
DBSnap: Learning Database Queries by Snapping Blocks

Yasin N. Silva
Arizona State University

ysilva@asu.edu

Jaime Chon
Arizona State University

jchon@asu.edu

ABSTRACT
A significant amount of recent research in Computer Sci-
ence Education has focused on studying block-based pro-
gramming. In this approach, computer programs are cre-
ated by connecting blocks and the blocks’ shapes determine
the permitted connections. The focus is on the program’s
logic instead of its syntax. This paper introduces DBSnap,
a web-based application to build database queries, particu-
larly relational algebra queries, by snapping blocks. DBSnap
fully supports the construction of intuitive database query
trees, which is one of the most effective approaches to teach
database queries. DBSnap is also highly dynamic and shows
the query results as the query is being built. The user can
also inspect, at any time, the intermediate results of any
query node. This paper presents DBSnap’s design and im-
plementation details, an evaluation of its effectiveness as a
learning environment, and a thorough comparison with al-
ternative ways to teach query languages. DBSnap is publicly
available and aims to have the same transformational effect
on database learning as previous block-based systems had
on traditional programming learning.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Design, Experimentation

Keywords
Databases curricula; query languages; relational algebra

1. INTRODUCTION
Learning computer languages is a challenging endeavor

that requires students not only to focus on a logical specifi-
cation of instructions to be executed by a computer but also

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’15, March 4–7, 2015, Kansas City, MO, USA.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

on a fully correct syntactical representation of the instruc-
tions. The latter component frequently frustrates students
because a program will not execute, even if it has a correct
logic, due to minor syntactical errors. Recently, a signifi-
cant amount of research in the Computer Science Educa-
tion community has focused on the design and development
of block-based programming environments, e.g., Mindstorm
[6], Scratch [7], Blockly [8], Snap! [11], and App Inventor
[15]. The key idea is to enable students to create programs
by just dragging and connecting blocks and thus, the focus
is on the program’s logic instead of its syntax. This idea
has revolutionized the way instructors can teach computer
programming and has also enabled the introduction of pro-
gramming concepts to younger students.

This paper introduces DBSnap, a web-based application
to build database queries, particularly relational algebra que-
ries, by snapping blocks. A key feature of DBSnap is the
representation of queries as trees. This representation has
been one of the most effective approaches to teach database
queries because it intuitively represents the organization of
the query operators and the flow of intermediate results.
This feature and the fact that DBSnap dynamically shows
the intermediate results as the query is being built are two
of several differences between DBSnap and the work by
Gorman et al. that recently introduced a block-based sys-
tem to build relational algebra expressions [5]. This paper
presents the design, implementation details, and evaluation
of DBSnap. The main contributions of the paper are:

• The introduction of DBSnap, a web-based and dy-
namic application that enables the construction of high-
ly intuitive database query trees.

• A detailed description of DBSnap’s design and imple-
mentation guidelines. Our goal is to enable other re-
searchers to extend or customize DBSnap.

• The evaluation of DBSnap’s effectiveness as a learn-
ing environment and a detailed comparison with al-
ternative systems and tools to teach database query
languages.

• The public availability of DBSnap to be used by any
instructor or student and a set of query examples.
DBSnap aims to have a transformational effect on data-
base learning.

The rest of the paper is organized as follows. Section 2
presents the design details of DBSnap. Section 3 describes
the details of implementing DBSnap as a web application.

2

3

5

6

User Interface

Components

1. Operator

palette

2. Dataset

palette

3. Query area

4. Relational

algebra panel

5. Query result

panel

6. Node result

panel

1

4

Figure 1: DBSnap’s User Interface.

Section 4 presents the comparison of DBSnap with other
systems and tools to teach relational algebra queries. Sec-
tion 5 presents a discussion of various facets of integrating
DBSnap into the Database curricula. Section 6 concludes
the paper.

2. DBSnap’S DESIGN
Fig. 1 shows DBSnap’s user interface. The main compo-

nents in the window are: (1) Operator palette, (2) dataset
palette, (3) query area, (4) relational algebra panel, (5)
query result panel, and (6) node result panel. Building a
query tree is highly intuitive and consists of dragging opera-
tor and dataset blocks and connecting them in the query
area. As the user builds a new query, the query result
panel is automatically updated with the current query re-
sult and the relational algebra panel with the corresponding
relational algebra expression. The user can also inspect the
intermediate result produced by any intermediate node by
clicking on that node. The intermediate result will appear
in the node result panel. The remaining part of this section
describes in detail several components of DBSnap.

2.1 Dataset Palette
DBSnap includes by default a small database (University

Database) composed of several relations (datasets or tables).
This database has the following schema:

Students (SID, LName, FName, Level) [100]

Courses (CID, CName) [20]

Professors (PID, LName, FName) [20]

Course_Student (CID, SID) [125]

Course_Professor (CID, PID) [20]

The underlined attributes are the primary keys, i.e., at-
tributes that uniquely identify a record in the dataset. The
number included at the end of each dataset represents the
number of records in this dataset. The University Dataset
has a size and complexity that enables building simple and
relatively complex queries while maintaining small query re-
sults that can be easily inspected. DBSnap’s dataset palette
lists all the available dataset blocks and also includes a link
to import additional datasets. This last feature enables cus-
tomizing the tool for specific class assignments or projects.
Each dataset block has a distinctive orange color, a left cir-
cular handle to connect the dataset with its parent node,
and a right text area that shows the relation name. Observe
in Fig. 1 that the block shape clearly shows that a dataset
is a leaf node, i.e., it does not have a connection link to add
a node underneath it.

2.2 Operator Palette
DBSnap supports a wide array of relational algebra op-

erators including basic operators (e.g., Selection and Pro-
jection), Join operators, and highly useful extensions like
the Aggregation operator. Each operator is represented as
a block in the operator palette and each operator type has a
distinguishing color. Fig. 2 shows a subset of the supported
operators. In each sub-figure, the left tree is the query rep-
resentation in DBSnap while the right one is the usual repre-
sentation in database textbooks, e.g., [4, 12]. Observe that

(a) Selection

Select

Table Students Students

Level = "Senior"

(b) Projection

Project

Table Students Students

 SID, LName

(e) Aggregation

Table Students Students

(c) Cross Product

Students

X

Table
Course_

Student
Table Students Course_

Student

(d) Natural Join

Students
Table

Course_

Student
Table Students Course_

Student

GroupNatural

Join

G
count(SID) as NSLevel

(f) Rename

Rename

Table Students Students

S(2 SLName)

Level = "Senior" SID, LName

Group by: Level

Aggr: count(SID) as NS

Rel: S

Attr: 2 SLName

Connection handle

Predicate

Connection link

area
Cross

Product

Figure 2: Some DBSnap Operators.

DBSnap queries closely follow the intuitive tree representa-
tions used in textbooks. A key property of DBSnap is the
use of innovative block shapes aimed to facilitate block ma-
nipulation and query tree construction. As shown in Fig.
2.a, a DBSnap operator has in general three visual compo-
nents: (i) top-left: a circular connection handle to connect
the operator with a parent node, (ii) top-right: a predicate
area to specify required operator information, and (iii) bot-
tom: one or two connection links to connect this operator
with its operand(s). The visual shape of operators make it
easy to detect operators without required operands or predi-
cates, and do not permit adding more operands than needed.
We present next the details of several DBSnap operators.

• Selection: σθ(R). This operator selects all the records
of relation R that satisfy the predicate θ. Fig. 2.a
shows the query σLevel=“Senior”(Student). Observe
that the predicate area is used to specify the selection
condition (Level = “Senior”).

• Projection: πa1,...,an(R). This operator removes all
the attributes of R not contained in a1, ..., an. An
example of this operator (πSID,LName(Students)) is
shown in Fig. 2.b. The predicate area in this case
stores the list of attributes (SID,LName).

• Cross Product: R×S. This binary operator pairs each
record of R with each record of S. Fig. 2.c shows the
graphical representation of Students × Course Student.

• Theta-join (θ-join): R ◃▹θ S. Returns a similar result
as the Cross Product but selecting only the rows that
satisfy the predicate θ.

• Natural Join: R ◃▹ S. This operator is similar to the
θ-join where the θ predicate is the equality of all the
common attributes between R and S. Fig. 2.d rep-
resents Students ◃▹ Course Student. The implicit join
predicate is Student.SID=Course Student.SID.

• Aggregation: g1,...,gmGf1(a1),...,fk(ak)(R). This opera-
tor groups the records of R forming a group for each
unique occurring permutation of the grouping attri-
butes g1, ..., gm. For each group, the operator com-
putes the aggregation functions f1(a1), ..., fk(ak) where
a1, ..., ak are attributes of R and the supported func-
tions are sum, count, average, maximum and mini-
mum. By default, count(SID) counts all the occur-
rences of SID including duplicates. DBSnap also sup-
ports distinct−count(SID) which counts only distinct

Group

Table Course_StudentTable Students

Table Courses

Select

Students Course_Student

Courses

Level="Junior" OR

Level="Senior"

G count(SID)CID, CName,

Level

Group by: CID, CName, Level
Aggr: count(SID)

Level="Junior" OR

Level="Senior"

Natural

Join

Natural

Join

Figure 3: A DBSnap Query.

values. DBSnap supports the use of ∗ instead of an
attribute name. While count(SID) ignores null val-
ues, count(∗) counts these values too. For convenience,
DBSnap allows renaming the attribute corresponding
to an aggregation function using the keyword“as”. Fig.
2.e shows the query LevelGcount(SID)(Students) where
the attribute containing the results of the aggregation
function count has been renamed to NS. In this case,
the predicate area has two fields: the top one stores
the grouping attributes (Level) and the bottom one
the aggregation functions (count(SID)).

• Other set operations. DBSnap also supports common
set operations such as Set Union (R∪S), Set Difference
(R− S) and Set Intersection (R ∩ S).

• Rename: ρS(i1→b1,...,ik→bk)(R). This operator changes
the name of relation R to S and the name of the
attribute at position ij to bj . Fig. 2.f represents
the query ρS(2→SLName)(Student). The top predicate
field stores the new relation name (S) and the bottom
one specifies the position and new attribute name (2
SLName).

2.3 Query Area
The query area is where queries are constructed. This area

gets dynamically resized as the query grows. Relational alge-
bra queries in DBSnap are represented as trees. Represent-
ing a query as a tree is a powerful analogy to teach relational
algebra and SQL (Structured Query Language) query plans.
A query tree clearly shows the structure of a query and how

the intermediate data generated by an operator is used as
the input of other operators. In many database systems, in
fact, a query (e.g., an SQL query) is parsed and converted
into a query plan tree by the query processing engine. This
plan can also be transformed into more efficient plans by the
query optimizer using a set of transformation rules. Since
DBSnap allows the dynamic manipulation of query trees, it
is also an effective tool to teach query optimization.
Fig. 3 shows a query that computes the number of stu-

dents of each level registered in each course considering only
Junior and Senior students. The left tree is the DBSnap
query while the right one is the equivalent query using the
tree representation commonly found in textbooks. The DB-
Snap query structure is very similar to the one of the con-
ventional query tree, and the use of colors further simplifies
the quick identification of operations involved in the query.
In this example, it is easy to recognize that the query is
combining three datasets, grouping the intermediate result
and then selecting a subset of the groups. The relational
algebra expression of this query is:

σLevel=“Junior” OR Level=“Senior”

(CID,CName,LevelGcount(SID)

((Students ◃▹ Course Student)

◃▹ Courses))

Even in this small example, the relational algebra expres-
sion may be intimidating for many students learning this
language. DBSnap aims to simplify the understanding of
queries by using an intuitive tree-based representation. Any-
time the student adds a new block to the query, the system
automatically shows the corresponding relational algebra ex-
pression. This feature is aimed to help students make the
connection between a relational algebra expression and its
intuitive tree-based representation.

2.4 Result Panels
As shown in Fig. 1, the query result panel, and the node

result panel are located at the right-hand side of DBSnap’s
user interface. The query result panel shows the results of
evaluating the current query and is dynamically updated
anytime the user modifies the query. This key feature al-
lows students to see the query results as they build the query
and also enables them to quickly explore the effects of query
modifications. Many times, specifically while building com-
plex queries, students need to examine the results of inter-
mediate nodes. DBSnap supports exploring the results of
any query node. When the student clicks on a query node,
the intermediate results of this node are shown in the node
result panel.

3. IMPLEMENTING DBSnap
One of the core goals while implementing DBSnap was

to maximize its availability so that any student or instruc-
tor can use it without the need to use specialized software or
hardware. With this goal in mind, we implemented DBSnap
as a web application that only uses standard internet browser
features (HTML5 and JavaScript). DBSnap can be used
with most internet browsers (e.g., Internet Explorer, Firefox,
Safari, and Chrome) and hardware devices (e.g., desktops,
laptops, tablets, and smartphones).
Fig. 4 shows the architecture of DBSnap. As shown in this

figure, the system has four main components: an HTML web

GUI.js

DBBlocks.js

Morphic.js

Dataset and

Operator Blocks
Query Evaluation

Query to Relational

Algebra Translation

Morph WorldMorph

Query Handler

DBSnap.html DBSnap Query

Canvas

Query Result Panel

Node Result Panel

Figure 4: DBSnap’s Architecture.

page (DBSnap.html) and three JavaScript libraries (GUI.js,
DBBlocks.js, and Morphic.js). DBSnap.html has three con-
tainer elements: the DBSnap Query Canvas (which contains
the block palettes and the query area), and the two result
panels (which get populated with the query and current node
results). DBSnap.html dynamically interacts with GUI.js
to calculate the position and size of each HTML container,
support the manipulation of blocks, and display query re-
sults. GUI.js, in turn, interacts with DBBlocks.js to support
the manipulation of queries and query blocks. DBBlocks.js
defines the visual representation and behavior of all the
graphical elements in the Query Canvas: operator blocks,
dataset blocks, palettes, and queries. DBBlocks.js includes
the Query Handler module that maintains an internal rep-
resentation of the current query. This module interacts with
the Query Evaluation module to obtain the result of the cur-
rent query and with the Query to Relational Algebra Trans-
lation module to obtain the relational algebra expression
of the current query. DBBlocks.js uses Morphic.js, another
JavaScript library. Morphic.js provides lower-level classes
such as Morph which specifies basic behavior of blocks and
WorldMorph which implements a canvas where other visual
shapes (blocks) can be manipulated. Morphic.js was devel-
oped by Jens Mönig and is available under GNU license [10].
Morphic.js is also used in Snap! [11], a popular block-based
programming application.

Another DBSnap implementation goal was to make it
highly extensible. To this end, we have modularized the
code and organized the class hierarchy such that it facili-
tates the addition of new operators.

4. RELATED LEARNING TOOLS
This section describes several related educational tools for

database query languages, specifically for relational algebra.
We describe the key properties of each tool and highlight
important differences between these tools and DBSnap. Fig.
5 summarizes the key supported features of the considered
tools.

WinRDBI. WinRDBI [3] is a Java-based educational ap-
plication that allows the specification of queries in relational
algebra, relational calculus and SQL. The interface provides
a panel to write the query, another one to show the query
results, and a database browser to explore the available re-
lations. WinRDBI allows both specifying relations and im-
porting them. The tool allows naming queries such that they
can be used as operands in other queries. The key differences

Feature DBSnap WinRDBI iDFQL Relational RALT
Query

Visualiser
Bags

Implementation technologies
HTML5,

JavaScript

Java Borland

C++

Python Java

Swing

.NET,

Mono

HTML5,

JavaScript

Publicly available

Open source code

Block-based query editor

Shows RA expression

Web application

Uses tree-based representation to build queries

Automatically updates query result

Intermediate results

Side-by-side queries

Can work without DB connection

Build-in datasets

Allows importing or connecting to custom data

Views

Figure 5: Comparison of Educational Tools for Relational Algebra Queries.

in comparison with DBSnap are that WinRDBI: (i) is not
a block-based tool, (ii) requires the user to write text-based
queries, e.g., requires writing a correct relational algebra
expression, (iii) does not support the tree-based query rep-
resentation, and (iv) does not automatically show the query
results as the query is being built.

iDFQL. This tool provides a graphical interface to create re-
lational algebra queries [1]. The tool allows creating a query
using a set of icons or blocks that form a flow diagram. A
key difference with DBSnap, is that operator blocks in iD-
FQL do not include the connection links, these links have to
be added separately using a toolbar component. Operators
in DBSnap already include the expected number of connec-
tion links simplifying the creation of a query. Furthermore,
the predicates of an operator in iDFQL are represented us-
ing additional blocks while in DBSnap they are integral part
of the operator block. When a query is built, iDFQL does
not show the actual relational algebra expression (limiting
its usefulness as a tool to learn relational algebra) and does
not automatically show the query results. Moreover, the
tool requires a connection with an external database, is not
currently maintained, and suffers from some software com-
patibility issues, e.g., did not run in Windows 7 or 8.

Relational. This educational tool implemented in Python
provides a workspace to write relational algebra expressions
[14]. The tool allows the visualization of results and the
exploration of available relations. Queries in Relational are
text-based and specified in a single line. Operators are rep-
resented as special Unicode symbols that can be inserted
using the buttons of a toolbar. Relational is not a block-
based tool, does not support tree-based queries, does not
dynamically show the query results, and does not allow the
exploration of intermediate results.

RALT. This tool allows building relational algebra queries
using an extended query tree structure [9]. Like DBSnap,
RALT represents queries using trees. RALT, however, adds
intermediate nodes (tables) to show the results of every op-
erator and uses additional nodes to represent operator pred-
icates. The inclusion of these extra nodes significantly in-
creases the size of the query and it quickly fills the available
query space. Constructing queries is simple for very small
queries but becomes complex for relatively large queries.
RALT requires a connection with an external database and
does not show the relational algebra expressions of queries.

Query Visualiser. Query Visualiser (QV) [2] is another
tool that allows the specification of written relational al-
gebra expressions. After a query is built, QV generates a
hierarchical representation of the query that enables explor-
ing its intermediate results. QV also supports side-by-side
query comparison and reports various query evaluation sta-
tistical measures. The key difference with DBSnap is that
QV doesn’t use a block-based approach. Instead, QV re-
quires users to specify text-based queries. Another difference
is that QV does not automatically show the query results
while a query is modified.

Bags. Bags is a block-based tool to build relational algebra
queries [5]. Like DBSnap, Bags allows the user to build a
query by dragging and connecting blocks. The tool allows
the visualization of the query results and includes several
built-in datasets. A fundamental difference with DBSnap,
however, is the type of query representation used by the
tool. Bags was built extending Snap! [11], a block-based
tool designed to teach conventional computer programming.
A program in Snap! looks, in fact, very similar to the cor-
responding code in an imperative programming language.
The operators and relation blocks of Bags have exactly the
same look and feel as blocks in Snap!. A query in Bags is
not a relational algebra expression nor a direct representa-
tion of the corresponding query tree. Moreover, the tool
does not show the corresponding relational algebra expres-
sion of a query. DBSnap in contrast uses a tree-based query
representation that has been extensively used by database
educators and textbooks as an intuitive way to represent a
relational algebra query. Additionally, DBSnap shows the
relational algebra expression of any query specified in the
tool. Another difference is that a block in Bags does not
prevent the inclusion of a sequence of two or more consec-
utive blocks as a single operand (which would produce an
incorrect query). In the case of DBSnap the rounded shape
of a connection link allows the inclusion of only one block
(or rooted sub-query). Bags allows the exploration of the
result of any query node but does not automatically update
the overall query result as the user builds the query.

While DBSnap is not the first tool to build relational al-
gebra queries, it includes a set of features aimed to make
it highly effective to teach relational algebra and database
queries in general. Specifically, DBSnap differentiates from
the rest in that it is the only block-based tool that uses

a tree-based query representation that fully matches the
highly intuitive query trees used by many educators and
textbooks. Furthermore DBSnap is a highly interactive tool
that automatically shows the query results and the equiv-
alent relational algebra expression while a query is being
modified, and allows the inspection of the output of any
intermediate node.

5. DISCUSSION
DBSnap can be used to teach relational algebra and query

optimization in introductory and advanced database courses.
DBSnap is a publicly available web application [13] that can
be used by educators and students on a wide array of devices.
DBSnap’s extended availability makes it a suitable tool to
be used in in-class activities as well as in assignments and
projects. In the case of relational algebra, a common learn-
ing objective is that students understand the semantics of
key operators and are able to build queries to answer specific
questions. DBSnap can be an important resource to meet
this goal. The tool can be used by the instructor to introduce
and show the output of each operator and to highlight the re-
lationships between query trees (also used in database text-
books) and the corresponding relational algebra expressions.
DBSnap can then be used in hands-on class activities where
students explore the operators and build several assigned
queries. The interactive features of DBSnap (automatically
showing the query result and corresponding relational alge-
bra expression) make it an environment where students can
experiment with different query arrangements, get immedi-
ate feedback, and improve their solutions until they find the
correct answers. Instructors can also prepare projects or as-
signments where students use DBSnap to build queries that
generate specific reports. Since DBSnap supports importing
datasets, instructors can prepare custom datasets for these
assignments. DBSnap can also be used to teach database
query optimization. Specifically, DBSnap can be used to
show that multiple query arrangements (generated by query
transformation rules) can produce the same result and that
some arrangements may be faster than others. The use of
query trees (query plans) is in fact one of the most useful
representations of a query to teach the effects of transforma-
tion rules. DBSnap can be used to dynamically transform
a query into an equivalent one by re-arranging the query
blocks.
To assess the effectiveness of DBSnap as a learning tool,

the authors used it in a relational algebra class and prepared
an end-of-class survey. While this was a small class, the re-
sults are promising. The survey results are presented next
(1: Agree - 4: Disagree). To the question “I am able to rec-
ognize the key properties of relational algebra operators and
build queries to answer specific questions”, 80% of students
agree and 20% moderately agree. To the question “The use
of DBSnap helped me to have a clear understanding of re-
lational algebra operators”, 80% of students agree and 20%
moderately agree. To the question “DBSnap significantly
helped me to learn how to build relational algebra queries”,
78% of students strongly agree and 22% moderately agree.
In the open ended questions, students gave positive com-
ments about DBSnap, e.g., “DBSnap really helps the user
follow the query as it is being built”, “It is very easy to make
changes on the query by rearranging blocks and subtrees”,
“It is so simple, user-friendly and I liked all the colors”, and
“The ability to see the result of every node is very helpful”.

6. CONCLUSIONS
A clear understanding of relational algebra operators and

the ability to write relational algebra queries are two key
learning objectives in database courses. Furthermore, a solid
grasp of relational algebra and query plans provides a good
foundation to learn the SQL-like query languages that are
used in many modern database systems. This paper in-
troduces DBSnap, an open-source tool aimed to facilitate
the learning of relational algebra and query plans. One of
DBSnap’s key and differentiating features is that it uses a
tree-based query structure that is highly similar to the in-
tuitive query trees used by many textbooks and educators.
DBSnap is also a highly interactive tool that shows the query
result and equivalent relational algebra expression while a
query is being built. This paper presents the different de-
sign features of DBSnap, provides its implementation de-
tails, describes guidelines to use it in database courses, and
evaluates is effectiveness as an educational tool.

7. REFERENCES
[1] A. P. Appel, E. Q. Silva, C. Traina, and A. J.

M. Traina. idfql: A query-based tool to help the
teaching process of the relational algebra. In WCETE,
2004.

[2] G. Constantinou. Relational algebra and sql query
visualisation. Technical report, Dept. of Computing,
Imperial College, 2010.

[3] S. W. Dietrich, E. Eckert, and K. Piscator. Winrdbi:
A windows-based relational database educational tool.
In ACM SIGCSE, 1997.

[4] R. A. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. Addison-Wesley, 6 edition, 2010.

[5] J. Gorman, S. Gsell, and C. Mayfield. Learning
relational algebra by snapping blocks. In ACM
SIGCSE, 2014.

[6] S. H. Kim and J. W. Jeon. Programming lego
mindstorms nxt with visual programming. In ICCAS,
2007.

[7] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and
N. Rusk. Programming by choice: Urban youth
learning programming with scratch. In ACM SIGCSE,
2008.

[8] A. Marron, G. Weiss, and G. Wiener. A decentralized
approach for programming interactive applications
with javascript and blockly. In AGERE!, 2012.

[9] P. Mitra. Relational algebra learning tool. Technical
report, Dept. of Computing, Imperial College, 2009.

[10] J. Mönig. morphic.js - source code.
https://github.com/jmoenig/morphic.js.

[11] C. North and B. Shneiderman. Snap-together
visualization: Can users construct and operate
coordinated visualizations? Int. J. Hum.-Comput.
Stud., 53(5):715–739, 2000.

[12] A. Silberschatz, H. Korth, and S. Sudarshan. Database
Systems Concepts. McGraw-Hill, Inc., 6 edition, 2010.

[13] Y. N. Silva and J. Chon. Dbsnap.
http://www.public.asu.edu/~ynsilva/dbsnap.

[14] S. Tomaselli. Relational - educational tool for
relational algebra.
https://github.com/ltworf/relational/.

[15] D. Wolber. App inventor and real-world motivation.
In ACM SIGCSE, 2011.

