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Abstract. Similarity Joins are recognized among the most useful data
processing and analysis operations. They retrieve all data pairs whose
distances are smaller than a predefined threshold ε. While several stan-
dalone implementations have been proposed, very little work has ad-
dressed the implementation of Similarity Join as a physical database
operator. In this paper, we focus on the study, design and implementa-
tion of a Similarity Join database operator for any dataset that lies in a
metric space (DBSimJoin). We describe the changes in each query engine
module to implement DBSimJoin and provide details of our implemen-
tation in PostgreSQL. The extensive performance evaluation shows that
DBSimJoin significantly outperforms alternative approaches.

1 Introduction

Similarity Joins (SJs) have been studied and extensively used in multiple appli-
cation domains, e.g., data cleaning and sensor networks. Several SJ algorithms
have been previously proposed. Very little work, however, has addressed the
implementation of SJ as a first-class database operator. This type of implemen-
tation would enable interesting similarity queries that combine SJ with other
operators. In this paper, we present a SJ database operator for any dataset that
lies in a metric space. The main contributions of this paper are:

– We present DBSimJoin, a SJ database operator that is fully integrated
into the database engine and incorporates techniques to: (1) enable a non-
blocking behavior, (2) prioritize the early generation of results, and (3) sup-
port the database iterator interface (functions open, getNext, and close).

– To the best knowledge of the authors, DBSimJoin is the first SJ database
operator that can be used with any dataset that lies in a metric space. The
operator can be used with various distance functions and data types.

– We present multiple guidelines to implement DBSimJoin as an integrated
component of a database system. We also provide details of our implemen-
tation in PostgreSQL, a popular open-source database system.

– We thoroughly evaluate the performance of DBSimJoin with multiple data
types and show that it significantly outperforms alternative approaches.

– We show that DBSimJoin can be combined with other operators in complex
similarity queries and can be used in important query transformation rules
that enable cost-based query optimization, e.g., pushing selection below join,
and Eager and Lazy aggregation transformations.
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The rest of this paper is organized as follows. Section 2 presents the related
work. Section 3 describes DBSimJoin. The performance evaluation is presented
in Section 4. Section 5 concludes the paper.

2 Related Work

Significant work has been carried out on the study of the SJ (retrieves all
data pairs whose distances are smaller than a threshold ε). This work proposed
techniques to implement them primarily as standalone algorithms outside of a
database system. Some implementation techniques rely on the use of pre-built
indices, e.g., eD-index [8], D-index [7], and List of Twin Clusters (LTC) [13].
They strive to partition the data while clustering together the similar objects.
While these indexing techniques support the SJ operation they also have some
shortcomings: D-index and eD-index may require rebuilding the index to support
queries with different ε, eD-index is applicable only to the case of self-joins, and
LTC requires indexing each pair of input sets jointly. Several non-index-based
techniques have also been proposed, e.g., EGO, GESS, and QuickJoin. The Ep-
silon Grid Order (EGO) algorithm [3] imposes an ε-sized grid over the space
and uses a schedule of reads of blocks that minimizes I/O. The Generic External
Space Sweep (GESS) algorithm [6] creates hypersquares centered on each data
point with epsilon length sides, and joins these hypersquares using a spatial join
on rectangles. The Quickjoin algorithm [12] recursively partitions the data until
the subsets are small enough to be efficiently processed using a nested loop join.
Quickjoin has been shown to outperform EGO and GESS [12]. DBSimJoin, the
operator presented in this paper, builds on Quickjoin’s approach to partition
the data. However, the focus of our work is the design and implementation of an
efficient database operator. The differences with the work in [12] are: (1) DB-
SimJoin uses a different partitioning sequence that prioritizes early generation of
results and minimizes query response time, (2) DBSimJoin uses a non-blocking
implementation approach that fully supports the database iterator interface, (3)
DBSimJoin assumes a limited number of memory buffers, (4) our experimental
section evaluates the effect on performance of key parameters not evaluated in
[12], e.g., dimensionality and number of pivots, and (5) we study how DBSimJoin
can be combined with other operators and used in query transformation rules.

Also, of importance is the work on SJ techniques in the context of database
systems. Some work has focused on the implementation of SJs using standard
database operators [4, 5, 10]. These techniques are applicable only to string or set-
based data. The general approach decomposes data and query strings into sets of
grams (substrings of a string that are used as its signature), and stores the results
on separate tables. Then, the result of the SJ can be obtained using standard
SQL queries. DBSimJoin is experimentally compared with one such technique
(SSJoin [4]) in Section 4.1. More recently, the work in [15, 14] proposed a SJ
database operator for 1D numerical data based on a plane-sweep algorithm. This
approach, however, cannot be easily extended to other data types. DBSimJoin
is more generic and can be used with any dataset that lies in a metric space.
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DBSimJoin supports multiple data types and distance functions. In a recent
demo paper [17], we showed how DBSimJoin can be used to identify similar
images (feature vectors), and similar publications in a bibliographic database.

3 The DBSimJoin Operator

The Similarity Join (SJ) operation between two datasets R and S is defined
as: R ◃▹θε(r,s) S = {⟨r, s⟩|θε(r, s), r ∈ R, s ∈ S}, where θε(r, s) represents the
Similarity Join predicate, i.e., dist(r, s) ≤ ε. Even though the tuples of relations
R and S are combined by DBSimJoin, each tuple is assumed to have an attribute
that identifies its relation. DBSimJoin iteratively partitions the input data into
smaller partitions until each partition is small enough to be efficiently processed
by an in-memory SJ routine. The overall process is divided into a sequence of
rounds. The initial round partitions the input data while any subsequent round
partitions the data of a previously generated partition. Each round produces:
(1) result pairs (links) for the small partitions that can be processed by an
in-memory SJ routine, and (2) intermediate data for the partitions that will
require further partitioning. Intermediate data is stored on disk (hibernated).
The DBSimJoin operator executes the required rounds until all the input and
intermediate data is processed. While rounds other than the first one can be
processed in any order, DBSimJoin uses a partitioning sequence that favors the
early generation of result links.

3.1 DBSimJoin Rounds

A goal of the partitioning step in each round is to divide the round input data into
a set of partitions such that all the result links in the input data are obtained
by combining the links found in each partition independently. To accomplish
this, the input data is partitioned into: (1) non-overlapping partitions (base par-
titions), and (2) partitions that contain the records in the boundary of each pair
of base partitions (window-pair partitions). Partitioning is performed using a set
of K pivots, i.e., a random subset of the records to be partitioned. Each base
partition contains all the records that are closer to a given pivot than to any
other pivot. Each window-pair partition contains the records in the boundary
between two base partitions. The window-pair records should be a superset of
the records whose distance to the hyperplane that separates the base partitions
is at most ε. This hyperplane does not always explicitly exist in a metric space.
Instead, it is implicit and known as a generalized hyperplane. Since the distance
of a record t to the generalized hyperplane between two partitions with pivots P0

and P1 cannot always be computed exactly, a lower bound of the distance is used
[11]: gen hyperpln dist(t, P0, P1) = (dist(t, P0)− dist(t, P1))/2. This distance is
replaced with the exact distance if this can be computed, e.g., in Euclidean
spaces. Processing the window-pair partitions guarantees the identification of
the links between records that belong to different base partitions. A round that
repartitions a base partition or the initial input data is referred to as a base
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partition round, a round that repartitions a window-pair partition is referred to
as a window-pair partition round.

Fig. 1 shows the repartitioning of a base partition using pivots P0 and P1. In
this case, the result of the SJ operation on the input dataset T is the union of
the links in partitions P0 and P1, and the links in window-pair partition P0 P1
where one element belongs to window A and the other one to window B. We
refer to this last type of link as window link. Fig. 2 shows the repartitioning of
the window-pair partition P0 P1 of Fig. 1 using pivots Q0 and Q1. In this case,
the set of window links in P0 P1 is the union of the window links in Q0, Q1,
Q0 Q1{1} and Q0 Q1{2}. Note that windows C and F do not form a window-
pair partition since their window links are a subset of the window links in Q0.
Similarly, the window links between E and D are a subset of the ones in Q1.

Figures 3 and 4 represent the processing performed by DBSimJoin in round
0 and a generic round I, respectively. Round 0, shown in Fig. 3, partitions the
original input data (R∪S) into k partitions. Some generated partitions are small
enough to be processed by the in-memory SJ routines, e.g., P1, P4, P5. Result
links and window links are generated in these routines. The remaining partitions
are stored on disk, e.g., P2, P3, Pk. Any other round further repartitions a
previously generated partition. For instance the round represented in Fig. 4
repartitions partition P2. This round also generates some partitions that can be
processed by the in-memory SJ routines, e.g., Q1, Q3, Q4, Q5, and partitions
that need further processing, e.g., Q2, Qk. While rounds other than the first
one can be processed in any order, DBSimJoin uses a partitioning sequence
that favors the early generation of result links. The algorithmic details of this
approach are presented in Section 3.3. The remaining part of this section presents
the guidelines to implement the DBSimJoin operator inside the query engine of
standard DBMSs. Although the presentation is intended to be applicable to any
DBMS, some specific details refer to our implementation in PostgreSQL.
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3.2 The Parser and Planner

To add support for Similarity Joins in the parser, the raw-parsing grammar rules,
e.g., yacc rules in the case of PostgreSQL, are extended to recognize the syntax of
the new SJ predicate. The parse-tree and query-tree data structures are extended
to include the information of the new operator, i.e., type of join, value of ε and
distance function. The routines in charge of transforming the parse tree into the
query tree are updated accordingly to process the new fields in the parse tree.
To add support for the operator in the planner, a new plan node is created to
represent the SJ operator. This node is similar to the regular join node but also
stores information about ε and the distance function. If a query has multiple SJ
predicates, they are processed one at a time, i.e., multiple SJ nodes are pipelined.
It is important to observe that key transformation rules to optimize queries with
SJ [15, 16], e.g., associativity of SJ operators and pushing selection below SJ, can
be applied to plans with DBSimJoin operators. We evaluate the use of several
transformation rules with DBSimJoin in Section 4.3.

3.3 The Executor

DBSimJoin Executor Routine DBSimJoin’s main routine is presented in
Fig. 5. The routine first creates two lists to keep track of the base and window-
pair partitions (line 1). Each partition is assigned a space in memory (memT )
and if it needs to grow beyond this space, it is stored on disk and the memory
space is used as a buffer. The routine partitions the initial input data (R ∪ S)
into base and window-pair partitions (line 2). The main loop will be executed
while there is at least one base partition that needs to be processed (lines 3-16).
In each iteration, the routine processes all the base partitions executing Inmem-
orySimJoin (in-memory routine) to identify SJ links in small partitions (line
5) and hibernating larger partitions, i.e., transferring any in-memory data to
disk (line 6). Then, the routine processes the window-pair partitions (and their
sub-partitions) until all their SJ links have been produced (lines 7-13). When
all the window-pair partitions have been fully processed, the routine gets the
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DBSimJoin(R, S, eps, numPiv, memT)

Input: R and S (input data), eps, numPiv (No. of pivots), memT (memory threshold)

Output: the result of the Similarity Join between R and S

1.  create basePList and winPairPList

2.  PartitionBasePart(R U S, basePList, winPairPList, eps, numPiv)

3.  while basePList.size > 0 do

4.    for each partition P of basePList do

5.       if P  memT then InmemorySimJoin(P, eps)

6.       else HibernatePartition(P)

7.    while winPairPList.size > 0 do

8.       for each partition W of winPairPList do

9.         if W  memT then InmemorySimJoinWin(W, eps)

10.        else HibernatePartition(W)

11.      if winPairPList.size > 0 then

12.        W  winPairPList.getFirst()

13.        PartitionWinPairPart(W, winPairPList, eps, numPiv)

14.   if basePList.size > 0 then

15.      P  basePList.getFirst()

16.      PartitionBasePart(P, basePList, winPairPList, eps, numPiv)

17. delete basePList and winPairPList

Fig. 5. DBSimJoin’s main executor routine.

first base partition that needs further processing and repartitions it calling Par-
titionBasePart (lines 14-16). The main DBSimJoin routine prioritizes the early
generation of links. After any partitioning step, the algorithm will process first
all the partitions that can be solved in-memory. The routine has the potential
to produce links starting at the first round. This behavior enables the support
of the iterator interface and its getNext function. The algorithm also prioritizes
the processing of window-pair partitions before base partitions. This reduces the
number of partitions that the routine needs to keep track of. Window-pair par-
titions are in general significantly smaller than base partitions. Thus, in general,
it takes less time to reach the point where they can be processed in memory.

The main routine calls PartitionBasePart and PartitionWinPairPart to par-
tition a base and a window-pair partition, respectively. PartitionBasePart ran-
domly selects numPiv pivots and processes each tuple t adding it to the new
base (basePList) and window-pair (winPairPList) partitions this tuple belongs
to. This involves: (1) adding t to the base partition corresponding to its closest
pivot p, and (2) adding t to all the window-pair partitions (corresponding to
pivots p and i) where gen hyperpln dist(t, p, i) ≤ eps. Fig. 6 shows an example
of the partitions generated by PartitionBasePart with pivots P0 and P1. T is
partitioned into P0, P1 and P0 P1. Note that the tuples of the window-pair
partition have an extra attribute that specifies their previous partition. This
is used during the generation of window links and also to correctly repartition
this partition. PartitionWinPairPart is similar to PartitionBasePart but distin-
guishes between the two window-pair partitions of any pair of pivots. Also, all
the generated partitions are added to winPairPList since the links generated in
a window-pair partition should always be window links (links between tuples of
different previous partitions). Fig. 7 shows a partitioning generated by Parti-
tionWinPairPart. P0 P1 is partitioned into Q0, Q1, Q0 Q1{1}, and Q0 Q1{2}.
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Implementation Using the Iterator Interface The DBSimJoin algorithms
presented in the previous subsection are realized in a way that enables generating
links one at a time, i.e., using the iterator interface and its function getNext.
DBSimJoin is a non-blocking operator. That is, it does not require the full
generation of results before it can start reporting results. Database queries are
commonly composed of a tree of operators where tuples flow bottom-up. The
process is initiated by calls to the getNext function at the root operator. Each call
in turn calls the getNext function of its children nodes until it gets the required
information to produce a result tuple. This process is propagated top-down. A
non-blocking behavior reduces query response time. When getNext is called in
a DBSimJoin node, the operator executes the described process only until the
next result link is found. Since small partitions that can be solved using the in-
memory routines can be generated starting at the first round, DBSimJoin will
quickly find the next link. The getNext routine is implemented in the fashion of
a state machine that uses the states and transitions presented in Fig. 8. When
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getNext is called in the DBSimJoin operator, the routine transitions over the
states until it produces the next tuple. The system keeps track of the current
state and other required information to resume execution when the next getNext
is invoked. The states InMemSJBase and InMemSJWin (4 and 7) represent the
in-memory SJ routines. These two routines are also implemented using a state
machine approach to further reduce the time to produce the next link. The states
and transitions of InMemSJBase are presented in Fig. 9. Observe that states 12
and 14 produce the links using a Nested Loop Join approach. The states and
transitions of InMemSJWin are very similar to the ones of InMemSJBase with
the difference that InMemSJWin only produces window links.

3.4 Analysis of I/O Cost and Number of Pivots

The work in [12] showed that the average I/O cost of the external Quickjoin
algorithm is O(N(1 + w)⌈log(N/M)⌉). N and M are the number of blocks of the
input data and the number of tuples that fit in internal memory, respectively. w
is the fraction of tuples that lie within ε of the partition boundary. DBSimJoin’s
analysis is similar to the one of Quickjoin but considers we have a limited number
of buffer pages B to store the partitions. Moreover, each partition is assigned L
buffer pages to store its data. If the partition grows beyond this space, it is stored
on disk. The maximum number of new partitions generated by the algorithm in
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a round will be limited by Pmax = B
L . Also, the value of M in our case is the

number of tuples that fit in L buffer pages. That is M = T × L, where T is the
number of tuples that fit in a single page. Using these properties, we have that

the average I/O cost of DBSimJoin is O(N(1 +w)⌈log(
N×Pmax

B×T )⌉). This cost will
be close to O(N) for small ε and close to O(N2) for large ε.

P (No. of partitions in a round) is related to the number of pivots K. Given
K pivots, DBSimJoin generates K base partitions and K2 − K window-pair

partitions, that is P = K2. Since P ≤ B
L , we have that K ≤ ⌊

√
B
L ⌋. We use

K = ⌊
√

B
L ⌋ as an initial value of K. Also note that the number of partitions P

is not affected by the number of dimensions.

4 Performance Evaluation

We implemented DBSimJoin in PostgreSQL 8.2.4. In this section we compare
DBSimJoin with other approaches proposed for database systems. We do not
compare DBSimJoin with standalone algorithms. These algorithms can outper-
form database implementations since they are not affected by database features
like transaction processing, recovery, etc. The experiments used an Intel Core i5
2.27 GHz machine (4GB RAM, 500GB/5400RPM hard disk, Linux). We use the
following datasets:

– SynthData This is a synthetic vector dataset. A version of this dataset was
created for each evaluated number of dimensions, i.e., 4D, 6D and 8D. The
components of each vector are randomly generated numbers in the range [0
- 100]. The dataset for scale factor 1 (SF1) contains 80,000 records.

– ColorData This dataset contains feature vectors extracted from a Corel
image collection [9]. Each record is a 9D vector with components in the
range [-4.8 - 4.4]. The SF1 dataset contains 68,040 records.

– DBLPData This dataset is a subset of the DBLP bibliographic dataset
[1]. Each extracted record contains a unique identifier and the title. The
SF1 dataset contains 2,500 records. The minimum, maximum and average
lengths of the title attribute are 33, 281, and 57, respectively.

The datasets for SF greater than 1 were generated in such a way that the
number of links of any SJ operation in SFN is N times the number of links in
SF1. For vector data, the datasets for higher SF were obtained adding shifted
copies of the SF1 dataset where the distance between copies were greater than the
maximum value of ε. For string data, the datasets for higher SF were obtained
adding a copy of the SF1 data where characters are shifted similarly to the
process in [18]. The records of each dataset are equally divided between R and
S. We used Euclidean and Levenshtein distance functions for vector and string
data, respectively. The number of pivots (numPiv) in the experiments was 30
for SynthData and Colordata and 50 for DBLPData, the threshold to switch to
in-memory SJ was 4KB and the threshold to switch to nested loop join in the
in-memory SJ routines was 20 tuples.
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4.1 Performance Evaluation with DBLP String Data

We compare DBSimJoin with an implementation of SSJoin (q=3), the q-gram
based approach proposed in [4] and explained in Section 2. SSJoin’s execution
times do not include q-gram generation. Sample queries are presented next.

SSJoin query: SELECT R.pka, R.origstringa, S.pkb, S.origstringb

FROM qgramsR R, qgramsS S WHERE R.qgrama = S.qgramb

GROUP BY R.pka, R.origstringa, S.pkb, S.origstringb

HAVING count(*) >= (char_length(R.origstringa) - 3 + 1 - 3 * 2)

AND editdist(R.origstringa, S.origstringb) <= 2;

DBSimJoin query: SELECT R.pka, R.origstringa, S.pkb, S.origstringb FROM

R, S WHERE R.origstringa WITHIN 2 OF S.origstringb USING EditDistance;

Increasing Scale Factor Fig. 10 shows the performance when data size in-
creases. DBSimJoin’s execution time is between 7% (SF1) and 24% (SF4) of the
one of SSJoin. DBSimJoin also uses significantly less space than SSJoin. In our
experiments, for SF1, SSJoin’s q-gram tables have about 55 times the number
of rows of the original tables. DBSimJoin uses only the original tables.

Increasing Epsilon Fig. 11 compares the performance when ε increases. DB-
SimJoin’s execution time is 13% of that of SSJoin for ε=2, and only 3% for ε=10.
While for very low values of ε the number of tuples returned by the join used in
SSJoin is relatively small, this number grows quickly when ε increases affecting
negatively its execution time. DBSimJoin’s execution time increases moderately
when ε increases since larger values of ε generate larger window-pair partitions.

4.2 Performance Evaluation with Vector Data

We run all the tests using both vector datasets and found the same performance
trends. We present the results using one dataset (specified in each figure) due to
space constraints. We compare DBSimJoin with queries that produce the same
results using only regular (non-similarity) database operators (RegDBOps). To
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0

50000

100000

150000

200000

1 2 3 4

E
xe
cu
ti
o
n
T
im

e
(s
e
co
n
d
s)

Scale Factor (SF)

SynthData(4D,6D,8D), Eps:2.5%

DBSimJoin 4D

DBSimJoin 6D

DBSimJoin 8D

RegDBOps 4D

RegDBOps 6D

RegDBOps 8D

Fig. 13. Increasing SF and Number of Di-
mensions - SynthData.

the best of our knowledge, no previous work has proposed an alternative ap-
proach to support SJ over vectors in a DBMS. PostGIS, a spatial database ex-
tender for PostgreSQL [2], is not considered since it only supports 2D/3D data.
Also, PostGIS’ spatial distance function (ST-Distance) does not use indexes and
thus SJ will perform like RegDBOps. Some sample queries are presented below.

RegDBOps query: SELECT R.r1, R.r2, S.s1, S.s2 FROM R, S

WHERE sqrt((R.r1-S.s1)^2 + (R.r2-S.s2)^2) <= 0.5;

DBSimJoin query: SELECT R.r1, R.r2, S.s1, S.s2 FROM R, S

WHERE [R.r1, R.r2] WITHIN 0.5 OF [S.s1, S.s2] USING EuclideanDistance;

Increasing Scale Factor Fig. 12 shows how DBSimJoin and RegDBOps scale
when the data size increases. This experiment uses 6D vectors and a value of ε of
2.5% of the maximum possible distance. DBSimJoin performs significantly better
than RegDBOps for all the values of SF. RegDBOps’ execution time grows from
being 33 times the one of DBSimJoin for SF1 to 87 times for SF5. RegDBOps’
poor performance is due to a nested loop join between the joined relations.

Increasing SF and Number of Dimensions DBSimJoin perform much bet-
ter than RegDBOps also for different number of dimensions as shown in Fig.
13. In all cases, the execution time of DBSimJoin is a small fraction of that of
RegDBOps. Moreover, when the number of dimensions increases, DBSimJoin
takes a smaller fraction of the execution time of RegDBOps. Specifically, for 4D
data the execution time of DBSimJoin is at most 15% of that of RegDBOps.
The percentage is 3% for 6D data and only 2% for 8D data. Fig. 14 shows that
the execution time of DBSimJoin decreases when the number of dimensions in-
creases. This is mainly due to the large difference between the links reported in
4D data (46,109-184,436) and the ones reported in 6D and 8D data (< 1,500).

Increasing Epsilon Fig. 15 shows that, for all the evaluated values of ε,
DBSimJoin significantly outperforms RegDBOps. The execution time of DB-
SimJoin is only 0.42% of that of RegDBOps for ε=0.5% and 2.97% for ε=2.5%.
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RegDBOps’ execution time remains almost constant because it always executes
a nested loop join checking the SJ predicate. DBSimJoin’s execution time in-
creases slightly with larger values of ε since they generate larger window-pair
partitions.

Increasing Epsilon and Number of Dimensions DBSimJoin performs sig-
nificantly better than RegDB-Ops also for different numbers of dimensions as
shown in Fig. 16. For 4D data the execution time of DBSimJoin is at most 14.5%
of that of RegDBOps. The percentage is 3% for 6D and only 1.9% for 8D.

Varying Number of Pivots Fig. 17 shows DBSimJoin’s execution time when
the number of pivots (K) increases from 2 to 50. As K increases, the execution
time decreases at first due to fewer rounds required to reach the point where all
partitions can be processed in memory. When K increases past the optimal value
(K = 8), the execution time grows because the extra data duplication and I/O
costs of the window-pair partitions outweigh the effect of decreased partition
size and number of rounds.
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4.3 Combining DBSimJoin with other Database Operators

This section shows that DBSimJoin can be combined with other database oper-
ators and used in important transformation rules. We use the following queries.

Combining SJ and Selection (SJ-Sel): SELECT * FROM R, S

WHERE [R.r1 ... R.r9] WITHIN 0.28 OF [S.s1 ... S.s9] USING

EuclideanDistance AND EucDist([S.s1 ... S.s9],[0.02 ... 0.02])<=1.38;

Combining SJ and Group-by (SJ-GB): SELECT count(*), S.s1 ... S.s9

FROM R, S WHERE [R.r1 ... R.r9] WITHIN 0.28 OF [S.s1 ... S.s9]

USING EuclideanDistance GROUP BY [S.s1 ... S.s9];

This section uses ColorData (SF1) with the following changes. Table S in
SJ-GB has 1,000 randomly selected 9D vectors that are used as reference points
around which the points of R are grouped. Also, in order to generate dupli-
cate tuples, table R in SJ-GB is generated taking 20% of the original dataset
and duplicating each tuple 5 times. The thresholds 0.28 and 1.38 correspond
to ε=1.0% and ε=5.0%, respectively. SJ-Sel-NoPush, SJ-Sel-PushInner and SJ-
Sel-PushBoth in Fig. 18 are different ways to execute SJ-Sel. SJ-Sel-NoPush
executes the SJ first and then the selection operator. In SJ-Sel-PushInner, the
selection operator (σEucDist(S,Const)≤1.38) is pushed to S. SJ-Sel-PushInner’s ex-
ecution time is 17% of that of SJ-Sel-NoPush. In SJ-Sel-PushBoth, the filtering
benefit is further improved by pushing selection operations on both inputs of the
join (σEucDist(S,Const)≤1.38 on S and σEucDist(R,Const)≤(1.38+0.28) on R). SJ-Sel-
PushBoth’s execution time is only 5% of the one of SJ-Sel-NoPush. SJ-GB-Lazy
and SJ-GB-Eager correspond to the eager and lazy aggregation plans of SJ-GB.
SJ-GB-Lazy executes SJ first and then group-by. Grouping is split into two parts
in SJ-GB-Eager. The first part groups on R.r and calculates the count before the
SJ. The second part groups on S.s and uses the intermediate data to calculate
the final results (sum of the intermediate counts) after the SJ. The execution
time of SJ-GB-Eager is only 4% of that of SJ-GB-Lazy.

5 Conclusions and Future Work

This paper presents DBSimJoin, an efficient and non-blocking SJ database op-
erator. DBSimJoin supports the iterator interface and uses a sequence of rounds
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that prioritizes the quick generation of results. DBSimJoin can be used with mul-
tiple data types and distance functions. We present the implementation details of
DBSimJoin and extensively evaluate its performance showing that DBSimJoin
outperforms alternative approaches. We also present queries that combine DB-
SimJoin with other database operators and show that important transformation
rules can be effectively applied to queries with DBSimJoin. Our paths for future
work include the study of: (1) other similarity operations as database operators,
(2) indexing techniques to improve the efficiency of similarity queries, and (3)
database queries with multiple similarity operators.
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