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Abstract

Similarity Joins are extensively used in multiple application domains and are recognized among the most useful data processing
and analysis operations. They retrieve all data pairs whose distances are smaller than a predefined threshold ε. While several
standalone implementations have been proposed, very little work has addressed the implementation of Similarity Joins as physical
database operators. In this paper, we focus on the study, design, implementation, and optimization of a Similarity Join database
operator for metric spaces. We present DBSimJoin, a physical database operator that integrates techniques to: enable a non-
blocking behavior, prioritize the early generation of results, and fully support the database iterator interface. The proposed operator
can be used with multiple distance functions and data types. We describe the changes in each query engine module to implement
DBSimJoin and provide details of our implementation in PostgreSQL. We also study ways in which DBSimJoin can be combined
with other similarity and non-similarity operators to answer more complex queries, and how DBSimJoin can be used in query
transformation rules to improve query performance. The extensive performance evaluation shows that DBSimJoin significantly
outperforms alternative approaches and scales very well when important parameters like ε, data size, and number of dimensions
increase.
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1. Introduction

It is widely recognized that the move from exact semantics of
data and Boolean semantics of queries to imprecise and approx-
imate semantics of data and queries is one of the key paradigm
shifts in data management. This shift is fueled in part by the
recognition that many application scenarios can significantly
benefit from the identification of similarities in the data. One
of the most useful similarity-aware data analysis operations is
the Similarity Join (SJ), which retrieves all data pairs whose
distances are smaller than a predefined threshold ε. Similarity
Joins have been studied and extensively used in multiple appli-
cation domains, e.g., record linkage, data cleaning, multimedia
applications, sensor networks, marketing analysis, etc. Several
Similarity Join algorithms and implementation techniques have
been previously proposed. They range from out-of-database ap-
proaches for only in-memory or external memory data, to tech-
niques that use standard database operators to answer Similar-
ity Joins. Very little work, however, has addressed the imple-
mentation of Similarity Join as a first-class database operator.
This type of implementation would enable interesting similar-
ity queries that combine SJ with other operators. In this paper,
we present a generic Similarity Join database operator for any
dataset that lies in a metric space. The main contributions of
this paper are:
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• We present DBSimJoin, a physical Similarity Join
database operator that is fully integrated into the database
engine and incorporates techniques to: (1) enable a non-
blocking behavior, (2) prioritize the early generation of re-
sults, and (3) fully support the database iterator interface
and its functions open, getNext, and close.

• To the best knowledge of the authors, DBSimJoin is
the first Similarity Join database operator that is general
enough to be used with any dataset that lies in a metric
space. The operator can be used with various distance
functions and data types (vectors, text, etc.).

• We present multiple guidelines to implement DBSimJoin
as an integrated component of a database system. We also
provide details of our implementation in PostgreSQL [1],
a popular open-source database system.

• We thoroughly evaluate the performance and scalability
properties of DBSimJoin with synthetic and real-world
data. Our evaluation uses multiple data types and distance
functions. We show that DBSimJoin significantly outper-
forms alternative approaches and that it scales well when
key parameters like ε and data size increase.

• We show that DBSimJoin can be combined with other
operators in complex similarity queries and can be used
in important query transformation rules that enable cost-
based query optimization, e.g., pushing selection below
join and associativity of SJ operators.
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The implementation of Similarity Joins as first-class data-
base operators have the following key advantages: (1) SJ
database operators can be interleaved with other regular and
similarity-aware operators and their results pipelined for further
processing; (2) important optimization techniques, e.g., push-
ing certain filtering operators to lower levels of the execution
plan, pre-aggregation, and the use of materialized views can be
extended to the new operators; and (3) the implementation of
these operators can reuse and extend other operators and struc-
tures to handle large datasets, and use the cost-based query op-
timizer machinery to enhance query execution time.

The remaining part of this paper is organized as follows. Sec-
tion 2 presents the related work. Section 3 describes in detail
the DBSimJoin operator and the techniques to implement it.
The performance evaluation is presented in Section 4. Section
5 presents the conclusions and future research directions.

2. Related Work

Significant work has been carried out on the study of Similar-
ity Joins. This work introduced the semantics of several Simi-
larity Join variants and proposed techniques to implement them
primarily as standalone operations outside of a database system.

Several types of Similarity Join have been proposed in the
literature, e.g., distance range join (retrieves all pairs whose dis-
tances are smaller than a predefined threshold ε) [2, 3, 4, 5, 6,
7], k-Distance join (retrieves the k most-similar pairs) [8], and
kNN-join (retrieves, for each tuple in one table, the k nearest-
neighbors in another table) [9, 10, 11]. The distance range join
has been one of the most studied and useful types of Similarity
Join. This type of join is commonly referred to simply as Sim-
ilarity Join and is the focus of this paper. Among its most rel-
evant implementation techniques, we find approaches that rely
on the use of pre-built indices, e.g., eD-index [3], D-index [4],
and List of Twin Clusters (LTC) [12]. These techniques strive
to partition the data while clustering together the similar ob-
jects. While these indexing techniques support the SJ operation
they also have some shortcomings: D-index and eD-index may
require rebuilding the index to support queries with different ε,
eD-index is applicable only to the case of self-joins, and LTC
requires indexing each pair of input sets jointly. Several non-
index-based techniques have also been proposed to solve the
Similarity Join problem. EGO, GESS, and QuickJoin are three
of the most relevant non-index-based algorithms. The Epsilon
Grid Order (EGO) algorithm [5] imposes an epsilon-sized grid
over the space and uses an efficient schedule of block reads to
minimize I/O. The Generic External Space Sweep (GESS) al-
gorithm [6] creates hypersquares centered on each data point
with epsilon length sides, and joins these hypersquares using a
spatial join on rectangles. The Quickjoin algorithm [7] recur-
sively partitions the data until the subsets are small enough to
be efficiently processed using a nested loop join. Quickjoin has
been shown to outperform EGO and GESS [7]. DBSimJoin,
the operator presented in this paper, builds on Quickjoin’s ap-
proach to partition the data. However, the focus of our work is
the design and implementation of an efficient database operator.
The differences with the work in [7] are: (1) DBSimJoin uses a

different partitioning sequence that prioritizes early generation
of results and minimizes query response time, (2) DBSimJoin
uses a non-blocking implementation approach that fully sup-
ports the database iterator interface, (3) DBSimJoin assumes a
limited number of memory buffers, (4) our experimental sec-
tion evaluates the effect on performance of key parameters not
evaluated in [7], e.g., dimensionality and number of pivots, and
(5) we study how DBSimJoin can be combined with other op-
erators and used in query transformation rules.

Also, of importance is the work on Similarity Join techniques
in the context of database systems. Some work has focused on
the implementation of Similarity Joins using standard database
operators [13, 14, 15]. These techniques are applicable only to
string or set-based data. The general approach pre-processes
the data and query, e.g., decomposes data and query strings into
sets of grams (substrings of a string that are used as its signa-
ture), and stores the results of this stage on separate relational
tables. Then, the result of the Similarity Join can be obtained
using standard SQL queries. Indices on the pre-processed data
are used to improve performance. DBSimJoin is experimentally
compared with one such technique (SSJoin [13]) in Section 4.2.
More recently, the work in [16, 17] proposed a SJ database
operator for 1D numerical data based on a plane-sweep algo-
rithm. This approach, however, cannot be easily extended to
other data types. DBSimJoin is more generic and can be used
with any dataset that lies in a metric space. DBSimJoin sup-
ports a variety of data types, e.g., numerical data, vector data,
text, etc., and distance functions, e.g., Euclidean distance, Edit
distance, etc. In a recent demonstration paper [18], we showed
how DBSimJoin can be used to identify similar images (feature
vectors), and similar publications in a bibliographic database.

Some recent work in the area of Similarity Joins has focused
on: proposing a compact way to represent the output of this
operation, i.e., reporting groups of nearby points instead of ev-
ery join link [19], efficient algorithms for in-memory Similarity
Join with edit distance constraints [20], algorithms for near du-
plicate detection that exploit the ordering of tokens in a record
to reduce the number of distance computations [21], Similar-
ity Join algorithms that exploit the capabilities of graphics pro-
cessing units [22], and the implementation of highly distributed
Similarity Join algorithms [23, 24, 25, 26, 27].

An earlier version of this paper appeared in [28]. This
paper extends on [28] by integrating: (1) an extended ex-
perimental section including: (a) the evaluation of asso-
ciativity of SJ operators, (b) the analysis of Lazy/Eager
aggregation transformations with SJ and similarity group-
ing, (c) the evaluation of query performance while increas-
ing ε and the number of dimensions, and (d) the anal-
ysis of increasing scale factor and ε with a real vector
dataset; (2) the pseudo-code of several DBSimJoin algo-
rithms including: PartitionBasePart, PartitionWinPairPart,
DBS imJoin Open, and DBS imJoin Close; (3) a more detailed
description of the algorithms and techniques to implement DB-
SimJoin as a database operator; and (4) additional diagrams and
extended discussions throughout the paper.
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Figure 1: Repartitioning a base partition.

3. The DBSimJoin Operator

The Similarity Join (SJ) operation between two datasets R
and S is defined as follows:

R ◃▹θε(r,s) S = {⟨r, s⟩|θε(r, s), r ∈ R, s ∈ S },

where θε(r, s) represents the Similarity Join predicate, i.e.,
dist(r, s) ≤ ε.

The DBSimJoin operator presented in this section identifies
all the pairs, i.e., links, that belong to the result of the Similarity
Join operation. Furthermore, the operator can be used with any
dataset that lies in a metric space. Even though the tuples of
relations R and S are combined by DBSimJoin, each tuple is
assumed to have an attribute that identifies its relation.

DBSimJoin iteratively partitions the input data into smaller
partitions until each partition is small enough to be efficiently
processed by an in-memory Similarity Join routine. The overall
process is divided into a sequence of rounds. The initial round
partitions the input data while any subsequent round partitions
the data of a previously generated partition. Each round pro-
duces: (1) result pairs (links) for the small partitions that can
be processed by an in-memory SJ routine, and (2) intermediate
data for the partitions that will require further partitioning. In-
termediate data is stored on disk (hibernated). The DBSimJoin
operator executes the required rounds until all the input and in-
termediate data is processed. While rounds other than the first
one can be processed in any order, DBSimJoin uses a partition-
ing sequence that favors the early generation of result links.

3.1. Partitioning in DBSimJoin
The core goal of the partitioning step in each round is to di-

vide the round input data into a set of partitions such that all
the result links in the input data are obtained by combining the
links found in each partition independently. To accomplish this,
the input data is partitioned into: (1) non-overlapping partitions
(base partitions), and (2) partitions that contain the records in
the boundary of each pair of base partitions (window-pair par-
titions). After the partitioning step, each generated partition can
be processed independently.

Base Partitions Window-pair Partitions

Q0

Q1

Q1

Q0 Q0_Q1{1} Q0_Q1{2}

P0_P1

E

F

D
C C

D
E

F

A B A B

Figure 2: Repartitioning a window-pair partition.

Data partitioning is performed using a set of k pivots, i.e.,
a random subset of the data records to be partitioned. We use
random selection since this method was found to be efficient in
[7]. Each base partition contains all the records that are closer
to a given pivot than to any other pivot. Each window-pair par-
tition contains the records in the boundary between two base
partitions. The window-pair records should be a superset of the
records whose distance to the hyperplane that separates the base
partitions is at most ε. This hyperplane does not always explic-
itly exist in a metric space. Instead, the hyperplane is implicit
and known as a generalized hyperplane. Since the distance of
a record t to the generalized hyperplane between two partitions
with pivots P0 and P1 cannot always be computed exactly, a
lower bound of the distance is used [29]:

gen hyperpln dist(t, P0, P1) = (dist(t, P0) − dist(t, P1))/2.

This distance is replaced with an exact distance if this can be
computed, e.g., in Euclidean spaces.

Processing the window-pair partitions guarantees the iden-
tification of the links between records that belong to different
base partitions. A round that repartitions a base partition or
the initial input data is referred to as a base partition round, a
round that repartitions a window-pair partition is referred to as
a window-pair partition round.

Fig. 1 represents the repartitioning of a base partition using
pivots P0 and P1. In this case, the result of the Similarity Join
operation on the input dataset T is the union of the links in
partitions P0 and P1, and the links in window-pair partition
P0 P1 where one element belongs to window A and the other
one to window B. We refer to this last type of link as window
link. Fig. 2 represents the repartitioning of the window-pair
partition P0 P1 of Fig. 1 using pivots Q0 and Q1. In this case,
the set of window links in P0 P1 is the union of the window
links in Q0, Q1, Q0 Q1{1} and Q0 Q1{2}. Note that windows
C and F do not form a window-pair partition since their window
links are a subset of the window links in Q0. Similarly, the
window links between E and D are a subset of the window links
in Q1.

3.2. DBSimJoin Rounds
Fig. 3 shows an example of the multiple rounds that are ex-

ecuted by the DBSimJoin operator. Each node in the tree with
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Figure 3: Example of the rounds and partitions generated by DBSimJoin.
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Figure 4: Round 0.

name RoundN represents a round. This figure also shows the
partitions generated by each round. Light gray partitions are
small partitions that are processed running an in-memory Sim-
ilarity Join routine. Dark gray partitions are partitions that re-
quire additional repartitioning. A sample sequence of rounds
can be: Round0, Round1, Round2, Round3, Round4 and Round5.
The original input data is always processed in the first round.

Figures 4 and 5 graphically represent the processing per-
formed by DBSimJoin in round 0 and a generic round I, re-
spectively. Round 0, shown in Fig. 4, partitions the original
input data (R ∪ S ) into k partitions. Some generated partitions
are small enough to be processed by the in-memory SJ routines,
e.g., P1, P4, P5. Result links and window links are generated
in these routines. The remaining partitions are stored on disk,
e.g., P2, P3, Pk. Any other round further repartitions a previ-
ously generated partition. For instance the round represented in
Fig. 5 repartitions partition P2. This round also generates some
partitions that can be processed by the in-memory SJ routines,
e.g., Q1, Q3, Q4, Q5, and partitions that need to be stored on
disk for further processing, e.g., Q2, Qk.

While rounds other than the first one can be processed in any
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Figure 5: Round I.

order, DBSimJoin uses a partitioning sequence that favors the
early generation of result links. The algorithmic details of this
approach are presented in Section 3.5.1.

The remaining part of this section presents the guidelines to
implement the DBSimJoin operator inside the query engine of
standard DBMSs. Although the presentation is intended to be
applicable to any DBMS, some specific details refer to our im-
plementation in PostgreSQL [1]. One of the goals of the imple-
mentation is to reuse and extend already available routines and
structures to minimize the effort needed to realize the operator.

3.3. The Parser

To add support for Similarity Joins in the parser, the raw-
parsing grammar rules, e.g., yacc rules in the case of Post-
greSQL, are extended to recognize the syntax of the new sim-
ilarity join predicate. The parse-tree and query-tree data struc-
tures are extended to include the information of the new oper-
ator, i.e., type of join, value of ε and distance function. The
routines in charge of transforming the parse tree into the query
tree are updated accordingly to process the new fields in the
parse tree. In our implementation, we support the following
Similarity Join syntax.

SELECT R.r, S.s FROM R, S

WHERE R.r WITHIN <epsilon> OF S.s

USING <dist_function>

The values of R.r and S .s can be, in general, of any data type,
e.g., strings, numbers, vectors, etc. dist function specifies the
distance function to be used by the SJ operation, e.g., Euclidean
distance, Edit distance, etc.

3.4. The Planner

To add support for the operator in the planner, a new plan
node is created to represent the Similarity Join operator. This
node is similar to the regular join node but also stores informa-
tion about ε and the distance function. If a query has multi-
ple Similarity Join predicates, they are processed one at a time,
i.e., multiple Similarity Join nodes are pipelined. The routines
that find the similarity links at every Similarity Join node are
presented in Section 3.5. It is important to observe that key
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Algorithm 1 DBSimJoin(R, S , eps, numPiv, memT )
Input: R and S (input datasets), eps (epsilon), numPiv (num-

ber of pivots), memT (memory threshold)
Output: all the results of the Similarity Join operation

R ◃▹θε(r,s) S
1. create basePList and winPairPList
2. PartitionBasePart(R ∪ S , basePList, winPairPList, eps,

numPiv)
3. while basePList.size> 0 do
4. for each partition P of basePList do
5. if P ≤ memT then
6. InmemoryS imJoin(P, eps)
7. else
8. HibernatePartition(P)
9. end if

10. end for
11. while winPairPList.size> 0 do
12. for each partition W of winPairPList do
13. if W ≤ memT then
14. InmemoryS imJoinWin(W, eps)
15. else
16. HibernatePartition(W)
17. end if
18. end for
19. if winPairPList.size> 0 then
20. W ← winPairPList.getFirst()
21. PartitionWinPairPart(W, winPairPList, eps,

numPiv)
22. end if
23. end while
24. if basePList.size> 0 then
25. P←basePList.getFirst()
26. PartitionBasePart(P, basePList, winPairPList, eps,

numPiv)
27. end if
28. end while
29. delete basePList and winPairPList

transformation rules to optimize queries with Similarity Joins
[16, 30], e.g., associativity of SJ operators and pushing selec-
tion below SJ, can be applied to plans with DBSimJoin opera-
tors. We evaluate the use of several transformation rules with
DBSimJoin in Section 4.5.

3.5. The Executor
This section presents the general executor algorithm of DB-

SimJoin as well as specific details of its implementation using
the iterator interface.

3.5.1. DBSimJoin Executor Routine
The main executor routine of the DBSimJoin operator is pre-

sented in Algorithm 1. The routine first creates two lists that
will keep track of the base and window-pair partitions (line 1).
Each partition is assigned a certain space in memory (memT ).
If a partition needs to grow beyond the assigned space, the par-
tition is stored on disk and the memory space assigned to this

Algorithm 2 PartitionBasePart(basePart, basePList, winPair-
PList, eps, numPiv)
Input: basePart (data to be partitioned), basePList (list of

base partitions), winPairPList (list of window-pair parti-
tions), eps (epsilon), numPiv (number of pivots)

Output: partitions basePart and updates basePList and win-
PairPList accordingly

1. Pick numPiv tuples from basePart as pivots
2. Add new empty partitions to basePList and winPairPList
3. for each tuple t in basePart do
4. Add t to proper new partitions of basePList and winPair-

PList
5. end for
6. Remove basePart from basePList

Algorithm 3 PartitionWinPairPart(winPairPart, winPairPList,
eps, numPiv)
Input: winPairPart (data to be partitioned), winPairPList (list

of window-pair partitions), eps (epsilon), numPiv (number
of pivots)

Output: partitions winPairPart and updates winPairPList ac-
cordingly

1. Pick numPiv tuples from winPairPart as pivots
2. Add new empty partitions to winPairPList
3. for each tuple t in winPairPart do
4. Add t to proper new partitions of winPairPList
5. end for
6. Remove winPairPart from winPairPList

partition is used as a buffer. The routine partitions the initial
input data (R∪S ) into base and window-pair partitions (line 2).
The main loop in the algorithm will be executed while there is
at least one base partition that needs to be processed (lines 3 to
28). In each iteration, the routine processes all the base parti-
tions executing InmemorySimJoin to identify SJ links in small
partitions (line 6) and hibernating larger partitions, i.e., trans-
ferring any in-memory data to disk (line 8). Then, the routine
processes the window-pair partitions (and their sub-partitions)
until all their SJ links have been produced (lines 11 to 23). The
routine iteratively (1) processes all the current window-pair par-
titions executing InmemorySimJoinWin in the case of small par-
titions (line 14) and hibernating larger partitions (line 16), and
(2) gets the first window-pair partition that needs further pro-
cessing and repartitions it calling PartitionWinPairPart (lines
19 to 22). When all the window-pair partitions have been fully
processed, the routine gets the first base partition that needs
further processing and repartitions it calling PartitionBasePart
(lines 24 to 27). After this step, the main while loop iterates
again.

The main DBSimJoin routine prioritizes the early generation
of links. After any partitioning step, the algorithm will pro-
cess first all the partitions that can be solved in-memory. The
routine has the potential to produce result links starting at the
first round. This behavior enables the support of the iterator in-
terface and its getNext function. The algorithm also prioritizes
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Figure 6: Partitioning the tuples of a base partition.

the processing of window-pair partitions before base partitions.
This is done to reduce the number of partitions that the rou-
tine needs to keep track of. Window-pair partitions are in gen-
eral significantly smaller than base partitions. Consequently, in
general, it takes less time to reach the point where they can be
processed in memory.

InmemorySimJoin and InmemorySimJoinWin are in-memory
routines to find the links and window links, respectively. These
algorithms iteratively partition the data in memory until the par-
titions are small enough to be quickly solved using a nested
loop join (NLJ). As explained in Section 3.5.2, both routines
are implemented using a non-blocking approach to minimize
the time to produce the next result link. The nested loop join is
applied only over very small partitions (up to 20 tuples in our
experiments). NLJ can also be replaced by adaptations of other
algorithms to identify SJ links on small datasets, e.g., the tech-
niques recently proposed in [31]. One of these techniques pro-
poses the use of indexing structures with subquadratic construc-
tion cost. The adaptation and integration of these techniques in
PostgreSQL is a task for future work.

The main DBSimJoin routine calls PartitionBasePart and
PartitionWinPairPart to partition a base and a window-pair par-
tition, respectively.

The PartitionBasePart routine is presented in Algorithm 2.
This routine randomly selects numPiv pivots that will be used to
partition basePart and adds the partitions to the lists of base and
window-pair partitions (line 1 to 2). Then, the routine processes
each tuple t of basePart and adds it to the new base (basePList)
and window-pair (windowPairPList) partitions this tuple be-
longs to (line 4). This task involves two steps: (1) t is added to
the base partition corresponding to its closest pivot p, and (2) t
is also added to all the window-pair partitions (corresponding to
pivots p and i) where gen hyperpln dist(t, p, i) ≤ eps. Finally,
the routine removes basePart from the list of base partitions
(line 6).

Fig. 6 shows an example of the partitions generated by Par-
titionBasePart using pivots P0 and P1. Region T contains all
the tuples of the dataset to be repartitioned. The figure shows
the three generated partitions, i.e., P0, P1 and P0 P1. Each
input tuple belongs to its associated base partition (P0 or P1).

Base Partitions Window-pair Partitions
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Figure 7: Partitioning the tuples of a window-pair partition.

Additionally, each tuple in the windows between the two base
partitions, e.g., t5 and t6, belongs to the window-pair partition
P0 P1. The base partitions, i.e., P0, P1, are added to basePList
and the window-pair partition is added to winPairPList. Note
that the tuples of the window-pair partition are extended with an
additional attribute that specifies their previous partition. This
attribute is used during the generation of window links and also
to correctly repartition this partition if needed.

Algorithm 3 presents the PartitionWinPairPart routine. This
routine is similar to PartitionBasePart. The main difference is
in the way tuples are added to the different new partitions (line
4). Each tuple t is added to its base partition and all the window-
pair partitions it belongs to. The routine, however, distinguishes
between the two window-pair partitions of any pair of pivots.
The correct identification of the window that a tuple belongs
to can be obtained using gen hyperpln dist and the previous
partition attribute of the tuple.

Additionally, in PartitionWinPairPart, all the generated par-
titions (new base and window-pair partitions) are added to win-
PairPList. This is the case because the input partition is a
window-pair partition. All the links generated in a window-pair
partition or in any of its generated subpartitions should always
be window links, i.e., links between tuples of different previous
partitions.

Fig. 7 shows an example of the partitions generated by Par-
titionWinPairPart. In this example, the input partition P0 P1
is partitioned into four partitions, i.e., Q0, Q1, Q0 Q1{1},
Q0 Q1{2}. The PartitionWinPairPart routine will add all these
partitions to winPairPList.

6



Algorithm 4 DBSimJoin Open()
1. create basePList and winPairPList
2. numPiv←CalcNumPivots(availableMem, memT)
3. initialize other conventional DB structures

Algorithm 5 DBSimJoin Close()
1. delete basePList
2. delete winPairPList
3. delete other conventional DB structures

3.5.2. Implementation Using the Iterator Interface
The DBSimJoin algorithms presented in section 3.5.1 are re-

alized in a way that allows generating links one at a time, i.e.,
using the iterator interface and its functions open, getNext, and
close. Furthermore, DBSimJoin is a non-blocking operator.
That is, it does not require the full generation of results before
it can start reporting results. Database queries are commonly
processed using a query pipeline. This pipeline is composed of
a tree of operators where tuples flow bottom-up. The process
is initiated by calls to the getNext function at the root operator.
Each time getNext is called, the operator will call the getNext
function of its children nodes one or multiple times until it ob-
tains all the required information to produce a result tuple. This
process is propagated top-down. A non-blocking behavior is a
very desirable property since it enables tuples to flow quickly in
the pipeline and reduces query response time. When the getNext
function is called in a DBSimJoin node, the operator executes
the described process only until the next result link is found.
Since small partitions that can be solved using the in-memory
routines can be generated starting at the first round, DBSimJoin
will quickly find the next link.

The open and close routines are presented in Algorithms 4
and 5, respectively. The open routine is called once at the be-
ginning of DBSimJoin’s execution. This routine initializes data
structures and computes the value of the number of pivots (see
Section 3.6.2 for details). The close routine is called once after
all the SJ links have been reported. This routine deletes all the
temporary data structures used by the operator.

The getNext routine is implemented in the fashion of a state
machine that uses the states and transitions presented in Fig. 8.
States that produce results are marked in gray. When getNext is
called in the DBSimJoin operator, the routine transitions over
the states until it produces the next tuple. The system keeps
track of the current state and other required information to re-
sume execution when the next getNext is invoked. The states
InMemSJBase and InMemSJWin (4 and 7) represent the in-
memory SJ routines. These two routines are also implemented
using a state machine approach to further reduce the time to pro-
duce the next link. The states and transitions of InMemSJBase
are presented in Fig. 9. Observe that states 12 and 14 pro-
duce the links using a Nested Loop Join approach. The states
and transitions of InMemSJWin are very similar to the ones of
InMemSJBase with the difference that InMemSJWin only pro-
duces window links (links between tuples of different previous
partitions).
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3.6. Analysis
3.6.1. I/O Analysis

The work in [7] showed that the average I/O cost of the ex-
ternal Quickjoin algorithm is O(N(1 + w)⌈log(N/M)⌉). N and M
are the number of blocks of the input data and the number of
tuples that fit in internal memory, respectively. w is the frac-
tion of tuples that lie within epsilon of the partition boundary
(these tuples form the window-pair partitions). The I/O analy-
sis of DBSimJoin is similar to the one of Quickjoin. However,
the analysis of DBSimJoin differs in the following aspect. In
DBSimJoin, we assume we have a limited number of buffer
pages B that can be used to store the data of partitions during
a partitioning round. Furthermore, each partition is assigned L
buffer pages to store its data. If the partition grows beyond the
allocated space, the partition will be stored on disk. The maxi-
mum number of new partitions generated by the algorithm in a
round will be limited by Pmax =

B
L . Also, the value of M in our

case is the number of tuples that fit in L buffer pages. That is
M = T × L, where T is the number of tuples that fit in a single
page. Using these properties, we have that the average I/O cost
of DBSimJoin is:

O(N(1 + w)⌈log( N×Pmax
B×T )⌉).

This cost will be close to O(N) for small values of ε (small
values of w) and will be close to O(N2) for large values of ε.

Note that B does not include the space for the structures used
to keep track of the current partitions or the space required by
the in-memory SJ routine.

3.6.2. Number of Pivots
The value of P (number of partitions in a round) is directly

related to the number of pivots K. Given K pivots, DBSimJoin
generates K base partitions and K2 − K window-pair partitions.
Note that in a window-pair partition round, there are 2 window-
pair partitions for each pair of pivots. The total number of parti-
tions that is generated with K pivots is K2, that is P = K2. Since

P ≤ B
L , we have that K ≤ ⌊

√
B
L ⌋. In practical scenarios, we can

use K = ⌊
√

B
L ⌋ as an initial value of K. Also note that the num-

ber of partitions P is not affected by the number of dimensions.
An experimental evaluation of the effect of the number of pivots
in execution time is presented in Section 4.4.3.

4. Performance Evaluation

We implemented DBSimJoin in PostgreSQL 8.2.4. In this
section we evaluate its performance with synthetic and real-
world data. We consider both vector and string data and study
the performance of the implemented operator when important
parameters, e.g., data size, ε, and number of dimensions, in-
crease. While we compare DBSimJoin with a standalone al-
gorithm (D-Index) in Section 4.6, the focus of this section
is the comparison of DBSimJoin with other approaches pro-
posed for database systems. Standalone algorithms can outper-
form database implementations since they are not affected by
database features like transaction processing, recovery, etc.

4.1. Test Configuration

All the experiments are performed on an Intel Core i5 2.27
GHz machine with 4GB RAM running Linux (OpenSUSE 11.3
32-bit) as the operating system. The machine has a 5400 RPM
hard disk with a capacity of 500 GB. We use the following
datasets:

• SynthData This is a synthetic vector dataset. A version
of this dataset was created for each evaluated number of
dimensions, i.e., 4D, 6D and 8D. The components of each
vector are randomly generated numbers in the range [0 -
100]. The dataset for scale factor 1 (SF1) contains 80,000
records.

• ColorData This dataset contains feature vectors extracted
from a Corel image collection [32]. Each record is a 9D
vector with components in the range [-4.8 - 4.4]. The SF1
dataset contains 68,040 records.

• DBLPData This dataset is a subset of the DBLP bib-
liographic dataset [33]. Each extracted record contains
a unique identifier and the title. The SF1 dataset con-
tains 2,500 records. The minimum, maximum and average
lengths of the title attribute are 33, 281, and 57, respec-
tively.

In all cases, the datasets for SF greater than 1 were generated
in such a way that the number of links of any SJ operation in
SFN is N times the number of links of the operation in SF1. For
vector data (SynthData and ColorData), the datasets for higher
SF were obtained adding shifted copies of the SF1 dataset such
that the the distance between copies were greater than the max-
imum value of ε used in our tests. For string data (DBLPData),
the datasets for higher SF were obtained adding a copy of the
SF1 data where characters are shifted similarly to the process in
[23]. The records of each dataset are equally divided between
R and S . We used the Euclidean and the Levenshtein distance
functions for vector and string data, respectively. The number
of pivots (numPiv) in the experiments was 30 for SynthData
and ColorData and 50 for DBLPData, the threshold to switch
to in-memory SJ was 4KB and the threshold to switch to nested
loop join in the in-memory SJ routines was 20 tuples.

4.2. Performance Evaluation with DBLP String Data

This section evaluates the performance of DBSimJoin with
string data (DBLP titles). We compare DBSimJoin with an
implementation of SSJoin (q=3), the q-gram based approach
proposed in [13]. As explained in Section 2, this approach de-
composes each input string s into sets of q-grams (substrings of
length q that are used as the signature of s) and stores the re-
sults on separate relational tables. Then, the result of Similarity
Join can be obtained using a standard SQL query. We did not
include the q-gram preparation time in the reported SSJoin ex-
ecution times. The preparation time was a very small fraction
of the query execution times (smaller than 1% in most cases).
Examples of the SSJoin and DBSimJoin queries are presented
next.
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Figure 11: Increasing Epsilon - DBLPData.

SSJoin query:

SELECT R.pka, R.origstringa, S.pkb, S.origstringb

FROM qgramsR R, qgramsS S WHERE R.qgrama = S.qgramb

GROUP BY R.pka, R.origstringa, S.pkb, S.origstringb

HAVING count(*) >=

(char_length(R.origstringa) - 3 + 1 - 3 * 2) AND

editdist(R.origstringa, S.origstringb) <= 2;

DBSimJoin query:

SELECT R.pka, R.origstringa, S.pkb, S.origstringb

FROM R, S

WHERE R.origstringa WITHIN 2 OF S.origstringb

USING EditDistance;

4.2.1. Increasing Scale Factor
Fig. 10 shows the execution time of DBSimJoin and SSJoin

for several values of scale factor. The execution time of DB-
SimJoin is consistently smaller than that of SSJoin. Specifi-
cally, the execution time of DBSimJoin is between 7% (SF1)
and 24% (SF4) of the one of SSJoin.

4.2.2. Increasing Epsilon
Fig. 11 compares the performance of DBSimJoin and SSJoin

when ε increases. DBSimJoin’s execution time is 13% of that
of SSJoin for ε=2, and only 3% for ε=10. While for very low
values of ε the number of tuples returned by the join used in
SSJoin is relatively small, this number grows quickly when ε
increases affecting negatively its execution time. DBSimJoin’s
execution time increases moderately when ε increases because
larger values of ε generate larger window-pair partitions.
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4.2.3. Space Usage
Besides having a better performance, DBSimJoin also uses

significantly less space on disk than the SSJoin approach.
SSJoin requires the creation of tables that store the generated
q-grams, the size of these tables can be significantly large since
they will commonly store many more rows than the original ta-
bles. In our experiments, for SF1, the q-gram tables have about
55 times the number of rows of the original tables. DBSimJoin,
on the other hand, uses only the original tables.

4.3. Performance Evaluation with Synthetic Vector Data

This section and the next one compare DBSimJoin with
queries that produce the same results using only regular (non-
similarity) database operators (RegDBOps). To the best knowl-
edge of the authors, no previous work has proposed an alter-
native approach to support Similarity Joins over multidimen-
sional vectors in a relational database system. PostGIS, a spatial
database extender for PostgreSQL [34], is not considered since
it only supports 2D/3D data. Also, PostGIS’ spatial distance
function (ST-Distance) does not use indexes and thus SJ will
perform like RegDBOps. Examples of RegDBOps and DB-
SimJoin queries are presented next.

RegDBOps query:

SELECT R.r1, R.r2, S.s1, S.s2

FROM R, S

WHERE sqrt((R.r1-S.s1)^2 + (R.r2-S.s2)^2) <= 0.5;
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DBSimJoin query:

SELECT R.r1, R.r2, S.s1, S.s2

FROM R, S

WHERE [R.r1, R.r2] WITHIN 0.5 OF [S.s1, S.s2]

USING EuclideanDistance;

4.3.1. Increasing Scale Factor
Fig. 12 shows the way DBSimJoin and RegDBOps scale

when the data size increases. This experiment uses 6D vectors
and a value of ε of 2.5% of the maximum possible distance.
DBSimJoin performs significantly better than RegDBOps for
all the values of SF. The execution time of DBSimJoin is always
less than 3% of the execution time of RegDBOps. Furthermore,
the execution time of RegDBOps grows from being 34 times the
one of DBSimJoin for SF1 to 88 times for SF4. In general, the
poor execution time of RegDBOps is due to a nested loop join
between the joined relations.

4.3.2. Increasing SF and Number of Dimensions
DBSimJoin queries perform much better than the RegDBOps

queries also for different number of dimensions as shown in
Fig. 13. In all cases, the execution time of DBSimJoin is a
small fraction of that of RegDBOps. Moreover, when the num-
ber of dimensions increases, DBSimJoin takes a smaller frac-
tion of the execution time of RegDBOps. Specifically, for 4D
data the execution time of DBSimJoin is at most 15% of that of
RegDBOps. The percentage is 3% for 6D data and only 2% for
8D data. Fig. 14 allows a better visualization of the DBSimJoin
execution times for different number of dimensions. The figure
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shows that the execution time of DBSimJoin decreases when
the number of dimensions increases. This is mainly due to the
large difference between the links reported in 4D data and the
ones reported in 6D and 8D data. The tests with 4D data report
between 46,109 to 184,436 links, the tests with higher number
of dimensions report always less than 1,500 links.

4.3.3. Increasing Epsilon
Fig. 15 shows how DBSimJoin and RegDBOps scale when

ε increases. The figure shows that, for all the evaluated values
of ε, the execution time of DBSimJoin is significantly smaller
than that of RegDBOps. The execution time of DBSimJoin is
only 0.42% of the execution time of RegDBOps for ε=0.5%
and 2.97% for ε=2.5%. The execution time of RegDBOps re-
mains almost constant when the value of ε increases because it
always executes a nested loop join checking the SJ predicate.
DBSimJoin’s execution time increases slightly with larger val-
ues of ε since they generate larger window-pair partitions.

4.3.4. Increasing Epsilon and Number of Dimensions
DBSimJoin performs significantly better than the RegDB-

Ops queries also for different numbers of dimensions as shown
in Fig. 16. For 4D data the execution time of DBSimJoin is at
most 14.5% of that of RegDBOps. The percentage is 3% for
6D data and only 1.9% for 8D data. Fig. 17 shows that the
execution time of DBSimJoin decreases when the number of
dimensions increases. The reason is also the large difference on
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the number of links reported: 46,109 for 4D and less than 400
for 6D and 8D.

4.4. Performance Evaluation with Color Vector Data

4.4.1. Increasing Scale Factor
Fig. 18 presents the execution time of DBSimJoin and

RegDBOps for different values of SF. The results with the real
vector data follow the same trends identified with synthetic vec-
tors. Particularly, the execution time of DBSimJoin is 1.4% of
that of RegDBOps for SF1 and 0.2% for SF4.

4.4.2. Increasing Epsilon
Fig. 19 compares the execution time of DBSimJoin and

RegDBOps for different values of ε. The results in this case
also follow the trends identified for the counterpart tests using
SynthData. The execution time of DBSimJoin is 0.6% of that
of RegDBOps for ε=0.2% and 9.8% for ε=1.0%.

4.4.3. Varying Number of Pivots
Fig. 20 shows DBSimJoin’s execution time when the number

of pivots (K) increases from 2 to 50. As K increases, the exe-
cution time decreases at first due to fewer rounds required to
reach the point where all partitions can be processed in mem-
ory. When K increases past the optimal value, the execution
time grows because the extra data duplication and I/O costs of
the window-pair partitions outweigh the effect of decreased par-
tition size and number of rounds. In this experiment, the opti-
mal execution time is obtained at K = 8 being only 17.8% of
the execution time at K = 50.
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Figure 21: Pushing Selection below DBSimJoin.

4.5. Combining DBSimJoin with other Database Operators
This section shows that DBSimJoin can be combined with

other similarity and non-similarity database operators, e.g., Se-
lection, Group-by, and Similarity Group-by, to build more com-
plex and useful queries. Moreover, we show that DBSimJoin
can be used in important transformation rules that can signifi-
cantly reduce the execution time of similarity queries.

4.5.1. Pushing Selection below DBSimJoin
We use the following query where the distance thresholds of

0.28 and 1.38 correspond to ε=1.0% and ε=5.0%, respectively.

Combining SJ and Selection (SJ-Sel):

SELECT * FROM R, S

WHERE

[R.r1 ... R.r9] WITHIN 0.28 OF [S.s1 ... S.s9]

USING EuclideanDistance AND

EucDist([S.s1 ... S.s9],[0.02 ... 0.02])<=1.38;

SJ-Sel-NoPush, SJ-Sel-PushInner and SJ-Sel-PushBoth in
Fig. 21 are different ways to execute query SJ-Sel. SJ-Sel-
NoPush executes the SJ first and then the selection operation. In
SJ-Sel-PushInner, the selection operator (σEucDist(S ,Const)≤1.38)
is pushed to table S. SJ-Sel-PushInner’s execution time is
17% of that of SJ-Sel-NoPush. In SJ-Sel-PushBoth the fil-
tering benefit is further improved by pushing selection opera-
tions on both inputs of the join (σEucDist(S ,Const)≤1.38 on S and
σEucDist(R,Const)≤(1.38+0.28) on R). The execution time of SJ-Sel-
PushBoth is only 5% of the one of SJ-Sel-NoPush.

4.5.2. Associativity of DBSimJoin Operators
For this experiment, the initial SF1 dataset is divided into

three relations: relation R has 1/2 of the dataset, relation S has
1/3, and relation T has 1/6. We use the following query.
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Combining Two SJ Operators (SJ-SJ):

SELECT * FROM R, S, T

WHERE

[R.r1 ... R.r9] WITHIN 0.28 OF [S.s1 ... S.s9]

USING EuclideanDistance AND

[S.s1 ... S.s9] WITHIN 0.28 OF [T.t1 ... T.t9]

USING EuclideanDistance;

SJ-SJ-Assoc1 and SJ-SJ-Assoc2 in Fig. 22 represent two
plans to execute query SJ-SJ. SJ-SJ-Assoc1 executes first the
join between S and T and then joins the result with R. SJ-SJ-
Assoc2, on the other hand, joins R and S first and then joins the
result with T. The execution time of SJ-SJ-Assoc1 is 77% of
that of SJ-SJ-Assoc2. SJ-SJ-Assoc1 outperforms SJ-SJ-Assoc2
because it joins the two smaller tables (S and T) first generating
a significantly smaller number of intermediate records.

4.5.3. Lazy/Eager Aggregation with DBSimJoin and Group-by
The experiments in this subsection use ColorData (SF1) with

the following changes. Table S contains 1,000 randomly se-
lected 9D vectors that are used as reference points around which
the points of R are grouped. Also, in order to generate some du-
plicate tuples that can be pre-aggregated, table R is generated
taking 20% of the original dataset and duplicating each tuple 5
times. We use the following query.

Combining SJ and Group-by (SJ-GB):

SELECT count(*), S.s1 ... S.s9

FROM R, S

WHERE

[R.r1 ... R.r9] WITHIN 0.28 OF [S.s1 ... S.s9]
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Figure 24: Lazy/Eager Aggregation with DBSimJoin and Similarity Group-by.

USING EuclideanDistance

GROUP BY [S.s1 ... S.s9];

SJ-GB-Lazy and SJ-GB-Eager in Fig. 23 correspond to the
eager and lazy aggregation plans of query SJ-GB. SJ-GB-Lazy
executes SJ first and then group-by. The group-by operator of
the lazy approach is split into two parts in SJ-GB-Eager. The
first part groups on R.r and calculates the count before the SJ.
The second part groups on S.s and uses the intermediate data to
calculate the final results (sum of the intermediate counts) after
the SJ. The execution time of SJ-GB-Eager is only 4% of that
of SJ-GB-Lazy.

4.5.4. Lazy/Eager Aggregation with DBSimJoin and Similarity
Group-by

The experiments in this subsection use a SynthData dataset
of 50,000 3D vectors. The records of the dataset are equally
divided between R and S. RefPoints is a relation that contains
reference points (central points) around which the query clus-
ters the records of R. We use the following query.

Combining SJ and Similarity Group-by (SJ-SGB):

SELECT count(*) AS count_tuples, a1 as around_a1

FROM R, S

WHERE (R.r2,R.r3) WITHIN 1.41 OF (S.s2,S.s3)

USING EuclideanDistance

GROUP BY R.r1 AROUND (SELECT g FROM RefPoints);

The eager and lazy aggregation plans can also be applied
to DBSimJoin and the Similarity Group-by operator Group
Around as represented in Fig. 24. The Group Around opera-
tor clusters the data around a set of reference points (RefPoints)
such that each records is associated to the group of its clos-
est reference point [35, 36]. SJ-SGB-Lazy and SJ-SGB-Eager
correspond to the eager and lazy aggregation plans of query SJ-
SGB. As in the previous subsection, the eager plan significantly
outperforms the lazy one. In this case, SJ-SGB-Eager’s execu-
tion time is 40% of that of SJ-SGB-Lazy.

4.6. Comparison with D-Index approach

This section compares the performance of DBSimJoin,
RegDBOps, and a standalone approach based on the D-Index
[4], an indexing structure that supports Similarity Search and
Similarity Join operations. Specifically, we use the Range
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Figure 25: Comparison with D-IndexSJ.

Query Similarity Join algorithm proposed in [4] (D-IndexSJ).
We extended this algorithm to the case of R-S similarity joins
since the original algorithm only considered the case of sim-
ilarity self joins. The algorithm applies successive similarity
search operations over the indexed dataset R, using all elements
of the dataset S as the targets of the similarity searches. For
each object s in S , the output is the collection of all objects in R
that are within ε of s. The D-Index was constructed using 6 lev-
els and 10 reference objects. The parameter ρ, which controls
the size of the exclusion set, was 2.5% of the maximum possi-
ble distance. The experiments in this subsection use SynthData
(6D) and ε=2.5% of the maximum possible distance.

Fig. 25 shows the way DBSimJoin, RegDBOps, and D-
IndexSJ scale when the data size increases. As expected,
the standalone approach performs better than the database ap-
proaches. Specifically, DBSimJoin’s execution time is about
16 times the one of D-IndexSJ for SF1 and about 8 times for
SF4. Observe that the relative advantage of D-IndexSJ over
DBSimJoin decreases rapidly when the dataset size increases.
Furthermore, given the value of ρ (2.5%), D-IndexSJ’s perfor-
mance will be less efficient for queries with ε >2.5%. An im-
portant reason for the difference in performance is that DB-
SimJoin is a database operator while D-IndexSJ isn’t. DB-
SimJoin’s execution time is affected by the overhead associ-
ated with important database features, e.g., transaction process-
ing (atomicity, consistency, isolation, and durability), recovery,
SQL parsing, etc. Even though D-IndexSJ is not affected by
database features, it also does not provide the benefits of a first-
class database operator. Moreover, D-IndexSJ requires building
an index (15s in our experiments, not included as part of query
execution time) and may require rebuilding the index to effi-
ciently support queries with different values of ε. RegDBOps,
the approach that uses regular database operators to answer SJ
queries, performs significantly worse than DBSimJoin and D-
IndexSJ. RegDBOps’s execution time is 34 times the one of
DBSimJoin for SF1 and 88 times for SF4.

5. Conclusions and Future Work

The Similarity Join is recognized as one of the most useful
data analysis operations and has been used in many applica-

tion scenarios. While multiple implementation techniques have
been proposed for the Similarity Join, very little work has ad-
dressed the study of Similarity Joins as first-class database op-
erators.

This paper presents DBSimJoin, an efficient and non-
blocking SJ database operator. DBSimJoin fully supports the
database iterator interface (open, getNext, and close) and uses
a sequence of rounds that prioritizes the quick generation of
results. The proposed algorithm can be used with any dataset
that lies in a metric space. Thus, it can be used with multiple
data types and distance functions. We present the implemen-
tation details of DBSimJoin and extensively evaluate its per-
formance using vector and string data as well as synthetic and
real-world datasets. We show that DBSimJoin performs sig-
nificantly better than alternative approaches (q-gram based ap-
proach for string data and queries with conventional operators
for vector data). DBSimJoin scales well when important pa-
rameters like epsilon, data size, and number of dimensions in-
crease. We also present queries that combine DBSimJoin with
other database operators and show that important transforma-
tion rules can be effectively applied to queries with DBSimJoin.

Our paths for future work include the study of: (1) other
similarity-aware operations, e.g., kNN Join and kDistance Join,
as physical database operators, (2) indexing techniques to im-
prove the efficiency of similarity queries, and (3) database
queries with multiple similarity-based operators.

References

[1] Postgresql, http://www.postgresql.org/, 2013.
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