions are small partitions that are processed running the
single-node Similarity Join routine. Dark gray partitions are
partitions that require additional repartitioning. A sample
sequence of rounds can be: MR1, MR2, MR3, MR4, MR5

and MR6. The original input data is always processed in the
first round. Since the links of any partition can be obtained
independently, the routine will generate a correct result in-
dependently of the order of rounds.

2.2 Implementing MRSimJoin in Hadoop
The MRSimJoin algorithm is generic enough to be imple-

mented in any MapReduce framework. This section presents
additional guidelines of our implementation in Hadoop [2].
Distribution of atomic parameters. MR Job sends the

atomic parameters, i.e., outDir, numPiv, eps and memT ,
to every node that will be used in the MapReduce job. This
is done using Hadoop’s job configuration jobConf object.
Distribution of pivots. MR Job sends the pivots to

every node that executes map tasks. This is done using
DistributedCache, a facility that allows the efficient distri-
bution of application-specific, large, read-only files.
Renaming directories. The main MRSimJoin routine

renames a directory to flag it as already processed. This
is done using the rename method of Hadoop’s FileSystem
class. The method will change the directory path in Hadoop’s
distributed file system without physically moving its data.

3. DEMONSTRATION SCENARIOS
The demonstration of MRSimJoin will be performed us-

ing our implementation in Hadoop 0.20.2. We will demon-
strate the execution of multiple MRSimJoin queries using
a Hadoop cluster running on the Amazon Elastic Compute
Cloud (EC2). We will show how this operation can be used
in multiple real-world data analysis scenarios using multiple
data types and distance functions. In each demonstration
scenario, we will also show the way MRSimJoin scales when
important parameters, e.g., ε, data size, number of cluster
nodes, and number of dimensions increase.

3.1 Identifying Similar Images
In this scenario, we will use MRSimJoin to identify simi-

lar images in the Corel image collection [6] as shown in Fig.
5. We use two different datasets: ColorMoments and CoOc-
currenceTexture. The scale factor 1 datasets have 5 million
records. Each record of ColorMoments is a 9D feature vec-
tor with components in the range [-4.8 - 4.4]. Each vector
contains the following values: the mean, standard deviation,
and skewness for each of H, S and V in the HSV color space.
Each record of CoOccurrenceTexture is a 16D feature vector.
CoOccurrenceTexture was generated converting the images
to 16 gray-scale images. Each vector contains the follow-
ing values: the Second Angular Moment, Contrast, Inverse
Difference Moment, and Entropy in 4 directions (horizontal,
vertical, and two diagonal directions). We use the Euclidean
distance function to measure the similarity between images.

3.2 Identifying Similar Publications
In this scenario, we will run multiple MRSimJoin queries

to identify publications with similar titles in the DBLP bib-
liographic dataset [1]. The scale factor 1 dataset has 10,000
records. The title of each publication record is a string of 7
to 342 characters. We use the Levenshtein distance function
to measure the similarity between publication titles.

4. CONCLUSIONS AND FUTURE WORK
Cloud-based systems have become a crucial component to

analyze large amounts of data. The Similarity Join is recog-
nized as one of the most useful data analysis operations and
has been used in many application scenarios. While multiple
Similarity Join implementation techniques have been pro-
posed, very little work has addressed the study of Similarity

Figure 5: Finding similar images in ColorMoments.

Joins for cloud systems. This paper presents MRSimJoin, a
multi-round MapReduce based algorithm to efficiently solve
the Similarity Join problem. MRSimJoin can be used with
any dataset that lies in a metric space. We demonstrate the
use of MRSimJoin using real-world datasets and multiple
data types and distance functions. The demonstration will
be performed using a Hadoop cluster running on Amazon
EC2. Particularly, MRSimJoin queries will be used to iden-
tify similar images and similar publications. We will also
show the way MRSimJoin scales when various parameters
like ε, data size, number of nodes and number of dimensions
increase. Future work paths include the study of: indexing
techniques to improve the efficiency of similarity operations,
and cloud queries with multiple similarity operators.

5. REFERENCES
[1] Dblp bibliography.

http://www.informatik.uni-trier.de/~ley/db/.

[2] Apache. Hadoop. http://hadoop.apache.org/.

[3] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In ICDE,
2006.

[4] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. In OSDI, 2004.

[5] V. Dohnal, C. Gennaro, and P. Zezula. Similarity join
in metric spaces using ed-index. In Database and
Expert Systems Applications, volume 2736 of Lecture
Notes in Computer Science, pages 484–493. 2003.

[6] A. Frank and A. Asuncion. UCI machine learning
repository. http://archive.ics.uci.edu/ml, 2010.

[7] G. R. Hjaltason and H. Samet. Index-driven similarity
search in metric spaces (survey article). ACM Trans.
Database Syst., 28:517–580, December 2003.

[8] E. H. Jacox and H. Samet. Metric space similarity
joins. ACM Trans. Database Syst., 33:7:1–7:38, June
2008.

[9] Y. N. Silva, W. G. Aref, and M. H. Ali. The similarity
join database operator. In ICDE, 2010.

[10] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using mapreduce. In ACM
SIGMOD, 2010.

[11] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-reduce-merge: simplified relational data
processing on large clusters. In ACM SIGMOD, 2007.

