
Pivot-based Approximate k-NN Similarity Joins for Big
High-dimensional Data�

Přemysl Čecha, Jakub Lokoča, Yasin N. Silvab

aCharles University, Faculty of Mathematics and Physics, SIRET Research Group,
Malostranské nám, 11800 Prague, Czech Republic

bArizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306, USA

Abstract

Given an appropriate similarity model, the k-nearest neighbor similarity join
represents a useful yet costly operator for data mining, data analysis and data
exploration applications. The time to evaluate the operator depends on the size
of datasets, data distribution and the dimensionality of data representations.
For vast volumes of high-dimensional data, only distributed and approximate
approaches make the joins practically feasible. In this paper, we investigate
and evaluate the performance of multiple MapReduce-based approximate k-NN
similarity join approaches on two leading Big Data systems Apache Hadoop and
Spark. Focusing on the metric space approach relying on reference dataset ob-
jects (pivots), this paper investigates distributed similarity join techniques with
and without approximation guarantees and also proposes high-dimensional ex-
tensions to previously proposed algorithms. The paper describes the design
guidelines, algorithmic details, and key theoretical underpinnings of the com-
pared approaches and also presents the empirical performance evaluation, ap-
proximation precision, and scalability properties of the implemented algorithms.
Moreover, the Spark source code of all these algorithms has been made publicly
available. Key findings of the experimental analysis are that randomly initial-
ized pivot-based methods perform well with big high-dimensional data and that,
in general, the selection of the best algorithm depends on the desired levels of
approximation guarantee, precision and execution time.

Keywords: Hadoop, Spark, MapReduce, k-NN, Approximate similarity join,
High-dimensional data

1. Introduction

The k-nearest neighbor (k-NN) similarity join is an asymmetric operation
that returns the k most similar objects in a dataset S for each query object

�This paper is an extended version of previous papers by Cech et al. [1, 2].
Email addresses: cech@ksi.mff.cuni.cz (Přemysl Čech), lokoc@ksi.mff.cuni.cz

(Jakub Lokoč), ysilva@asu.edu (Yasin N. Silva)

Preprint submitted to Elsevier May 10, 2018

in a dataset R. In recent years, the study of k-NN joins attracted consider-
able amount of attention due to their applicability in various domains. In the
data mining and machine learning context, k-NN joins can be employed as a
preprocessing step for classification or cluster analysis. In data exploration and
information retrieval, similarity joins provide a similarity graph with potentially
relevant entities for each object in the database. k-NN similarity join applica-
tions can be found, for example, in image and video retrieval [3, 4, 5, 6], spatial
databases [7], pattern recognition [8], and network communication analysis and
malware detection frameworks [2, 9].

Because data volumes are often too large to be processed on a single machine
(especially for high-dimensional data), we focus on the distributed MapReduce
environment [10] running on Hadoop1 and Spark2. MapReduce is a widely
adopted framework and is considered an efficient and scalable solution for dis-
tributed big data processing. MapReduce programs are designed to run on large
clusters of commodity hardware and employ a programming paradigm similar to
the divide and conquer approach. Datasets are loaded, split and pre-processed
in the map phase and the main execution and evaluation of an algorithm is
performed in parallel on smaller data fractions in the reduce phase.

In this paper, we study approximate k-NN similarity join algorithms that
can provide significant speedup compared to the exact similarity join while still
preserving high results precision. In many domains, the difference between
exact and slightly different k nearest results is acceptable. This is particularly
the case in scenarios where computing the exact similarity joins over big high-
dimensional data would take significantly large execution times.

Our study focuses on similarity joins for MapReduce environments based on
the metric space approach [11]. This approach provides a universal framework
for efficient processing of various similarity models. For evaluations on vector
data, we also revisited and extended two previously proposed k-NN similarity
join approaches designed for vector spaces. In this paper, we focus on algorithms
employing data organizations and replication strategies initialized randomly as
these techniques can be conveniently applied on Big Data in different domains.
Although a study tackling related similarity joins has been previously published
for Hadoop [12], the study focused on low dimensional data. The subsequent
journal paper [13] tested data up to 386 dimensions and highlighted limitations
for most k-NN join methods on such high-dimensional dataset. The need of ef-
fective and efficient k-NN similarity joins for high-dimensional data led us to (1)
design distributed similarity join techniques with thresholds or approximation
guarantees, (2) revise available MapReduce algorithms integrating extensions
to more efficiently handle high-dimensional data, (3) consider the implementa-
tion of such algorithms on a different platform - Spark (in addition to Hadoop),
and (4) experimentally evaluate and compare the performance of the different
approaches.

1http://hadoop.apache.org/
2http://spark.apache.org/

2

This paper extends a short conference paper that presented a comparison of
our heuristic method with two previously proposed approaches on Hadoop [1]
and follows the paper proposing the pivot-based heuristic k-NN join method [2].
This paper significantly extends the previous papers by introducing a new
MapReduce based method that supports an ε-guaranteed approximation, i.e.,
an approximate version of the k-NN join where the distance from each query
point to its farthest neighbor is constrained in terms of a parameter (ε) and the
distance to the farthest neighbor in the exact solution. Furthermore, this paper
includes the implementation guidelines for Spark and a thorough, and mostly
new, set of experimental results.

1.1. Paper contributions
The overall contribution of our work can be summarized into four points:

• Extensions of previously proposed k-NN similarity join algorithms on
MapReduce to process big high-dimensional data more efficiently.

• The introduction of pivot-based k-NN similarity join heuristic approaches
on MapReduce that support approximation-related thresholds and guar-
antees. We analyze an approach that provides the ε-guarantee (which
constrains the distance from each query point to its furthest neighbor
returned in the k-NN join). We include a discussion of the theoretical
foundations that support the proposed methods.

• The Spark and Hadoop implementation guidelines of the proposed MapRe-
duce join methods. We point out the limitations of different platforms
and show why Spark provides faster execution times. We also provide the
source code of the Spark implementation of all the evaluated methods,
including our new implementations of baseline related approaches based
on space filling curves (Z-curve) and locality sensitive hashing.

• Thorough and extensive performance evaluation on large data with dif-
ferent dimensionality (from 10 to 1000 dimensions) running on fully dis-
tributed Amazon clusters, with most experiments evaluated on the Spark
platform processing up to tens of millions of objects. This analysis pro-
vides guidance for selecting an appropriate algorithm for distributed k-NN
join based on workload and approximation precision requirements.

The remaining part of the paper is structured in the following way. In Section
2, basic formal definitions and common terms are presented. An overview of
similarity join problems, two related methods, and several proposed extensions
of these methods are covered in Section 3. Section 4 presents several exact
and approximate pivot-based k-NN similarity join algorithms on MapReduce
and provides their implementation guidelines. In Section 5, the performance
evaluation of all the implemented algorithms is presented and the results are
discussed. Section 6 concludes the paper.

3

2. Preliminaries

The fundamental concepts and basic definitions related to approximate k-
NN similarity joins are summarized in the following subsections, considering the
standard notations [13, 11].

2.1. Similarity model and k-NN joins
In this work, we address the efficiency of k-NN similarity joins of com-

plex objects obji (e.g., images or network traffic snapshots) modeled by high-
dimensional vectors oi ∈ R

n. Unless otherwise stated, in the following text
the term object denotes the vector representation. In connection with a metric
distance function δ : Rn × R

n → R
+
0 , the tuple M = (Rn, δ) forms a metric

space that serves as a similarity model for retrieval (low distance means high
similarity and vice versa)3.

Let us suppose two sets of objects in a metric space M : database (train)
objects S ⊆ R

n and query (test) objects R ⊆ R
n. The k-NN similarity join task

is to find the k nearest neighbors for each query object q ∈ R from the set S
employing a metric function δ. Usually, the Euclidean (L2) metric is employed.
Formally:

kNN(q, S) = {X ⊂ S; |X| = k ∧ ∀x ∈ X, ∀y ∈ S −X : δ(q, x) ≤ δ(q, y)} (1)

The k-NN similarity join is defined as:

R �� S = {(q, s) | q ∈ R, s ∈ kNN(q, S)}. (2)

Because of the high computational complexity of similarity joins, approxi-
mations of the joins can be considered to significantly reduce computation costs
while maintaining reasonable precision. Formally, an approximate k-NN query
for an object q ∈ R is labeled as kNNa(q) and defined as ε-approximation of
the exact k-NN:

kNNa(q, S) = {X ⊂ S; |X| = k ∧
max

x∈kNN(q,S)
δ(q, x) ≤ max

x∈X
δ(q, x) ≤ ε · max

x∈kNN(q,S)
δ(q, x)} (3)

where ε ≥ 1 is an approximation constant. The corresponding approximate
k-NN similarity join is defined as:

R ��a S = {(q, s) | q ∈ R, s ∈ kNNa(q, S)}, (4)

While the previous definition of the approximate k-NN join has been com-
monly used in the literature, to the best of our knowledge, no previous paper

3The effectiveness of the distance function and feature extraction mapping from obj to o
is the subject of similarity modeling.

4

has actually implemented a MapReduce k-NN similarity join algorithm that re-
ceives ε as a parameter and guarantees the ε-related property specified in the
definition. Instead, previous papers have primarily proposed heuristic methods
that aim at (1) having shorter execution times than the exact k-NN join, and
(2) having a relatively high result quality quantified by alternative approxima-
tion measures like precision and total distance error (these and other measures
are presented in Section 2.3). To present a comprehensive study and the trade-
offs of different types of approximate k-NN joins, in this paper we present a
method that satisfies the ε guarantee and compare it with extensions of several
heuristic-based methods.

2.2. Metric filtering principles
Since the new methods for distributed k-NN similarity joins are based on

the metric space approach [11], we briefly present the fundamental principles of
distance based metric indexing for an exact k-NN search. Note that kNN(q, S)
corresponds to a metric space ball-region B = Ball(q, rq), selecting objects
from S based on the dynamically estimated radius rq ∈ R

+
0 . In general, the

ball-region defines a set of covered objects o ∈ B ⊂ R
n iff δ(q, o) ≤ rq.

Given a metric space M = (Rn, δ), distance based approaches rely on pre-
computed distances to a set of reference points, so called pivots P ⊂ R

n. In
connection with the triangle inequality property of δ, these distances can be used
to efficiently estimate the lower-bound δLB and upper-bound δUB distances be-
tween a query object q ∈ R and a database object o ∈ S. Formally, given a
pivot p ∈ P and precomputed distances δ(q, p) and δ(o, p):

δLB(q, o) = |δ(q, p)− δ(o, p)| ≤ δ(q, o) ≤ δ(q, p) + δ(o, p) = δUB(q, o). (5)

The k-NN query processing is usually designed as an algorithm that main-
tains and greedily updates the actual set of k closest candidate objects from S,
using also the actual query ball radius r′q ∈ R

+
0 , r

′
q ≥ rq. Hence, given the actual

query ball Q = Ball(q, r′q), an object o ∈ S can be filtered if

r′q ≤ max
∀p∈P

|δ(q, p)− δ(o, p)|, (6)

without the evaluation of δ(q, o) which gets costly with high-dimensional
data.

The metric space approach provides also two basic data partitioning options
for filtering entire groups of objects. The first option is by making use of the
already mentioned ball-regions. Given a ball-region based data partition D =
Ball(p, rp) containing selected dataset objects and the actual query ball Q =
Ball(q, r′q), all objects in the data ball-region D can be filtered if

rp + r′q < δ(p, q). (7)

The (generalized) hyperplane partitioning represents the second option, which
incorporates two pivots. Using pivots p1, p2 ∈ P , the metric space is divided

5

into two sets S1 = {o | o ∈ S, δ(p1, o) < δ(p2, o)} and S2 = {o | o ∈ S, δ(p2, o) ≤
δ(p1, o)}. Given the hyperplane based data partition S1 and S2 containing se-
lected dataset objects and the actual query ball Q = Ball(q, r′q), all objects in
the data partition S1 can be filtered if

δ(p1, q)− r′q ≥ δ(p2, q) + r′q. (8)

The presented principles are frequently used by various metric access meth-
ods for an efficient exact k-NN search [11]. The principles are directly implied
from metric axioms. However, in high-dimensional spaces, the distances between
dataset objects are often high and similar (the curse of dimensionality effect).
Hence, the conditions to safely prune some objects or partitions are mostly not
satisfied and the approximate and/or distributed search becomes necessary for
more efficient retrieval.

2.3. Approximation measures
Once approximate k-NN joins are considered, the similarity join approx-

imation quality and error have to be evaluated. For this purpose, different
approximation measures [14] can be utilized.

The k-NN query approximation precision (or recall) with respect to the exact
k-NN search is defined as:

precision(k, q, S) =
|kNN(q, S) ∩ kNNa(q, S)|

k
(9)

An object oi ∈ kNN(q, S) matches an object oj ∈ kNNa(q, S) iff either
ID(oi) = ID(oj) or δ(q, oi) = δ(q, oj) (equal distant objects from a query q
may be present in the k-NN result in an arbitrary order). Final approximate
precision is computed as a sum of matching k nearest objects divided by the k.

Other approximation measures we use are the total distance ratio,

DR(k, q, S) =

∑k
i=1 δ(q, kNN(q, S)[i])

∑k
i=1 δ(q, kNNa(q, S)[i])

(10)

which represents a ratio between the sums of all neighbor distances in ex-
act and approximate join results and the effective (epsilon) error for the kth

neighbor,

εeff (k, q, S) =
δ(q, kNNa(q, S)[k])

δ(q, kNN(q, S)[k])
(11)

comparing the distances to a specific neighbor (usually at the kth position).
In all definitions, the kNN(q, S)[i] expression stands for the ith neighbor in

a sorted kNN(q, S) result.

6

2.4. MapReduce environment
Since data volumes are significantly increasing every day, centralized solu-

tions are often highly inefficient for large data processing. Therefore, the need
for effective distributed data processing is emerging. In this paper, we have
adopted the MapReduce [10] paradigm that is often used for parallel processing
of big datasets. The algorithms described in following sections are implemented
in the Hadoop and Spark MapReduce environments which consist of several
components. Datasets are stored in the Hadoop distributed file system (HDFS),
which is designed to form a big virtual file space to contain data in one place.
Data files are physically stored on different data nodes across the cluster and
are replicated in multiple copies (protection against a hardware failure or a data
node disconnection). Name nodes manage access to data according to the dis-
tance from a request source to a data node (it finds the closest data node to a
request).

In Hadoop, every program is composed of one or more MapReduce jobs.
Each job consists of three main phases: a map phase, a shuffle phase and a reduce
phase. In the map phase, data are loaded from the HDFS file system, split into
fractions and sent to mappers where a fraction of data is parsed, transformed
and prepared for further processing. The output of the map phase are <key,

value> pairs. In the shuffle phase, all <key, value> pairs are grouped and
sorted by the key attribute and all values for a specific key are sent to a target
reducer. Ideally, each reducer receives the same (or similar) number of groups to
equally balance a workload of the job. In the reduce phase all reducers process
their assigned groups and usually perform the main execution part of the whole
job. Finally, all computed results from the reduce phase are written back to the
HDFS.

Spark is an in-memory distributed processing engine that uses resilient dis-
tributed datasets (RDDs) as its data storage foundation. An RDD is a read-only
multiset that is distributed over a computer cluster. Spark has several compo-
nents that enable different types of data processing, for example Spark Core
(supports core data manipulations), Spark SQL (provides support for struc-
tured and semi-structured data and a domain-specific query language), and
Spark Streaming (supports streaming analytics).

Spark Core is one of Spark’s main data processing components. It supports
a wide array of distributed data manipulation operations including transforma-
tions such as map, filter, reduceByKey, groupByKey, join and actions such as
reduce, collect and count. Most of these operations take RDDs as input and
produce RDDs as their output. All Spark transformation functions are eval-
uated lazily, meaning operations are executed in one optimized data stream
after an action function is called. If an RDD is used multiple times, caching
techniques can be employed. Spark supports multiple levels of caching, e.g.
MEMORY_ONLY persistence (keep all objects or RDDs in main memory) or
MEMORY_AND_DISK persistence (prefer main memory but if RDDs don’t
fit there the rest is saved to hard drives). Spark can run in different setups, e.g.
on Hadoop or stand alone. For our testing purposes we used Spark running on
Hadoop utilizing Hadoop Yarn (resource manager) and HDFS services.

7

3. Related work on similarity joins

Many types of different similarity joins have been defined and studied over
recent years. Specifically, previous work in this area studied k-Distance joins [15]
(returns the smallest k pairs between two datasets), range query joins [16, 17]
(returns all the pairs with a distance equal to or smaller than a given thresh-
old) and k-NN similarity joins (for each record of the first dataset, it returns
the k closest records in the second dataset) [18, 19]. Some join techniques fo-
cus just on specific data types, e.g. set-similarity joins [20, 21] or string joins
with edit distance constraints (Ed-Join [22], Trie-Join [23]). Other approaches,
like QuickJoin [24], use pivot-based iterative space partitioning or utilize grid
structure (Epsilon Grid - EGO [25]). Similarity joins were also studied in the
context of database systems and database operators [26, 27]. In this paper, we
focus on the last type of similarity joins: the k-NN joins which return the k
nearest neighbors for each query object. The k-NN joins are usually specified
on either metric spaces [19, 24] or just vector data spaces [28, 29]. Some central-
ized solutions for k-NN joins employ an index structure providing a significant
evaluation speed up, e.g. the R-tree (MuX [18]) or B+-tree (iJoin [30]) based
techniques.

Since sharing a complex index structure is not efficient and perhaps not even
viable in a distributed environment those algorithms cannot be optimally paral-
lelized. On the other hand, different algorithms were recently proposed directly
for the MapReduce framework which is designed to work in a fully distributed
environment composed of up to thousands of computing machines. Specifically,
for the MapReduce paradigm, multiple methods were proposed for range query
joins [17, 31, 32] and k-NN joins utilizing pivot space partitioning [2, 19, 28, 33],
space filling curves (Z-curve [34]), locality sensitive hashing [35, 36] and Ham-
ming distance filtering [29]. The k-NN algorithms (e.g. [34, 35]) usually work in
three phases: a data partitioning phase, a partial k-NN join computation, and
an intermediate results merge phase. However, not all methods need the third
merge phase (e.g. [19, 28]) because the final results are already produced in the
second phase.

Related papers [37, 38, 39, 40] have analyzed the advantages, disadvantages
and bottlenecks of two of the most well-known distributed MapReduce plat-
forms: Hadoop and Spark. Hadoop is a framework with high focus on disk
persisting operations while Spark aims to take advantage of distributed random
access memory (RAM) on cluster nodes and stores data on hard drives only
when main memory space is insufficient. Since most of the previous work con-
sidering similarity k-NN joins has been proposed only for the Hadoop framework,
we also integrate the implementation and performance evaluation on the Spark
platform. Some of the algorithm implementation details, in fact, significantly
differ between these two platforms.

In this paper, we primarily focus on MapReduce-based general metric k-
NN similarity joins described in detail later in Section 4. For the experiments
and comparisons performed on vector data, we selected and revisited the imple-
mentation of two methods for vector spaces: space-filling Z-curve and locality

8

sensitive hashing. Since the metric joins use randomly selected database ob-
jects for indexing, we have selected methods that also use a convenient random
initialization of data partitions.

3.1. Space-filling curve based k-NN similarity joins on MapReduce
A space-filling curve is a bijection which maps an object from an n−dimensional

space to a one-dimensional value, trying to preserve the locality of objects with
high probability. For example, the z-order curve creates values (referenced as
z-values) that can be computed easily by interleaving the binary representation
of coordinate values. Different types of space filling curves have been proposed
for approximate k-NN search, e.g. Z-curve [41], Z-curve with projections [42] or
Hilbert curve [43]. In this paper, we adopt the baseline Z-curve solution for the
MapReduce environment [34].

When querying the database, the z-value of a query object is calculated and
k database objects with nearest z-values are returned. To reach more precise
results, α independent copies of the database and queries are created in the
preprocessing phase, each of them shifted by a random vector vi ∈ R

n. For each
database copy Si (∀o ∈ S : oi = o + vi, Si =

⋃
i{oi} and for i = 0, S0 = S), z-

values of modified objects are computed and sorted. Similarly, all query objects
in R are shifted to copies Ri. Each qi ∈ Ri is used to query Si for 2 · k objects
with the k nearest lower and k nearest higher z-values from Si to qi. Thus, up
to 2 · α · k distinct candidates are collected in total, their distance to the query
object is computed and the resulting k nearest candidates are returned.

The centralized solution has been adapted for the MapReduce framework
[34]. To distribute the work among the nodes, the objects in each copy Si and Ri

are split in n partitions, depending on their z-value. Every query object belongs
to exactly one partition. We must, however, ensure that the partition contains
all nearest neighbor candidates. Thus a query object with the maximum z-
value needs k database objects with higher z-values copied over (if any exist)
in each partition. Analogically, a query object with the minimum z-value needs
k database objects with lower z-value. Since the intention is to distribute the
objects equally, the best boundary points would be 1

n ,
2
n , . . . ,

n−1
n quantiles of

Ri. Nonetheless, precise partitioning may be very expensive due to large data
volumes. Instead, objects are sampled and depending on their values and the
probability model, approximate quantiles are determined.

Inside each partition, every present query object is used to find 2 · k near-
est database object candidates. Distances to the candidates are evaluated and
intermediate k-NN results are returned. Each partition is processed by a sep-
arate reducer. Using a suitable number of partitions and having data equally
distributed, the portion of data for each reducer is small enough to be stored
in a node memory. Finally, the nearest objects for each query are detected by
merging the candidate k-NN results obtained from all copies Si.

3.1.1. Implementation revision
The Hadoop application runs in three MapReduce jobs. The Java source

code of the MapReduce solution was provided by its authors [34]. We modified it

9

slightly and adjusted the data structures to fit our object representation and also
to be able to load partition objects in memory. For purposes of high-dimensional
data computation, we also improved the z-values serialization and implemented
the z-value computation of floating point values (values are converted to integers
by scaling them by the given constant). The algorithm itself has not been
modified.

Our Z-curve implementation in Spark includes few improvements and ad-
justments. We integrated an option named OnlyZorder which decides how
objects with mapped z-value are stored. In case OnlyZorder = true the algo-
rithm works in the same way as Hadoop version while the OnlyZorder = false
option means that we store an original object’s vector together with the z-value
which results in a higher memory usage but the computation is faster because
the back transformation from the z-value to original vector coordinates does
not have to be performed (and we can also utilize a fast L2 distance for sparse
vectors which is used for other methods).

We also integrated a second parameter called EntirePartitions which de-
termines how many database objects in each partition Si are considered for real
distance computations to a query q ∈ Ri. If EntirePartitions = false then
the algorithm uses the original 2 · k closest neighbors by z-values from an Si. In
case the EntirePartitions = true, all database objects in a specific partition
Si are considered and all distances d(q, si), si ∈ Si are evaluated. The second
option (EntirePartitions = true) leads to higher approximation precision but
runs substantially longer. Detailed results for all options are presented in the
experimental Section 5.

Other than that, the Spark implementation follows the original Hadoop algo-
rithm and the best Spark programming practices.. All shared data structures are
broadcasted to all executors and intermediate results are kept in memory (per-
sistence mode is set to the MEMORY_AND_DISK mode) and, usually, don’t
have to be written to HDFS. Here we observe the most significant speed up for
a comparison between Hadoop and Spark implementations among all studied
k-NN join algorithms (concrete numbers are presented in Section 5). This obser-
vation is explained by many disk operations performed by the Hadoop Z-curve
implementation. Also the Hadoop version is implemented in three separate
MapReduce jobs and utilizes the MultipleOutputs class for storing temporary
results and statistics (e.g. partitions). These results have to be merged and
distributed to all mappers and reducers in following stages which requires a
lot of I/O operations. Compared to that, the Spark implementation keeps all
needed data in memory and does not require repetitive (expensive) disk accesses
(assuming reasonable amount of RAM is available on computing machines).

3.2. Locality sensitive hashing based k-NN similarity joins on MapReduce
Locality Sensitive Hashing (LSH) [44] is another technique that can be used

in the context of k-NN heuristic join algorithms. Specifically, Stupar et al. pro-
posed RankReduce [35], a MapReduce-based approximate algorithm to simul-
taneously process a small number of k-NN search queries in a single MapReduce
job using LSH. The key idea behind RankReduce is to use hashing to build an

10

index that assigns similar records to the same hash table buckets. Zhu et al.
[36] proposed an improved version of RankReduce which builds the index in
a more efficient way and also compares queries only with database candidates
that appear more frequently in the same buckets as queries. However, both
related MapReduce techniques are oriented towards long running querying sys-
tems. They maintain the database index and the main goal is to provide fast
responses to requested k-NN queries. An important property is that they as-
sume that the number of queries is relatively small. On the other hand, many
similarity join application scenarios focus on evaluating a lot of queries at once
and possibly only once.

Unlike the previously mentioned methods, our LSH approach does not build
persisting database indices because we focus mainly on performing independent
similarity joins. Nevertheless, our algorithm could be easily adjusted to store
hashed database objects for a later use. Also, the previously proposed techniques
are not really scalable because they assumed only a small number of queries R
in the input which is a big limitation in many application scenarios. Considering
this, we implemented a new LSH algorithm. From a high level point of view,
our algorithm just compares database and query objects that fall into the same
hash bucket after performing hashing operations on both R and S sets. To
increase the approximation precision, intermediate k-NN results are produced
for several independent sets of hashing functions and the final k-NN join is
formed by merging the intermediate results.

The presented method is composed of two main MapReduce jobs in Hadoop:
a hashing job including k-NN evaluation and a merging job. During the map
phase of the hashing job, both database (S) and query objects (R) are hashed
using a set of i hash tables each containing j hash functions of the form ha,B(v) =
�(a · v +B)/W �, where W is a parameter and a and b are constants generated
from the p-normal distribution. For every input record v ∈ S∪R, a set of output
keys (buckets) hashi are evaluated. One hashi represents a unique string formed
from j hash functions corresponding to the hash table i. The map phase emits
pairs of the form (hashi, v). In the reduce phase of the hashing job, local k-NN
candidates are computed for a subset of queries and database objects in every
bucket identified by the key hashi. In the second MapReduce job, all partial
results are loaded, grouped by the query object IDs and global k-NN results for
all queries are produced.

3.2.1. Implementation revision
We implemented this algorithm from scratch and initially followed the algo-

rithm presented in [35] until we realized different needs and limitations of the
original approach. Regarding the dataset, it is not clear in the original paper
[35], how general (non-binary) datasets should be pre-processed to work with
the LSH. In our experiments, we found that using our test datasets directly
would often generate a single hashing bucket. To increase the number of buck-
ets, we pre-processed our dataset applying the standard normal transformation
(a value xi is transformed to x′

i =
xi−μ
σ). In addition, the pre-processing steps

were also implemented using MapReduce. As a result, the overall LSH applica-

11

tion is composed of three MapReduce jobs. The first one gathers statistics for
the transformation, the second one transforms the objects, computes the hash
values and produces the intermediate k-NN results and the last one performs
the merge and outcomes global k-NN results.

Our Spark implementation follows the Hadoop one closely. There is no
significant difference, data are also transformed using normal standard trans-
formation, all hash tables are broadcasted to all executors, data are grouped by
the output of hashing functions and intermediate results are merged to produce
final k-NN join results. The only difference is that dimension statistics and in-
termediate results don’t have to be written back to the HDFS and are kept in
memory which speeds up the whole application execution.

4. Pivot-based k-NN similarity joins on MapReduce

Pivot-based methods represent a useful generic approach with convenient
random initialization, which nevertheless reflect data distribution by dividing
a metric space into partitions centered around global objects (pivots) selected
from the dataset. The benefits of pivot-based methods have been investigated for
k-NN similarity joins on MapReduce in the work of Lu et al. [19]. The authors
describe how mappers cluster objects into groups and reducers perform the k-NN
join on each group of objects separately. Distance function properties are used
to define exact rules for data replication and filtering of non-relevant objects.
However, in high-dimensional metric spaces the rules are not sufficiently efficient
(the curse of dimensionality effect). In this section, we investigate algorithms for
approximate k-NN similarity joins on MapReduce. First, the work of Lu et al.
[19] is presented including our comments on revised parts (Section 4.2). Then,
we present our additional modifications of the exact search method to obtain a
heuristic method in Section 4.3 and we discuss a method with the ε-guarantee
in Section 4.4. For better clarity, Table 1 summarizes the symbols of frequently
used sets in the following subsections.

S ⊂ R
n A finite set of database objects

R ⊂ R
n A finite set of query objects

P ⊂ S A finite set of pivots selected from database objects
Ci ⊂ R

n Voronoi cell: {x|x ∈ R
n ∧ pi ∈ P ∧ ∀pj∈P (δ(x, pi) ≤ δ(x, pj))}

Si = S ∩ Ci Database objects in the Voronoi cell Ci

Ri = R ∩ Ci Query objects in the Voronoi cell Ci

C =
|P |⋃

i=1

{Ci} Set of all Voronoi cells for the set of pivots P

G1, ..., Gm ⊂ C A decomposition of C into m groups of Voronoi cells
Sl
i ⊆ Si Subset of database objects from Si replicated to group Gl

Rl
i = Ri All query objects from Ri are replicated to group Gl

Table 1: Symbols of frequently used sets.

12

4.1. Exact k-NN similarity join approach
The original version of the pivot-based exact k-NN join algorithm [19] (re-

ferred to as PGBJ) utilizes a Voronoi partitioning based on the set of preselected
global pivots pi ∈ P and a metric distance function δ. The algorithm is com-
posed of two main phases: data preprocessing and k-NN join evaluation. The
general evaluation workflow of the algorithm is depicted in Figure 1.

Voronoi
partitioning

Pivot
selection

Voronoi
statistics Grouping Objects ⇒

Groups
k-NN

evaluation

Hadoop file system (HDFS)

(1) (2) (3) (4) (5) (7)

Preprocessing k-NN join

Upper/
lower

bounds

(6)

MAP MAP REDUCE EP EP EP EP

Figure 1: Workflow of the original implementation of the pivot-based approach for MapRe-
duce [19]. Solid arrows represent data flow, dashed arrows represent algorithmic steps.

The preprocessing phase consists of five steps. In step 1.1, pivots P are
selected from the set of database objects S by an external program (EP). In
step 1.2, both sets of database and query objects (S and R) are distributed
by a Map job into Voronoi cells Ci according to the preselected pivots pi ∈ P ,
forming sets Si = S ∩ Ci and Ri = R ∩ Ci. Specifically, all distances dji from
objects oj ∈ S ∪R to all pivots pi (dji = δ(oj , pi)) are computed and for every
object oj the nearest pivot pn is identified. For database and query objects, the
following records are created and stored (Table 2).

database object record reco = [o ∈ Si, IDpi
, δ(o, pi)]

query object record recq = [q ∈ Ri, IDpi , δ(q, pi)]

Table 2: Records for database and query objects.

In step 1.3, statistics are computed for every set Si and Ri including the
covering radius, the number of objects oj and the total size of all objects oj in
the particular cell Ci. Moreover, the distances of the k nearest objects o ∈ Si

to the pivot pi are saved for each set Si for replication rules. In step 1.4, the
Voronoi cells Ci are clustered into bigger disjoint groups Gl to limit the maxi-
mum amount of replication (see step 1.6). The authors proposed an algorithm
considering both the geometric and volume properties of cells. Note that ev-
ery group Gl should contain a similar number of objects to properly balance
the next steps of the parallel k-NN join workload. The number of groups Gl

should also correspond to the number of reducers (or executors in Spark) used
in the next phase. In step 1.5, the lower and upper bounds for replication that
guarantees the correct execution of exact search (see step 1.6) are computed for

13

each cell Ci. The following records (Table 3) are created and stored for sets Si

and Ri. The records for whole sets are then distributed throughout the cluster
(their size is relative small).

record for Si recSi = [|Si|, size(Si), lb, ub, {d1, ..., dk}]
record for Ri recRi

= [|Ri|, size(Ri), lb, ub]

Table 3: Records for sets Si and Ri including the number of objects, size of objects and the
minimal (lb) and maximal (ub) distance from the pivot pi to objects in the set. recSi

contains
also distances to the k nearest objects to the pivot pi.

The second phase performs k-NN join of two sets (S and R) in a parallel
MapReduce environment (one MapReduce job). In the replication step 1.6,
all query objects q ∈ Ri are assigned to a group Gl iff Ci ∈ Gl. We will
denote the corresponding group in the upper index (Rl

i). Each database object
o ∈ S is assigned to all groups Gl for which a lower bound LB(o,Ri) is less
than or equal to an upper bound UB(Ri) for any Ri ⊂ Ci ∈ Gl. The utilized
query radius upper bound UB(Ri) is precomputed in step 1.5 as depicted in
Figure 2, considering the distance Ri.ub of the furthest q ∈ Ri from pi and the
stored distances of the k nearest database objects to each pivot. Observe that
considering only the furthest query object leads to a cheaper but less effective
replication rule. The lower bound distance to the furthest query object in Ri

for one database object o with the closest pivot pj is determined by the formula:

LB(o,Ri) = max{0, δ(pi, pj)−Ri.ub− δ(o, pj)}.

p2

p3

p4

p5
p1

-NN to pivot
pivots distance

upper bound
(max distance)

Figure 2: An illustration showing how to compute an upper bound for the Voronoi cell C3

(query objects in the cell C3 are denoted as R3) and given k = 1. In this case, the result
UB(R3) = R3.ub+ δ(p3, o31) where R3.ub is the upper bound (maximal distance to a query
object q ∈ R3 from the pivot p3) and o31 ∈ S3 is the closest database object (1-NN) to the
pivot p3.

14

Technically, the database object independent value

vij = max{0, δ(pi, pj)−Ri.ub− UB(Ri)}

for a whole cell Sj can be precomputed and saved in the preprocessing phase and
only the comparison vij ≤ δ(o, pj) is performed for each object. A simple lower
and upper bounds scheme is visualized in Figure 3. An important note is that
when Voronoi cells are aggregated into bigger groups, the values are computed
for the whole groups, selecting the minimal value across all Ri in the particular
group. Objects o ∈ Si replicated to a group Gl form the set Sl

i.

Figure 3: Simple visualization of lower and upper bounds.

Finally, every computing unit cul (a reducer or executor corresponding to
a group Gl) receives the query objects from all the sets Rl

i and all the sets Sl
j

of database objects replicated to group Gl (step 1.7). Technically, the whole
records reco, recq are sent to cul as depicted in Algorithm 1, where the cor-
responding sets of records are denoted as RecRl

i and RecSl
j . Then, for every

query object q ∈ Rl
i, all sets Sl

j are visited according to distances between the
query’s nearest pivot and pivots pj . The k-NN query is evaluated using metric
space pruning techniques for each set Sl

j . The authors of the original paper [19]
used parent (Equation 6) and cosine law filtering strategies. After all sets Sl

j

are processed, the final k-NN result for the query q is produced.

4.2. Revisiting the exact k-NN similarity join
In this paper, we revise some ideas regarding the exact search and the overall

MapReduce k-NN join algorithm. We consider the efficient and convenient
random pivot selection in step 1.1 given that the benefits of more expensive
complex pivot selection techniques have been found with numbers of pivots
significantly smaller than the ones used in our work (we usually use thousands
of pivots) [45]. In step 1.4, we implemented a grouping variant which reflects
the total data size in addition of the number of objects in each group Gl. In
our previous work [2], we showed that such grouping is suitable for space-saving
data formats compressing sparse representations.

Regarding the k-NN evaluation step 1.7, we replaced the sorting of database
sets Sl

i with respect to a query q assigned to the group Gl. The new version
sorts the sets based on the exact distances between the query q and the pivots
pi unlike the original algorithm which estimated the distances using the closest
pivot to q. The new ordering represents a heuristic trying to greedily reduce the
actual k-NN range radius and also improve the performance of the employed
approximate search heuristic. The authors of the original paper [19] used also

15

the cosine law for more efficient filtering. However, this technique cannot be
applied to all metric similarity functions so we omit this rule. On the other
hand, we propose the use of the ball (Equation 7) and hyperplane (Equation 8)
filtering strategies successfully employed in metric access methods [11].

Algorithm 1 summarizes the revised PGBJ algorithm, highlighting primarily
the k-NN join steps 1.6 and 1.7. The algorithm closely follows the description
presented in the previous subsection. In the preprocessing phase, all support
data structures are computed and shared across the cluster (pivots, groups,
lower bounds). Specifically, the lower bound values vlj (line 6) store values for
whole groups in an ascending order. The function for computing upper bounds
is presented in Algorithm 2. This algorithm can compute upper bounds either
for one query q or for a whole query cell Rq (the only difference is the part
starting on line 4) and is used for determining replications in PGBJ and in the
ε-guaranteed k-NN similarity join algorithm (Section 4.4). In the map phase of
Algorithm 1, the query objects q ∈ R are sent to the corresponding group and
the database objects oi ∈ S are distributed to multiple groups Gl by values vlj .

In the reduce phase, the k-NN is computed for all queries using the suggested
metric space filtering methods and the exact k-NN results are produced.

4.2.1. Implementation revision
The Hadoop implementation is composed of two MapReduce jobs and was

provided by the authors [19]. First, global pivots are chosen, they are stored in
HDFS and distributed via the Hadoop distributed cache class. Then, the first
MapReduce job computes the distances from all objects in both sets R and S
to all pivots, and collects Voronoi cell statistics in the map phase. After that,
all statistics are merged together, groups are determined and upper and lower
bounds are computed (these operations are implemented separately from any
MapReduce job). Statistics, group information and bounds are also distributed
throughout the cluster. Then, global k-NN results are computed in the second
job. In the map phase, all the objects are assigned to the designated groups
(including replication). In the reduce phase, the k-NN computation on a subset
of queries and database objects is performed as described previously in Section
4.1.

We also implemented the PGBJ algorithm in the Spark environment. The
main difference is that the distributed data structures (e.g. global pivots, records
with statistics for all sets, group information) do not have to be stored in the
HDFS but are kept in memory and broadcasted to all executors. Also, the entire
algorithm does not have to be split into two jobs so the total execution time
is faster. Empirical results of the comparison are presented in the evaluation
Section 5.

4.3. Heuristic k-NN similarity join approach
Since the PGBJ replication algorithm uses pivot-based upper/lower bounds

and the replication strategy is designed for whole Voronoi cells, almost all
database objects are replicated to all groups in high-dimensional spaces. With

16

Algorithm 1 Pivot kNN join(R, S, k)

1: pivots P = select pivots from S
2: recS , recR = partition data to Voronoi cells for R, S according to pivots
3: stats recSi

, recRi
= merge Voronoi statistics

4: groups G = group Voronoi cells using stats and pivots
5: upperBounds UB(Ri) = computeUB(Ri, k, P , stats, true)
6: values vlj = ∀Gl ∈ G : min

Ri∈Gl

{δ(pi, pj)−Ri.ub− UB(Ri)}

7: —map—
8: for query record recq in recR do
9: Gl = get group ID for recq.pi

10: output pair [Gl; recq]
11: end for
12: for db record reco in recS do

//db objects can belong to multiple groups - the replication
13: for group ID Gl in groups G do
14: if vli ≤ reco.δ(o, pi) then //δ(o, pi) is precomputed
15: output pair [Gl; reco]
16: end if
17: end for
18: end for

19: —reduce—
20: for groups Gl ∈ G do //all records are grouped by the group id key
21: parse all sets with query records to RecRl and db object records to RecSl

22: for record recq including q in RecRl
i, ∀RecRl

i ∈ RecRl do
23: compute distances δ(q, pj) and sort sets RecSl

j from the closest
24: kNNa(q, S) = ∅
25: rq = computeUB(recq, k, P, stats, false) //initial query radius
26: for RecSl

j in RecSl do
27: if δ(q, pj)− rq ≥ recq.δ(q, pi) + rq then continue //Equation 8
28: if δ(q, pj) > RecSl

j .ub+ rq then continue //Equation 7
29: for record reco including object o in RecSl

j do
30: if |δ(q, pj)− reco.δ(o, pj)| > rq then continue //Equation 6
31: update kNNa(q, S) by o
32: if |kNNa(q, S)| = k then rq = max

xi∈kNNa(q,S)
δ(q, xi)

33: end for
34: end for
35: output kNNa(q, S)
36: end for
37: end for

the increasing dimensionality, also the filtering rules lose their pruning power.
Such a behavior is the consequence of the curse of dimensionality problem [46].

17

Algorithm 2 ComputeUB(recq | Rq, k, P , stats recSi , recRi , wholeCell)

1: PQ = ∅ // priority queue in descending order by a distance
2: for pivot pi in P do
3: for distance dj in k distances to pi in recSi do

//distToP iv is computed either for one query q or whole cell Rq

4: if wholeCell then
5: distToP iv = Rq.ub + δ(pq, pi)
6: else
7: distToP iv = recq.δ(q, pi)
8: end if
9: dist = distToP iv + dj

10: if PQ.size < k then
11: add dist to PQ
12: else if PQ.peek > dist then
13: remove the first (highest) distance from PQ
14: add dist to PQ
15: else
16: break //distances dj are sorted in an ascending distance to pi
17: end if
18: end for
19: end for
20: return PQ.peek

In high-dimensional spaces, the distances between pairs of objects are similar
and thus pivot-based lower bounds of distances are usually equal to zero, while
pivot-based upper bounds are often higher than the highest distance between
two objects. This paper extends our previous work [2, 1], where we proposed a
heuristic k-NN similarity join method on Hadoop which significantly speeds up
the k-NN join time but preserves high approximation precision in the average
case. The method is labeled as the pivot approximate k-NN join (PAKJ) and
its high level schema is similar to the PGBJ method presented in Section 4.1
(Figure 1). Unlike the PGBJ method, the PAKJ method uses no guarantee
thresholds to limit replications and the number of visited sets Sl

i by each query.
The replication step used by PAKJ is inspired by a repetitive (recursive)

Voronoi partitioning used by state-of-the-art indexing techniques in metric spaces
such as M-Index [47]. In each set Si, every object o is further identified by the
pivot permutation prefix [48] determined by the set of closest pivots to o (in-
stead of a single closest pivot). Given the closest pivots to an object o, the
proposed replication heuristic assumes that the object o should be replicated
mainly to the groups containing Voronoi cells determined by the pivots (illus-
trated in Figure 4 for objects o1, o2, o3 ∈ S). A new parameter MaxRecDepth
sets a threshold for the number of considered closest pivots for each object
o ∈ Si (i.e., the limit of recursive splitting of the corresponding cell Ci). In the
preprocessing phase (step 1.2), for every database object o ∈ S the distances

18

to all pivots are evaluated and the ordered list of the MaxRecDepth nearest
pivots P o ⊂ P is stored (in the form of pivot IDs) with object o. The replication
heuristic in the beginning of the second phase (step 1.6) utilizes directly the
stored lists of nearest pivots. Specifically, every database object o located in a
set Si is replicated to groups Gl ⊂ G that contain cells determined by pivots
from P o. Hence, the step 1.5 designed to compute upper/lower bounds can be
skipped. Database records are stored in the format displayed in Table 4.

database object record reco = [o ∈ Si, {IDp | p ∈ P o}, {δ(o, p) | p ∈ P o}]

Table 4: Adjusted database records for the PAKJ algorithm.

p1

p2

p3

p5

p4

Figure 4: An example of the Voronoi space partitioning and replication of database objects
oj ∈ S. For the MaxRecDepth = 2 all three objects o1, o2, o3 near groups boundaries are
replicated to the other group because the second closest pivot to the objects oj lies in the
other group.

In the k-NN evaluation step 1.7, the new parameter called FilterRatio is
employed to determine an early stop rule. The FilterRatio parameter represents
the percentage of visited cells Sl

i after which the k-NN search is stopped (e.g.
FilterRatio = 0.01 means that after visiting 0.01 · |P | cells the k-NN search is
terminated if at least k objects were found).

Our implementation of the PAKJ algorithm in Hadoop and Spark is similar
to the PGBJ join. New parameters during replication step and k-NN query
processing (early termination) are employed and also upper/lower bounds do
not have to be computed because they are not used for the replication strategy.

4.4. k-NN similarity join approach with the ε−guarantee
The PAKJ heuristic does not provide the worst case guarantees. This means

that despite a good performance in the average case, some k-NN queries forming
the join could result in a high effective (epsilon) error (Definition 11).

In this section, we investigate a MapReduce based k-NN similarity join
method for metric spaces that tackles the ε−guaranteed approximation. En-
forcing the ε−guarantee to support the approximately correct nearest neighbor

19

(AC-NN) queries has been presented in the paper by Ciacccia et al. [49, 50].
More specifically, given a query object q ∈ R and the distance to its nearest
neighbor rq ∈ R

+
0 the AC-NN query can return any object o ∈ S such that

δ(q, o) ≤ ε · rq, ε ≥ 1. The authors present an exact nearest neighbor search
algorithm that can be adapted for AC-NN queries by substituting the distance
to the actual nearest neighbor candidate rx by rx

ε . The same idea can be ap-
plied for approximate k-NN similarity join methods on MapReduce with the
ε−guarantee. In the following subsection, we summarize a sound formal back-
ground [50] clarifying the correctness of the utilized approach for pivot-based
k-NN similarity joins on MapReduce.

4.4.1. Formal background
The goal of the following theorems is to show that utilizing the rx

ε radius for
k-NN search in metric spaces preserves the ε−guarantee (Definition 3). More-
over, correct metric space filtering methods (object, ball and hyperplane filter-
ing) can be used to speed up approximately correct k-NN queries.

For all the following Theorems, we work with the next premises.

Premises. Let us assume a given metric space M = (Rn, δ), a query object
q ∈ R

n, a finite data set S ⊂ R
n, an arbitrary candidate result set X ⊂ S,

|X| = k, an actual query radius rx = max
xi∈X

δ(q, xi), an approximation parameter

ε ∈ R
+, ε ≥ 1 and a set of pivots P ⊂ S.

Theorem 1 clarifies the idea that database objects oi ∈ S−X in the annulus
< rx

ε , rx > centered in q can be skipped and the ε-guarantee will not be violated.

Theorem 1. Let Y = {oi ∈ S | δ(q, oi) ≥ rx
ε } and rxy = max

xi∈kNN(q,X∪Y)
δ(q, xi),

then it holds that rx
rxy

≤ ε.

Proof 1. Trivial. rxy ≥ rx
ε , which implies that ε ≥ rx

rxy
.

Note 1. As a consequence of Theorem 1, skipping any database object oi ∈
S − X, δ(q, oi) ≥ rx

ε during query processing does not violate the ε−guarantee
condition for ε−approximate k-NN search. Nevertheless, objects oi satisfying
δ(q, oi) < rx can be used to update the actual query radius rx and improve
filtering efficiency.

Furthermore, Theorems 2, 3, and 4 formalize the idea that filtering tech-
niques defined in Subsection 2.2 (Definitions 6, 7, 8) do not violate the ε−guarantee.

Theorem 2. Let Y = {oi ∈ S | rx
ε ≤ max

∀p∈P
|δ(q, p) − δ(oi, p)|} and rxy =

max
xi∈kNN(q,X∪Y)

δ(q, xi). Then it holds that rx
rxy

≤ ε.

Proof 2. From the triangle inequality and definition of Y it holds that δ(q, oi) ≥
max
∀p∈P

|δ(q, p) − δ(oi, p)| ≥ rx
ε , ∀oi ∈ Y . In connection with Theorem 1 it holds

that ε ≥ rx
rxy

.

20

Figure 5: An illustration of Theorem 1. Objects outside of the gray area can be safely pruned.

Theorem 3. Let p ∈ P , rp ∈ R
+, Y = {oi ∈ S | oi ∈ Ball(p, rp) ∧ rp +

rx
ε <

δ(q, p)} and rxy = max
xi∈kNN(q,X∪Y)

δ(q, xi). Then it holds that rx
rxy

≤ ε.

Proof 3. From the triangle inequality, ball region and Y definition it holds that
δ(q, oi) ≥ δ(q, p) − rp > rx

ε , ∀oi ∈ Y . In connection with Theorem 1 it holds
that ε ≥ rx

rxy
.

Theorem 4. Let p1, p2 ∈ P , S1 = {oi ∈ S | δ(p1, oi) < δ(p2, oi)}, Y = {oi ∈
S1 | δ(q, p1) − rx

ε ≥ δ(q, p2) +
rx
ε } and rxy = max

xi∈kNN(q,X∪Y)
δ(q, xi). Then it

holds that rx
rxy

≤ ε.

Proof 4. From the definition of partitions S1 and S2 and the set Y it holds
that δ(q, oi) ≥ δ(q, p2) +

rx
ε ≥ rx

ε , ∀oi ∈ Y . Again, in connection with Theorem
1 it holds that ε ≥ rx

rxy
.

4.4.2. The ε−guaranteed pivot method
Following the theorems 1-4, we present an algorithm called the pivot epsilon

guaranteed k-NN join on MapReduce (PEGKJ). It follows the revisited exact
k-NN join algorithm (Section 4.2) and basically uses less strict rules (employing
the parameter ε) during replication and k-NN query evaluation phases.

We follow the schema in Figure 1 with several changes involving mainly
the ε parameter. The first change is that the upper bound UB(Ri) (estimate
of a query radius) for replication of objects to the group containing queries
in Ri is divided by the ε parameter. As the original UB(Ri) radius estimate
guarantees at least k found objects possibly from more than one group, the
PEGKJ method computes UB(Ri) using only the sets from the group containing
Ri. It is important to realize that computing UB(Ri) from all cells (i.e., from
all groups) and lowering the UB(Ri) radius estimate by ε could result into a
situation where objects used to compute the original UB(Ri) are not replicated
to the group containing Ri. Hence, k candidates for a query q ∈ Ri and initial
radius UB(Ri) does not have to be present in the group containing Ri. Starting
with a higher initial radius does not help as it could lead to the violation of the

21

p2

p3

p4

p5
p1

Figure 6: An example demonstrating the ε upper bound influence. Considering the queries
upper bound for the set R3 equals to UB(R3) (the black ball), for the exact k-NN join
algorithm some database objects from the overlapping set S4 are replicated to the group G1

(depending on the distance of an object oj to it’s corresponding pivot). After the UB(R3)
bound is lowered by the ε (the dashed circle) parameter, objects from the set S4 are no longer
replicated.

k-NN ε−guarantee for q because the approximate kth nearest neighbor could be
located further than the ε times the distance to the exact kth nearest neighbor.
Specifically, Algorithm 2 skips pivots determining cells from different groups and
in the last line of Algorithm 2 the PQ.peek/ε value is returned. An example
and the effect of lowering UB(Ri) is depicted in Figure 6.

During the replication phase (potentially) less database objects o ∈ S are
distributed and replicated among the groups because the pre-computed values
vij are greater (UB(Ri)/ε is subtracted). Finally, in the k-NN evaluation phase
the ε parameter is utilized once first k nearest neighbor candidates are obtained
for initial radius estimate UB(Ri). The initial query radius is computed in
the same way as in the original paper (using Algorithm 2 where the ε is not
employed to guarantee a candidate set of size k). However, when k candidates
are obtained, the actual radius rq

ε is correctly used for further query processing
(Algorithm 1 lines 27, 28, 30) based on previously presented Theorems 2, 3, 4.
Overall, the PEGKJ algorithm is ε-correct because all replication and filtering
techniques utilize rules preserving the ε-guarantee from Definition 3.

In the experiments, we observed that precision drops significantly with the
growing ε parameter for the PEGKJ method (results are presented in Section 5).
This behavior is the consequence of too reduced actual query radius, indepen-
dently on the filtering rule. However, intuitively replication rules or metric
ball-ball overlap tests are less sensitive to approximation than for example par-
ent filtering. To increase precision of PEGKJ, we propose a parameter called

22

ExactParentF iltering (or shortly ExactPF) which determines whether the
parent filtering rule (Algorithm 1, line 30) considers ε−approximation radius rq

ε
or uses the actual radius rq.

We also observed that the PGBJ and PEGKJ algorithms tend to replicate
almost all database objects to all groups in high-dimensional spaces. This trend
is noticeable in our experiments (more in Section 5) but it could be also justified
theoretically in the following Theorem 5.

Theorem 5. Given a metric space M = (Rn, δ), a database S ⊂ R
n and queries

R ⊂ R
n partitioned by pivots P to Voronoi cells. Assuming that UB(Ri) is

always estimated just from the cell Ci (using Ri.ub + δ(pi, oij), oij ∈ Si), then
LB(o,Ri) ≤ UB(Ri) for all objects o ∈ S and sets Ri ∈ R iff δmax ≤ 4 · δmin,
where δmax = max

∀oi,oj∈S∪R
{δ(oi, oj)} and δmin = min

∀oi,oj∈S∪R
{δ(oi, oj)}.

Proof 5. LB(o,Ri) = δ(pi, pj)−Ri.ub− δ(o, pj), UB(Ri) = Ri.ub+ δ(pi, oij).
The best case for limiting replications would be LB(o,Ri) = δmax− δmin− δmin

and UB(Ri) = δmin+δmin. Hence, if δmax ≤ 4 ·δmin then LB(o,Ri) ≤ UB(Ri)
for all database objects and sets Ri.

Note 2. Considering δmax, δmin from S∪R is even more optimistic assumption
for limiting replications than incorporating δSmax, δ

S
min detected just from S as

δSmax ≤ δmax, δ
S
min ≥ δmin and δRS

min detected just for pairs from R × S as
δRS
min ≥ δmin. If δmax ≤ 4 · δmin then also δSmax ≤ 2 · δSmin + 2 · δRS

min. We used
S ∪R to provide a clue to assess replication for general distance distributions.

Note 3. In high-dimensional spaces, all distances between database objects
are relatively similar and the probability that δ(pi, pj) is four times greater
than the other involved distances in the replication rule is very low. Actually,
LB(o,Ri) = 0 and values vij = 0 were observed almost always for all datasets in
our experiments (including the ε-approximation). In such cases, most database
objects are replicated to all groups.

5. Experimental evaluation

In this section, we experimentally evaluate and compare the presented MapRe-
duce k-NN similarity join algorithms. The main emphasis is put on scalability,
precision and the overall execution time of all solutions for high-dimensional
data. First, we describe the test datasets and the evaluation platform, then we
compare selected methods on two MapReduce frameworks, where we present
benefits of Spark. For Spark, we investigate parameters for all the presented
methods and, finally, we compare the performance of selected approaches in
multiple testing scenarios. We have also published all the Spark source-codes in
a publicly accessible repository on Github4.

23

0.5 1.5

0.
00

0.
02

0.
04

0.
06

0.
08

Absolute distance

O
cc

ur
en

ce
s

[*
10

^6
]

10 dimensions

Figure 7: Distance
distribution - 10D

0 400 800
0

10
20

30
40

Absolute distance

O
cc

ur
en

ce
s

[*
10

^6
]

200 dimensions

Figure 8: Distance
distribution - 200D

0 50 100 150

0.
00

0.
10

0.
20

0.
30

Absolute distance

O
cc

ur
en

ce
s

[*
10

^6
]

512 dimensions

Figure 9: Distance
distribution - 512D

0.00 0.04 0.08

0
10

20
30

40
50

Absolute distance

O
cc

ur
en

ce
s

[*
10

^6
]

1000 dimensions

Figure 10: Distance
distribution - 1000D

5.1. Description of datasets and test platform
In the experiments, we perform k-NN similarity joins on four vector datasets

with various number of dimensions: 10, 200, 512 and 1000. In the experiments,
we often refer to the datasets by their unique dimensionality and the concate-
nated letter "D" (see Figures 7, 8, 9, and 10).

The 10-dimensional dataset is a synthetic dataset made by generating 200,000
objects into a uniform [0, 1]10 cube. This artificial dataset was created to inves-
tigate and present the performance of compared methods on data with a lower
dimensionality.

The 200 and 1000-dimensional datasets contain histogram vectors modeling
HTTPS communication (e.g., from web proxy logs). Only high-level commu-
nication features of HTTPS requests [51] were aggregated into vectors using
two techniques. The dataset with 200 dimensions was created by uniform fea-
ture mapping into a 4-dimensional hypercube [51]. In the dataset with 1000
dimensions, HTTPS communication was modeled using the Gaussian Mixture
Models approach (GMM) [52]. For more details, see the journal [53], where
also the feature extraction algorithm is presented and implemented using the
MapReduce framework. The algorithm processes all HTTPS communication
features in parallel, groups them by a given key and applies a specific feature
transformation strategy to produce final descriptors (vectors).

The 512-dimensional dataset consists of 335,944 selected keyframes from the
TRECVid IACC.3 video dataset [54]. The descriptors for each key frame were
extracted from the last fully connected layer of the pretrained VGG deep neural
network [55] and further reduced to 512 dimensions using PCA.

All datasets are divided into the database S and query points R. The dis-
tance distributions on a smaller sample for all datasets are presented in Figures
7, 8, 9, and 10. The number of database and query objects ranges in hundreds of
thousands objects for most of the experiments. Only the growing data size ex-
periment run on tens of millions of 200D objects. Every object contains a unique

4https://github.com/PremyslCech/kNN-joins-spark

24

object ID and a vector of values stored in the space saving format presented in
[2]. The size of the datasets vary according to the number of dimensions from
0.5GB to 5GB of data in the space saving format. We employ the Euclidean
(L2) distance as the similarity measure.

The experiments run on a fully distributed Amazon clusters under the Elastic
MapReduce and EC2 services. We used clusters of 5 to 20 computing nodes each
containing the Intel Xeon processor having 4 Cores (8 threads) running at 2.5
Ghz, 15 GB RAM and 2x40 GB SSD disk (the Amazon m3.xlarge instance).
Data were stored in the S3 storage system.

5.2. Hadoop vs Spark
In the first set of experiments, we analyze the two most popular MapReduce

platforms Hadoop and Spark. We compare the platforms on three different
similarity k-NN join algorithms – PAKJ and the algorithms based on Z-curves
(Section 3.1) and locality sensitive hashing (Section 3.2). In Figures 11, 12 and
13, we compare the join evaluation time on both platforms for all datasets given
the same method settings (i.e., the join result was exactly the same on both
platforms). Graphs reflect the join evaluation time for the given parameter setup
for each method, but similar outcomes were observed for different settings of
parameters. All the tested algorithms run faster on Spark because intermediate
results and shared support data structures do not have to be serialized and
stored in HDFS but are kept in memory for the whole algorithm execution. Also
all k-NN join methods are implemented on Hadoop in multiple MapReduce jobs
(two or three) and results from previous jobs have to be written back to HDFS
and sometimes even merged or otherwise manipulated. The biggest difference
is noticeable for the Z-curve algorithm which uses multiple I/O operations on
Hadoop to provide proper partitioning and data pre-processing. On Spark, all
operations run in memory and temporary data structures do not need to be
saved on disk. Because of the convincing results on Spark for our datasets,
all other experimental analysis, evaluations and tests are presented just for the
Spark platform.

5.3. Fine tuning of k-NN join methods
In this subsection, we investigate parameters for every tested algorithm.

Note that all time values include not only the running time of the k-NN similarity
join but also the preprocessing time. The parameter tuning tests ran on the
1000-dimensional dataset and the k value was set to 5. Unless otherwise stated,
similar behavior was observed also for other datasets.

In Figure 14, we study the influence of the number of groups G and randomly
selected pivots P used for the Voronoi partitioning on the PAKJ algorithm per-
formance. According to our internal test cases, other pivot selection techniques
in the original source codes provided by [19] run substantially longer and did
not present any significant improvements for further evaluation. Based on the
results, we have fixed the number of pivots to 2,000 and the number of groups
to 20 in the remaining experiments. It is suggested to set the number of groups

25

10 200 512 1000

0.
0

0.
5

1.
0

1.
5 Hadoop

Spark

PAKJ

Dimensions

Ti
m

e
[s

ec
*1

00
0]

Figure 11: PAKJ approach -
join evaluation time Hadoop
vs Spark

10 200 512 1000

0.
0

0.
5

1.
0

1.
5

2.
0 Hadoop

Spark

Z−curve

Dimensions
Ti

m
e

[s
ec

*1
00

0]

Figure 12: Z-curve approach
- join evaluation time Hadoop
vs Spark

10 200 512 1000

0.
0

0.
5

1.
0

1.
5

Hadoop
Spark

LSH

Dimensions

Ti
m

e
[s

ec
*1

00
0]

Figure 13: LSH approach -
join evaluation time Hadoop
vs Spark

0.5 1.0 1.5 2.0 2.5 3.0

86
88

90
92

94

Time [sec*1000]

Pr
ec

is
io

n
[%

]

2K 5K 10K

2K
10K

1K1K
2K 10K

Groups = 10
Groups = 20
Groups = 40

●

●

●
●

●

●

● ●

●

●

● ●

Figure 14: PAKJ - growing number of
pivots and groups, MaxRecDepth =
10, Filter = 0.01

0.5 1.0 1.5 2.0

70
75

80
85

90
95

10
0

Time [sec*1000]

Pr
ec

is
io

n
[%

]

1

1020
40

1

10
20

40

10

2040

10
20 40

Filter = 0.005
Filter = 0.01

Filter = 0.05
Filter = 0.1

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

Figure 15: PAKJ - MaxRecDepth and
FilterRatio parameters tuning, Pivots
= 2000, Groups = 20

to match the number of reducers or executors to achieve the best parallel com-
putation balance.

In Figure 15, we compare the MaxRecDepth and FilterRatio parameters
for the PAKJ method (Section 4.3). Although lower parameter values run faster,
they achieve also limited accuracy. For the rest of the experiments, we fixed
MaxRecDepth parameter to the value 10 (if not specified otherwise) which
promises a competitive precision and running time trade off for comparisons
with methods based on Z-curves and LSH. The FilterRatio parameter was
fixed to the values 0.01 or 0.05.

Observe that the total k-NN join evaluation time for some lower parameter
values is longer than for a bit higher values, e.g. MaxRecDepth = 10 and 20 for
the FilterRation = 0.01. Despite more replications, shorter k-NN evaluation
time is caused by the efficient candidate processing on each executor where

26

0 5 10 15 20

20
40

60
80

10
0

Time [sec*1000]

Pr
ec

is
io

n
[%

]

2
5
10

2
5 10

EntirePartitions = True
EntirePartitions = False

●

●

●

●

●

●

Figure 16: Z-curve - number of shifts
parameters tuning, All in memory

0 2000 6000 10000

0.
2

0.
4

0.
6

0.
8

Shuffle memory read (MB)

Ti
m

e
[lo

g
se

c*
10

00
]

200 512
1000

10
200

512

1000

All in memory
Only Z−order

●
●

●

●

●

●

●

●

Figure 17: Z-curve - effect of storage op-
tions, Shifts = 5, EntirePart = false

0 10 20 30 40

20
30

40
50

60
70

80
90

Time [sec*1000]

Pr
ec

is
io

n
[%

]

20

50

100

50

100

10
20

HashTables = 5
HashTables = 10

●

●

●

●

●

●

●

●

Figure 18: LSH approach - W parame-
ter tuning, HF = 20

0 20 40 60 80

20
40

60
80

10
0

Time [sec*1000]

Pr
ec

is
io

n
[%

]

5
10
20

1

1

5
10
20

1

HashTables = 1
HashTables = 5
HashTables = 10

●

●

●

●

●

●

●

●

●

●

●

●

Figure 19: LSH approach - the effect of
the number of hash functions. W = 10

filtering techniques in a metric space are used (Section 2.2). Note that closer
k objects to many query points appear in their group and so the ranges of k-
NN queries get tighter. Hence, more candidates can be filtered out, which was
revealed also by a lower number of evaluated distance computations.

Figure 16 displays the precision and the overall k-NN join evaluation time
for the Z-curve approach for growing number of random vector shifts presented
in Section 3.1. We can observe that more shifts slightly increases approximation
precision, but the running time is extended significantly. Also, the difference
between the EntirePartitions = true and false options is substantial offering
big variety of the precision/running time trade-off. In other experiments, we
usually fixed the number of shifts to 5. We used 20 partitions, in order to fit
the number of executors. The Z-curve sampling rate parameter was set to 0.005
which influences mainly the partitions balance determining a proper level of
parallelism.

27

Figure 17 displays the k-NN join evaluation time and shuffle memory usage
for different levels of object storage settings described in subsection 3.1.1. While
the "All in memory" option is clearly the faster option, for larger dataset it
might not be viable (stored objects might not fit in memory). The "Only Z-
order" approach translates Z-order back to the original coordinates and, thus,
is considerably slower.

In Figure 18, we examine the influence of the parameter W on the perfor-
mance of the LSH method described in Section 3.2. With growing W , both
precision and time increase substantially. Longer running time for higher W
values is mainly caused by hashing objects into bigger buckets (more objects
have to be processed by the k-NN join in a large bucket). However, this param-
eter heavily depends on the specific dataset. For other experiments, we used
W = 10 to 20 for the 10-dimensional dataset, W = 1 to 5 for the 200-dimensional
dataset, W = 100 or 200 for the 512-dimensional dataset and W = 20 for the
1000-dimensional dataset. Generally, we used 10 hash tables each containing
20 hash functions. These parameters are analyzed in Figure 19. With growing
number of hash functions both running time and precision drops because more
hash bins are generated and queries do not meet all nearest objects in a bucket.

5.4. Approximate pivot methods comparison
In this subsection, we study different parameters and performance of both

pivot-based approximate algorithms: PAKJ (the pivot approximate (heuristic)
algorithm) and PEGKJ (the pivot epsilon guaranteed approach). All presented
graphs were measured on 512D and 1000D datasets and for K = 10.

In the first four Figures 20, 21, 22, and 23, we analyze the influence of the
PEGKJ parameter ExactParentF iltering (ExactPF) on precision, k-NN join
evaluation time and effective error for the growing ε parameter. Observe that
the ExactPF = true option is significantly superior in terms of precision but
its running time is higher for increasing ε (less database objects are pruned and
more distance computations are needed). Nevertheless, for ε = 5 the precision
of the variant ExactPF = true is higher than the precision of the variant
ExactPF = false for ε = 2, while their time is similar. Both the maximal and
average effective error is also smaller for the ExactPF = true parameter. Based
on these observations, we conclude that once high ε is acceptable, the variant
ExactPF = true represents a better approximation option.

In Figures 24, 25, 26, 27, 28 and 29, we compare different aspects of all ap-
proximate pivot-based methods. The ExactPF parameter was set to true for
the PEGKJ method and experiments run on 512 and 1000-dimensional datasets.
In Figures 24 and 25 you may observe precision/running time trade-off for all
methods for different setup of parameters. To highlight one method, PAKJ with
Filter = 0.1 is closing to 100% precision and is significantly faster than other
variants/methods reaching high precision. In general, the PEGKJ algorithm is
the slowest method and replicates objects (Figure 26) to almost all groups G
(the reasons are explained in Section 4.4) but provides approximation guaran-
tees (Figure 27). The replications directly affect transfered volumes of data (less
is better), thus minimizing them enables a method to process larger datasets.

28

1 2 3 4 5

20
40

60
80

10
0

12
0

Epsilon

Pr
ec

is
io

n
[%

]
PEGKJ, ExactPF=FALSE
PEGKJ, ExactPF=TRUE

●

●

●

●

●

●

● ● ● ● ● ●

Figure 20: PEGKJ Exact parent filter-
ing - Precision

1 2 3 4 5

0
2

4
6

8
10

Epsilon

Ti
m

e
[s

ec
*1

00
0]

PEGKJ, ExactPF=FALSE
PEGKJ, ExactPF=TRUE

●

●

●

●

●
●

●

●

●

●

●

●

Figure 21: PEGKJ Exact parent filter-
ing - Running time

1 2 3 4 5

0
1

2
3

4
5

Epsilon

Ef
fe

ct
iv

e
er

ro
r (

m
ax

)

PEGKJ, ExactPF=FALSE
PEGKJ, ExactPF=TRUE

●

●

●

●

●

●

●
●

●

●

● ●

Figure 22: PEGKJ Exact parent filter-
ing - Maximal Effective error

1 2 3 4 5

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Epsilon

Ef
fe

ct
iv

e
er

ro
r (

av
g)

PEGKJ, ExactPF=FALSE
PEGKJ, ExactPF=TRUE

● ●
●

●

●

●

● ● ● ● ● ●

Figure 23: PEGKJ Exact parent filter-
ing - Average Effective error

In the last two graphs 28 and 29, we present cumulatively the number of query
objects reaching an effective (real) epsilon error presented on the X-axis. Here
the PEGKJ algorithm has the most objects with small effective error for lower
ε = 4, which means that more approximate kth nearest neighbors from different
queries are closer to exact results. Nevertheless, PAKJ methods are following
PEGKJ results closely and PEGKJ for higher ε = 10 is even worse for most
queries than all presented PAKJ approaches on the 1000-dimensional dataset.
Average and maximal effective errors for selected methods are presented in Ta-
ble 5.

We conclude that all pivot-based algorithms perform well under different
conditions and a specific algorithm utilization must be decided based on the
desired approximation guarantee or an average approximation precision and
running time preference.

29

512D 1000D
Method/variant AVG MAX AVG MAX
PAKJ, Filter=0.01, Depth=20 1.01329 1.95188 1.01095 6.23379
PAKJ, Filter=0.1, Depth=20 1.00400 1.81889 1.00681 6.21953
PAKJ, Filter=0.3, Depth=20 1.00371 1.81889 1.00615 6.21953
PEGKJ, EPF=true, Epsilon=4 1.00039 1.27834 1.00223 2.95698
PEGKJ, EPF=true, Epsilon=10 1.00735 1.85962 1.01325 4.48893

Table 5: Average and maximal effective (real) errors for pivot-based methods.

0.0 0.5 1.0 1.5 2.0 2.5

80
90

10
0

11
0

Time [sec*1000]

Pr
ec

is
io

n
[%

]

20
200 50

20
50200

20
50

100200
24

10

PAKJ, Filter = 0.01, MaxRecDepth
PAKJ, Filter = 0.1, MaxRecDepth
PAKJ, Filter = 0.3, MaxRecDepth
PEGKJ, EPF = true, Epsilon

512 dimensions

●

●
●●●

●

●
●●●

●

●
●● ● ●●

●

●

●

Figure 24: Pivot-based meth-
ods - Precision vs Time, 512D

0 2 4 6 8

90
95

10
0

10
5

Time [sec*1000]

Pr
ec

is
io

n
[%

]

20
50

200
20

50
200

20

50
200

24
6

8
10

PAKJ, Filter = 0.01, MaxRecDepth
PAKJ, Filter = 0.1, MaxRecDepth
PAKJ, Filter = 0.3, MaxRecDepth
PEGKJ, EPF = true, Epsilon

1000 dimensions

●

●
●●
●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

Figure 25: Pivot-based meth-
ods - Precis. vs Time, 1000D

2
4

6
8

10
12

Parameters: MaxRecDepth and Epsilon

R
ep

lic
at

io
ns

 *
10

^6

20

50
100 150 200

2 4 6 8 10

PAKJ, Filter=0.01, MaxRecDepth
PAKJ, Filter=0.1, MaxRecDepth
PAKJ, Filter=0.3, MaxRecDepth
PEGKJ, EPF=true, Epsilon

1000 dimensions

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ● ● ● ●

Figure 26: Pivot-based meth-
ods - Replications, 1000D

0
20

40
60

80
10

0
12

0

Parameters: MaxRecDepth and Epsilon

D
is

ta
nc

e
ra

tio
 (w

or
st

) [
%

]

20 50 100 150 200

2

4
6

8
10

PAKJ, Filter=0.01, MaxRecDepth
PAKJ, Filter=0.1, MaxRecDepth
PAKJ, Filter=0.3, MaxRecDepth
PEGKJ, EPF=true, Epsilon

1000 dimensions

● ● ● ● ●
● ● ● ● ●● ● ● ● ●

●

●

●

●

●

Figure 27: Pivot-based meth-
ods - Distance ratio, 1000D

1.0 1.2 1.4 1.6 1.8 2.0

40
50

60
70

80
90

10
0

Effective error

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f q
ue

rie
s

[%
]

PAKJ, Filter=0.01, RecDepth=20
PAKJ, Filter=0.1, RecDepth=20
PAKJ, Filter=0.3, RecDepth=20
PEGKJ, EPF=true, Epsilon=4
PEGKJ, EPF=true, Epsilon=10

512 dimensions

Figure 28: Pivot-based meth-
ods - cumul. Eff. error, 512D

1 2 3 4 5 6

86
88

90
92

94
96

98
10

0

Effective error

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f q
ue

rie
s

[%
]

PAKJ, Filter=0.01, RecDepth=20
PAKJ, Filter=0.1, RecDepth=20
PAKJ, Filter=0.3, RecDepth=20
PEGKJ, EPF=true, Epsilon=4
PEGKJ, EPF=true, Epsilon=10

1000 dimensions

Figure 29: Pivot-based meth-
ods - cum. Eff. error, 1000D

5.5. Comparison of pivot-based approach with related approaches
We propose multiple testing scenarios designed to compare the main aspects

of pivot-based, Z-curve and LSH k-NN approximate similarity join algorithms.
Please note that all the methods use a convenient random initialization of data
partitioning.

5.5.1. Precision and k-NN join evaluation time
First, we analyze the performance of all the compared methods on all datasets

in Figures 30 and 31. Parameters were set as follows. PAKJ: MaxRecDepth =

30

0
20

40
60

80
10

0 PAKJ Z−curve LSH

10 200 512 1000
Dimensions

Pr
ec

is
io

n
[%

]

Figure 30: Precision for heuristic meth-
ods for all datasets

0.
1

0.
5

5.
0

15
.0

PAKJ
Z−curve
LSH

10 200 512 1000
Dimensions

Ti
m

e
[lo

g
se

c*
10

00
]

Figure 31: Running time for heuristic
methods for all datasets

10, FilterRatio = 0.05; Z-curve: Shifts= 2, EntirePartitions = true; LSH: W
different for different datasets (20, 10, 200, 100), HT = 5, HF = 20. The results
in Figure 30 show that for given settings the PAKJ approach has the highest
precision, the Z-curve is the second best method on 200 and 1000-dimensional
datasets and the LSH method displays the second best precision on the 10 and
512 datasets. In Figure 31, we can observe that despite having the highest pre-
cision, the PAKJ method is also the fastest algorithm on all measured datasets.
The second fastest method is the Z-curve algorithm and LSH is the approach
with the longest execution time.

5.5.2. Size-dependent computation
In Figures 32 and 33, we study the behavior of the compared methods for

a significantly larger dataset. These tests run on the 200-dimensional dataset
which consists of about 1.2 mil. database objects S and 15.3 mil. query objects
R. With growing data size, we also increased the cluster size. Executors were
set to {20, 40, 60, 80} and cluster size to {5, 10, 15, 20} instances (computing
nodes) for objects count {4.1, 8.3, 12.4, 16.5} respectively. Despite our efforts to
run experiments for all methods utilizing all objects (we even increased executor
memory limits up to 4 GBs) not all methods were able to handle all test cases.
The LSH algorithm run out of memory for the highest object count 16.5 mil.
For the Z-curve method, we had to set the memory saving option to the value
"Only Z-order" and EntirePartitions = false to satisfy the memory limits.
The results show that the PAKJ method provides the highest precision while
keeping reasonably fast running time, the Z-curve with fast evaluation time
provides poor precision and the LSH method is both slow and has low precision.

5.5.3. K-dependent computation
In the graphs 34 and 35, we investigate the influence of increasing parame-

ter k (the number of nearest neighbors) on the precision and the similarity join

31

20
40

60
80

10
0

Size (mil. objects)

Pr
ec

is
io

n
[%

]

4.1 8.3 12.4 16.5

PAKJ Z−curve LSH
● ● ● ●

● ● ● ●

● ● ●

Figure 32: Growing dataset and cluster
size - precision for all methods

0
20

40
60

80
10

0

Size (mil. objects)

Ti
m

e
[s

ec
*1

00
0]

4.1 8.3 12.4 16.5

● ● ● ●
● ● ● ●

●

●

●

●

●

●

●

PAKJ
Z−curve

LSH
PGBJ (Exact)

Figure 33: Growing dataset and cluster
size - running time for all methods

evaluation time. All the presented experiments were performed on the 1000-
dimensional dataset. Parameters were set as follows. PAKJ: MaxRecDepth =
10, FilterRatio = 0.01; Z-curve: Shifts = 2, EntirePartitions = true; LSH:
W = 50, HT = 10, HF = 20. The precision slowly decreases for all methods,
whereas the evaluation time is increasing for the PAKJ method, but for the
other two methods the evaluation time (already high) is not changing signifi-
cantly. The results of all the methods follow the trends identified in previous
graphs. The pivot space approach outperforms other algorithms in the preci-
sion/speed trade-off.

20
60

10
0

K

Pr
ec

is
io

n
[%

]

1 2 4 8 16 32 64 128

PAKJ Z−curve LSH

● ● ● ● ● ● ● ●● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●

Figure 34: k-dependent computation -
precision for all methods

1
5

20

K

Ti
m

e
[lo

g
se

c*
10

00
]

1 2 4 8 16 32 64 128

PAKJ Z−curve LSH

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

Figure 35: k-dependent computation -
running time for all methods

5.6. Discussion
We analyzed the pivot-based approximate k-NN similarity join algorithms.

We focused mainly on the approximation performance (precision, effective er-
ror, distance ratio) with respect to the number of replications and the exe-
cution time of all algorithms. The PEGKJ algorithm presents a guaranteed
ε−approximation but almost all objects are replicated to all groups on real
data even with higher ε values, which results in longer execution times. With
higher ε values, the approximation still provides a high precision for parameter
ExactPF = true. The PAKJ algorithm runs faster and, in the average cases,

32

produces the results with high precision and low effective error. However, a few
PAKJ queries violate the ε−approximation significantly depending on a specific
dataset.

We also compared the pivot-based approximate method PAKJ with other
heuristic methods designed for vector spaces – Z-curve and LSH. All the meth-
ods use a random initialization of data partitioning structures. The pivot-based
approach using the repetitive Voronoi partitioning outperformed the other two
methods in the precision/efficiency tradeoff. Our hypothesis is that for high-
dimensional data the Z-curve and LSH methods suffer from random shifts and
hash functions that do not reflect data distributions. We verified this hypothesis
on our synthetic 10-dimensional dataset (a dimensionality similar to the ones
used in the original Z-curve and LSH papers). In this case, all three meth-
ods produced the expected behavior (aligned to the results presented in the
original papers). Note that specific subsets of the dataset could potentially
reside in low-dimensional manifolds. Hence, finetuning specific parameters of
the two methods (number of shifts in Figure 16 and W in Figure 18) do not
provide a significant performance boost or increase running time greatly. On
the other hand, the pivot-based approach PAKJ uses representatives from the
data distribution and employs pairwise distances to determine data replication
strategies. As demonstrated also by metric access methods for k-NN search
[11, 47], the distance-based approach can be also directly used as a robust and
intuitive method for MapReduce-based approximate k-NN similarity joins in
high-dimensional spaces.

6. Conclusions

In this paper, we focused on approximate k-NN similarity joins in the MapRe-
duce environment implemented mainly in Spark. We studied approximation
quality and guarantees for pivot-based methods from the theoretical and exper-
imental perspectives and presented two different pivot-based approximate k-NN
similarity join algorithms. Although previous comparative studies have been
proposed for other approximate methods, these studies focused mainly on data
with less than one hundred dimensions. In this paper we also compared other
heuristic algorithms reimplemented in Spark for high-dimensional data. Ac-
cording to our findings, data dimensionality significantly affects the way all the
algorithms compare to each other, even after improving the previously proposed
heuristic methods. In this paper, we also discussed the advantages, limitations
and drawbacks of the proposed methods and implemented revisions.

Additional improvements to similarity k-NN joins could be achieved by im-
plementing more sophisticated (but highly efficient) methods of space trans-
formations and data partitioning (in this paper we focused on simple and fast
random initialization methods). Furthermore, restrictions to specific proper-
ties of given distance measures could also bring improvements in the form of
additional saved distance computations and faster execution times.

33

Acknowledgments
This project was supported by the Charles University in Prague grant GAUK

201515 and the Czech Science Foundation (GAČR) project Nr. 17-22224S.

References

[1] P. Cech, J. Marousek, J. Lokoc, Y. N. Silva, J. Starks, Comparing
mapreduce-based k-nn similarity joins on hadoop for high-dimensional
data, in: G. Cong, W. Peng, W. E. Zhang, C. Li, A. Sun (Eds.), Advanced
Data Mining and Applications - 13th International Conference, ADMA
2017, Singapore, November 5-6, 2017, Proceedings, Vol. 10604 of Lecture
Notes in Computer Science, Springer, 2017, pp. 63–75.

[2] P. Cech, J. Kohout, J. Lokoc, T. Komárek, J. Marousek, T. Pevný, Feature
extraction and malware detection on large HTTPS data using mapreduce,
in: L. Amsaleg, M. E. Houle, E. Schubert (Eds.), Similarity Search and
Applications - 9th International Conference, SISAP 2016, Tokyo, Japan,
October 24-26, 2016. Proceedings, Vol. 9939 of Lecture Notes in Computer
Science, 2016, pp. 311–324.

[3] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, A. E. Abbadi, Approxi-
mate nearest neighbor searching in multimedia databases, in: Proceedings
17th International Conference on Data Engineering, 2001, pp. 503–511.
doi:10.1109/ICDE.2001.914864.

[4] G. Giacinto, A nearest-neighbor approach to relevance feedback in content
based image retrieval, in: Proceedings of the 6th ACM International Con-
ference on Image and Video Retrieval, CIVR ’07, ACM, New York, NY,
USA, 2007, pp. 456–463. doi:10.1145/1282280.1282347.

[5] C. Cobârzan, K. Schoeffmann, W. Bailer, W. Hürst, A. Blazek, J. Lokoc,
S. Vrochidis, K. U. Barthel, L. Rossetto, Interactive video search tools: a
detailed analysis of the video browser showdown 2015, Multimedia Tools
Appl. 76 (4) (2017) 5539–5571. doi:10.1007/s11042-016-3661-2.
URL https://doi.org/10.1007/s11042-016-3661-2

[6] J. Lokoc, W. Bailer, K. Schoeffmann, B. Muenzer, G. Awad,
On influential trends in interactive video retrieval: Video browser
showdown 2015-2017, IEEE Transactions on Multimedia (2018) 1–
1doi:10.1109/TMM.2018.2830110.

[7] G. R. Hjaltason, H. Samet, Distance browsing in spatial databases, ACM
Trans. Database Syst. 24 (2) (1999) 265–318. doi:10.1145/320248.320255.
URL http://doi.acm.org/10.1145/320248.320255

[8] M. Muja, D. G. Lowe, Scalable nearest neighbor algorithms for high di-
mensional data, IEEE Trans. Pattern Anal. Mach. Intell. 36 (11) (2014)
2227–2240. doi:10.1109/TPAMI.2014.2321376.
URL https://doi.org/10.1109/TPAMI.2014.2321376

34

[9] J. Lokoc, J. Kohout, P. Cech, T. Skopal, T. Pevný, k-nn classification of
malware in HTTPS traffic using the metric space approach, in: M. Chau,
G. A. Wang, H. Chen (Eds.), Intelligence and Security Informatics -
11th Pacific Asia Workshop, PAISI 2016, Auckland, New Zealand, April
19, 2016, Proceedings, Vol. 9650 of Lecture Notes in Computer Science,
Springer, 2016, pp. 131–145.

[10] J. Dean, S. Ghemawat, Mapreduce: Simplified data process-
ing on large clusters, Commun. ACM 51 (1) (2008) 107–113.
doi:10.1145/1327452.1327492.

[11] P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search - The Metric
Space Approach, Vol. 32 of Advances in Database Systems, Kluwer, 2006.
doi:10.1007/0-387-29151-2.
URL https://doi.org/10.1007/0-387-29151-2

[12] G. Song, J. Rochas, F. Huet, F. Magoulès, Solutions for processing k near-
est neighbor joins for massive data on mapreduce, in: 2015 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based Pro-
cessing, 2015, pp. 279–287. doi:10.1109/PDP.2015.79.

[13] G. Song, J. Rochas, L. E. Beze, F. Huet, F. Magoulès, K nearest neigh-
bour joins for big data on mapreduce: A theoretical and experimen-
tal analysis, IEEE Trans. Knowl. Data Eng. 28 (9) (2016) 2376–2392.
doi:10.1109/TKDE.2016.2562627.
URL https://doi.org/10.1109/TKDE.2016.2562627

[14] M. Patella, P. Ciaccia, The many facets of approximate similarity search,
in: Proceedings of the 24th International Conference on Data Engineering
Workshops, ICDE 2008, April 7-12, 2008, Cancún, México, IEEE Computer
Society, 2008, pp. 308–319. doi:10.1109/ICDEW.2008.4498340.
URL https://doi.org/10.1109/ICDEW.2008.4498340

[15] G. R. Hjaltason, H. Samet, Incremental distance join algorithms for spatial
databases, in: L. M. Haas, A. Tiwary (Eds.), SIGMOD 1998, Proceed-
ings ACM SIGMOD International Conference on Management of Data,
June 2-4, 1998, Seattle, Washington, USA., ACM Press, 1998, pp. 237–
248. doi:10.1145/276304.276326.
URL http://doi.acm.org/10.1145/276304.276326

[16] Y. N. Silva, J. M. Reed, Exploiting mapreduce-based similarity joins, in:
K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano, A. Fuxman (Eds.),
Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012,
ACM, 2012, pp. 693–696. doi:10.1145/2213836.2213935.
URL http://doi.acm.org/10.1145/2213836.2213935

35

[17] Y. Ma, X. Meng, S. Wang, Parallel similarity joins on massive high-
dimensional data using mapreduce, Concurrency and Computation: Prac-
tice and Experience 28 (1) (2016) 166–183. doi:10.1002/cpe.3663.
URL https://doi.org/10.1002/cpe.3663

[18] C. Böhm, F. Krebs, The k -nearest neighbour join: Turbo charging the
KDD process, Knowl. Inf. Syst. 6 (6) (2004) 728–749.
URL http://www.springerlink.com/index/10.1007/s10115-003-0122-9

[19] W. Lu, Y. Shen, S. Chen, B. C. Ooi, Efficient processing of k nearest
neighbor joins using mapreduce, Proc. VLDB Endow. 5 (10) (2012) 1016–
1027. doi:10.14778/2336664.2336674.

[20] R. Vernica, M. J. Carey, C. Li, Efficient parallel set-similarity joins using
mapreduce, in: A. K. Elmagarmid, D. Agrawal (Eds.), Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIG-
MOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, ACM, 2010, pp.
495–506. doi:10.1145/1807167.1807222.
URL http://doi.acm.org/10.1145/1807167.1807222

[21] C. Rong, C. Lin, Y. N. Silva, J. Wang, W. Lu, X. Du, Fast and scalable
distributed set similarity joins for big data analytics, in: 33rd IEEE In-
ternational Conference on Data Engineering, ICDE 2017, San Diego, CA,
USA, April 19-22, 2017, IEEE Computer Society, 2017, pp. 1059–1070.
doi:10.1109/ICDE.2017.151.
URL https://doi.org/10.1109/ICDE.2017.151

[22] C. Xiao, W. Wang, X. Lin, Ed-join: an efficient algorithm for similarity
joins with edit distance constraints, PVLDB 1 (1) (2008) 933–944.
URL http://www.vldb.org/pvldb/1/1453957.pdf

[23] J. Wang, G. Li, J. Feng, Trie-join: Efficient trie-based string similarity
joins with edit-distance constraints, PVLDB 3 (1) (2010) 1219–1230.
URL http://www.comp.nus.edu.sg/ vldb2010/proceedings/files/papers/R108.pdf

[24] E. H. Jacox, H. Samet, Metric space similarity joins, ACM Trans. Database
Syst. 33 (2) (2008) 7:1–7:38. doi:10.1145/1366102.1366104.
URL http://doi.acm.org/10.1145/1366102.1366104

[25] C. Böhm, B. Braunmüller, F. Krebs, H. Kriegel, Epsilon grid order: An
algorithm for the similarity join on massive high-dimensional data, in:
S. Mehrotra, T. K. Sellis (Eds.), Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, Santa Barbara, CA, USA,
May 21-24, 2001, ACM, 2001, pp. 379–388. doi:10.1145/375663.375714.
URL http://doi.acm.org/10.1145/375663.375714

[26] S. Chaudhuri, V. Ganti, R. Kaushik, A primitive operator for similarity
joins in data cleaning, in: L. Liu, A. Reuter, K. Whang, J. Zhang (Eds.),
Proceedings of the 22nd International Conference on Data Engineering,

36

ICDE 2006, 3-8 April 2006, Atlanta, GA, USA, IEEE Computer Society,
2006, p. 5. doi:10.1109/ICDE.2006.9.
URL https://doi.org/10.1109/ICDE.2006.9

[27] Y. N. Silva, S. S. Pearson, J. Chon, R. Roberts, Similarity joins: Their
implementation and interactions with other database operators, Inf. Syst.
52 (2015) 149–162. doi:10.1016/j.is.2015.01.008.
URL https://doi.org/10.1016/j.is.2015.01.008

[28] W. Kim, Y. Kim, K. Shim, Parallel computation of k-nearest neighbor
joins using mapreduce, in: J. Joshi, G. Karypis, L. Liu, X. Hu, R. Ak,
Y. Xia, W. Xu, A. Sato, S. Rachuri, L. H. Ungar, P. S. Yu, R. Govindaraju,
T. Suzumura (Eds.), 2016 IEEE International Conference on Big Data,
BigData 2016, Washington DC, USA, December 5-8, 2016, IEEE, 2016,
pp. 696–705. doi:10.1109/BigData.2016.7840662.
URL https://doi.org/10.1109/BigData.2016.7840662

[29] M. Tang, Y. Yu, W. G. Aref, Q. M. Malluhi, M. Ouzzani, Efficient process-
ing of hamming-distance-based similarity-search queries over mapreduce,
in: G. Alonso, F. Geerts, L. Popa, P. Barceló, J. Teubner, M. Ugarte,
J. V. den Bussche, J. Paredaens (Eds.), Proceedings of the 18th Interna-
tional Conference on Extending Database Technology, EDBT 2015, Brus-
sels, Belgium, March 23-27, 2015., OpenProceedings.org, 2015, pp. 361–
372. doi:10.5441/002/edbt.2015.32.
URL https://doi.org/10.5441/002/edbt.2015.32

[30] C. Yu, B. Cui, S. Wang, J. Su, Efficient index-based KNN join processing for
high-dimensional data, Information & Software Technology 49 (4) (2007)
332–344. doi:10.1016/j.infsof.2006.05.006.
URL https://doi.org/10.1016/j.infsof.2006.05.006

[31] Y. Ma, S. Jia, Y. Zhang, A novel approach for high-dimensional vector sim-
ilarity join query, Concurrency and Computation: Practice and Experience
29 (5). doi:10.1002/cpe.3952.
URL https://doi.org/10.1002/cpe.3952

[32] Y. N. Silva, J. M. Reed, L. M. Tsosie, Mapreduce-based similarity join for
metric spaces, in: Proceedings of the 1st International Workshop on Cloud
Intelligence, Cloud-I ’12, ACM, New York, NY, USA, 2012, pp. 3:1–3:8.
doi:10.1145/2347673.2347676.
URL http://doi.acm.org/10.1145/2347673.2347676

[33] Y. Hu, C. Yang, C. Ji, Y. Xu, X. Li, Efficient snapshot KNN join pro-
cessing for large data using mapreduce, in: 22nd IEEE International
Conference on Parallel and Distributed Systems, ICPADS 2016, Wuhan,
China, December 13-16, 2016, IEEE Computer Society, 2016, pp. 713–720.
doi:10.1109/ICPADS.2016.0098.
URL https://doi.org/10.1109/ICPADS.2016.0098

37

[34] C. Zhang, F. Li, J. Jestes, Efficient parallel knn joins for large data in
mapreduce, in: Proceedings of the 15th International Conference on Ex-
tending Database Technology, EDBT ’12, ACM, New York, NY, USA,
2012, pp. 38–49. doi:10.1145/2247596.2247602.

[35] A. Stupar, S. Michel, R. Schenkel, Rankreduce - processing k-nearest neigh-
bor queries on top of mapreduce, in: LSDS-IR, 2010.

[36] P. Zhu, X. Zhan, W. Qiu, Efficient k-nearest neighbors search in
high dimensions using mapreduce, in: 2015 IEEE Fifth International
Conference on Big Data and Cloud Computing, 2015, pp. 23–30.
doi:10.1109/BDCloud.2015.51.

[37] D. Moise, D. Shestakov, G. Þ. Gudmundsson, L. Amsaleg, Indexing and
searching 100m images with map-reduce, in: International Conference on
Multimedia Retrieval, ICMR’13, Dallas, TX, USA, April 16-19, 2013, 2013,
pp. 17–24. doi:10.1145/2461466.2461470.

[38] D. Moise, D. Shestakov, G. Þ. Gudmundsson, L. Amsaleg, Terabyte-
scale image similarity search: Experience and best practice, in: Pro-
ceedings of the 2013 IEEE International Conference on Big Data,
6-9 October 2013, Santa Clara, CA, USA, 2013, pp. 674–682.
doi:10.1109/BigData.2013.6691637.

[39] G. Þ. Guðmundsson, L. Amsaleg, B. Þ. Jónsson, M. J. Franklin, To-
wards engineering a web-scale multimedia service: A case study using
spark, in: Proceedings of the 8th ACM on Multimedia Systems Confer-
ence, MMSys 2017, Taipei, Taiwan, June 20-23, 2017, 2017, pp. 1–12.
doi:10.1145/3083187.3083200.

[40] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gon-
zalez, S. Shenker, I. Stoica, Apache spark: A unified engine for big data
processing, Commun. ACM 59 (11) (2016) 56–65. doi:10.1145/2934664.

[41] B. Yao, F. Li, P. Kumar, K nearest neighbor queries and knn-joins in large
relational databases (almost) for free, ICDE.

[42] E. Schubert, A. Zimek, H. Kriegel, Fast and scalable outlier detection
with approximate nearest neighbor ensembles, in: M. Renz, C. Shahabi,
X. Zhou, M. A. Cheema (Eds.), Database Systems for Advanced Appli-
cations - 20th International Conference, DASFAA 2015, Hanoi, Vietnam,
April 20-23, 2015, Proceedings, Part II, Vol. 9050 of Lecture Notes in Com-
puter Science, Springer, 2015, pp. 19–36.

[43] F. Angiulli, C. Pizzuti, Outlier mining in large high-dimensional
data sets, IEEE Trans. Knowl. Data Eng. 17 (2) (2005) 203–215.
doi:10.1109/TKDE.2005.31.
URL https://doi.org/10.1109/TKDE.2005.31

38

[44] M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni, Locality-sensitive hash-
ing scheme based on p-stable distributions, in: Proceedings of the Twenti-
eth Annual Symposium on Computational Geometry, SCG ’04, ACM, New
York, NY, USA, 2004, pp. 253–262.

[45] B. Bustos, G. Navarro, E. Chavez, Pivot selection techniques for proximity
searching in metric spaces, Pattern Recognition Letters 24 (14) (2003) 2357
– 2366.

[46] E. Chávez, G. Navarro, R. Baeza-Yates, J. L. Marroquín, Search-
ing in metric spaces, ACM Comput. Surv. 33 (3) (2001) 273–321.
doi:10.1145/502807.502808.
URL http://doi.acm.org/10.1145/502807.502808

[47] D. Novak, M. Batko, Metric index: An efficient and scalable solution for
similarity search, in: Proceedings of the 2009 Second International Work-
shop on Similarity Search and Applications, IEEE, Washington, DC, USA,
2009, pp. 65–73. doi:10.1109/SISAP.2009.26.

[48] E. Chavez Gonzalez, K. Figueroa, G. Navarro, Effective proximity retrieval
by ordering permutations, IEEE Trans. Pattern Anal. Mach. Intell. 30 (9)
(2008) 1647–1658. doi:10.1109/TPAMI.2007.70815.

[49] P. Ciaccia, M. Patella, PAC nearest neighbor queries: Using the distance
distribution for searching in high-dimensional metric spaces, in: E. Bertino,
S. Castano (Eds.), Atti del Settimo Convegno Nazionale Sistemi Evoluti
per Basi di Dati, SEBD 1999, Villa Olmo, Como, Italy, 23-25 Giugno 1999,
1999, pp. 259–273.

[50] P. Ciaccia, M. Patella, PAC nearest neighbor queries: Approximate
and controlled search in high-dimensional and metric spaces, in: D. B.
Lomet, G. Weikum (Eds.), Proceedings of the 16th International Con-
ference on Data Engineering, San Diego, California, USA, February
28 - March 3, 2000, IEEE Computer Society, 2000, pp. 244–255.
doi:10.1109/ICDE.2000.839417.
URL https://doi.org/10.1109/ICDE.2000.839417

[51] J. Kohout, T. Pevný, Unsupervised detection of malware in persis-
tent web traffic, in: 2015 IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP 2015, South Brisbane,
Queensland, Australia, April 19-24, 2015, IEEE, 2015, pp. 1757–1761.
doi:10.1109/ICASSP.2015.7178272.
URL https://doi.org/10.1109/ICASSP.2015.7178272

[52] J.-M. Marin, K. Mengersen, C. P. Robert, Bayesian modelling and inference
on mixtures of distributions, in: D. Dey, C. Rao (Eds.), Bayesian Think-
ingModeling and Computation, Vol. 25 of Handbook of Statistics, Elsevier,
2005, pp. 459 – 507.

39

[53] J. Kohout, T. Komárek, P. Cech, J. Bodnár, J. Lokoc, Learning commu-
nication patterns for malware discovery in https data, Expert Syst. Appl.
101 (2018) 129–142. doi:10.1016/j.eswa.2018.02.010.
URL https://doi.org/10.1016/j.eswa.2018.02.010

[54] G. Awad, J. Fiscus, M. Michel, D. Joy, W. Kraaij, A. F. Smeaton,
G. Quénot, M. Eskevich, R. Aly, G. J. F. Jones, R. Ordelman, B. Huet,
M. Larson, Trecvid 2016: Evaluating video search, video event detection,
localization, and hyperlinking, in: Proceedings of TRECVID 2016, NIST,
USA, 2016.

[55] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
scale image recognition, CoRR abs/1409.1556. arXiv:1409.1556.
URL http://arxiv.org/abs/1409.1556

40

