Cyberbullying, the use of online digital media to communicate false, embarrassing, or hostile information about another person is the most common online
risk for adolescents. A key characteristic of cyberbullying is the repetitive nature, yet little is known about temporal aspects of cyberbullying. Drawing on a
range of interdisciplinary techniques, the purpose of this study was to (1) identify the core temporal cyberbullying (CB) trends and properties in a large, real-
world Instagram dataset and (2) investigate how temporal factors predict whether the media session was perceived as CB in this dataset.

The dataset, initially used by Hosseinmardi et al. (2015), consisted of 2,218 Instagram social media sessions that had
been coded (by humans) based on whether each session (the original Instagram post and its associated comments)
was a CB or non-CB session, as a whole. Roughly 20% of the sessions had been coded as CB sessions.
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Figure 1. A sample Instagram social media
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session, from Hosseinmardi etal. (2015) 17,245 (15%) of the comments identified as CB by the prediction model.

Analysis and Results

Logistic regression Variables Per Session Mean Median

» Proportion of CB comments to total comments in a session (b = 8.35, SE = 0.53, p | #CB comments 0 94 8.705 5 10.02
< .001, positive relationship) and average time interval between all CB comments | #Total Comments 7 147 63.03 51 41.94
and a session’s original post (b =-3.02 * 10, SE = 1.03 * 10, p <.001, negative | xon-CB Comments 1 139 5433 44 36.85
relationship) emerged as significant predictors of a media session being perceived Proportion of CB comments to 0 BT 5% LG .2
as CB overall. total comments

> Prop_ortion of CB comments within a media session was the most influential Time interval between first 0 1 452 409 8272607  3.300 e ——
predictor. and last CB comments (1008.62 days) (57.45days) (2.29days)  (117.73 days)

Random Forest (minutes)

» Arandom forest analysis using the variables presented in Table 1 was performed to | Average interval betweenall 0 1,532,085 2,128.57 41,061.37 114187.22
(1) predict session-level CB identification, and (2) indicate the importance of each | ©B comments (minutes) {beseothys) (LS tays)  (@eelukys) (@Rl
of the variables listed in predicting session-level CB. The model was trained and
tested using a 10-fold cross-validation method. The highest accuracy level was # Likes 1 782,434 9,698 2,001 29120.36
used to select the optimal model. Session-level CB

» The optimal prediction model was achieved when mtry (number of variables Comment-level CB
randomly sampled at each split) was 2 and ntree (number of trees to be grown) was | posting time of first CB comment
200. The final value used for the model was cp = 0.01015038. Accuracy level Posting time of last CB comment
reached apprOXimatEIy 75%, with kappa =.38. Table 1. Variables used in the random forest analysis
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