
� The Parser
◦ Extended the grammar rules and parse tree structure

� The Planer/Optimizer
◦ Each SGB/SJ node processes 1 SGA/SJP and 1 or more GAs/JPs
◦ SGB nodes make use of their inner input plan tree

� Core Equivalence Rules for similarity-aware operators
� Equivalence Among Similarity Operators
� Eager and Lazy Aggregation Transformations with SJ and SGB
� Extended techniques to use Materialized views to answer

similarity-aware queries

SGB

Join

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1), SUM(S2)

J1=J2

SGB

Join

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1), SUM(S2)*CNT

J1=J2

SGB

SUM(S1) AS SS1, CNT

G1 on Seg1,
G2 on Seg2

G1,
G2 on Seg2

G1 on Seg1,
J1

b) Eager Similarity
Aggregation

a) Lazy Similarity
Aggregation

Performance of SGB while
increasing dataset size

0

50

100

150

200

2 6 10 14

Ex
ec

ut
io

n
Ti

m
e

(s
)

Dataset Size (SF)

GB

GB(SGB)_H

GB(SGB)_S

SGB-A_H

SGB-A_S

SGB-A_MD

SGB-A_MS

SGB-D

SGB-U_MD

SGB-U_MS

Comparison of SGB and SJ with queries that obtain the same answer
using regular operators

Effectiveness of pushing selection under SJ
Performance of complex TPC

aggregation queries

ICDS
Indiana Center for
Database Systems

�Many applications scenarios need the support of
queries that capture and take advantage of
similarities in the data.
◦Data cleaning
◦Multimedia and video applications
◦Marketing analysis

�Shift from systems that focus on exact semantics of
data and queries to systems that focus on
approximate and imprecise semantics.
◦ Similarity-aware query processing in DB
◦ Integration of IR and DB operations
◦Uncertain or probabilistic databases

�We propose to extend the standard database
operators to exploit similarities in the data

�The main goal of the proposed similarity-aware
operators is to generate more meaningful and
useful answers than those of their regular
counterparts while maintaining:
◦Low running time
◦Good scalability properties
◦Efficient integration with the query processing
engine

Similarity Group-by (SGB)

Generic Definition:

Unsupervised
SGB

Similarity Group
Around

SGB with
Delimiters Group 1 Group 2 Group 3 Group 4 Group 5

c) GROUP BY Temperature DELIMITED BY (SELECT Value FROM Thresholds)

Group 1 Group 2 Group 3 Group 4 Group 5 Group 7

d d d

Group 6

s s ss s
d d d d

a) GROUP BY Temperature MAXIMUM_ELEMENT_SEPARATION 2
MAXIMUM_GROUP_DIAMETER 6

b) GROUP BY Temperature AROUND {30,50}
MAXIMUM_ELEMENT_SEPARATION 2 MAXIMUM_GROUP_DIAMETER 20

r r r
s s s

r

Group 1 Group 2

SGB Instances:

Similarity Join (SJ)
Generic Definition:

SJ Instances:
Range Distance

Join

kNN-Join

A

Ɛ

a) SELECT … FROM A, B WHERE A.a WITHIN Ɛ OF B.b

B

k=2
A

B
b) SELECT … FROM A, B WHERE B.b k NEAREST_NEIGHBOR_OF A.a

kDistance-Join

Join-Around

A

B
k=2

c) SELECT … FROM A, B WHERE A.a k TOP_CLOSEST_PAIRS B.b

A

B

r

d) SELECT … FROM A, B WHERE A.a AROUND B.b [MAX_DIAMETER 2r]

Eager and Lazy Aggr. Transf.
for SGB

Example of Core Equivalence Rules

GB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) ,SUM(S2)
GB

T2
(G2,J2,S2)

SUM(SS1) ,SUM(S2)*CNT

J1←J2, SUM(S1)
AS SS1, CNT

G1 ,G2
G1 ,G2

b) Eager Aggregationa) Lazy Aggregation

J1=J2

G1,
J1 aroundMGD=10 J2

Join

SGB5 2

5

1

1

1

1 2S

SELECT sum(S1), sum(S2) FROM T1, T2 WHERE
J1 around J2 MAX_DIAMETER 10 GROUP BY G1, G2

T1

10 18 5
10 19 5
10 20 10
10 21 5
10 22 5

G1 J1 S1

T2

20 20 10
15 40 5

G2 J2 S2

T1(G1,J1,S1) T2
5 2

J1 around J2
MD=10

Pushing Similarity Predicate
from Join-Around to GB

σ

E1
a) Distribution of selection over

SJ

S

E2

e1 within
5 of e2

20<e1≤25

100 100

1058

55

Q1: SELECT e1, e2 FROM E1, E2
WHERE e1 within 5 of e2 and 20<e1<=25

σ

E1

S

E2
100

100

55

5

σ

E1

b) Pushing selection predicate under
originally unrelated join operand

S

E2

e1 within
5 of e2

20<e1≤25

100 100

1058

55

σ

E1

S

E2
100 100

55

5

20<e1≤25
σ
15<e2≤3020<e1≤25

15

Central
points

Data
points

MGDSweeping
Plane

Similarity Group Around using
MAXIMUM_GROUP_DIAMETER (MGD)

Group 1

Current
Group

SMJoin {
get initial outer tuple
get initial Inner tuple
do forever {
 while (outer != inner) {
 if (outer < inner)
 advance outer
 else
 advance inner
 }
 mark inner position

 do forever {
 do{
 join outer and inner

 advance inner position
 }
 while (outer == inner)
 advance outer position
 if (outer == mark)
 restore inner to mark

 else
 break
 }
}
}

INITIALIZE

SKIP_TEST

SKIPOUTER_ADVANCE

SKIPINNER_ADVANCE

SKIP_TEST

JOINTUPLES

NEXTINNER

NEXTOUTER
TESTOUTER
TESTOUTER

NEXTINNER

d. Statea. Sorted Merge Join

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

EpsilonJoin {
get initial outer tuple
get initial inner tuple
do forever {
 while (outer !~ inner) {
 if (outer < inner)
 advance outer
 else
 advance inner
 }
 mark inner position

 do forever {
 do{
 join outer and inner
 prevInner ← inner
 advance inner position
 }
 while (outer ~ inner)
 advance outer position
 if (outer ~ prevInner)
 restore inner to mark
 break
 else
 break
 }
}
}

b. Epsilon-Join

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

c. Join-Around
JoinAround {
get initial outer tuple
get initial inner and nextInner
do forever {
 while ((inner != nextInner)&&
 (outer !~ inner)) {

 advance inner and nextInner
 }
 mark inner position
 if (!check_match()) continue
 do forever {
 do{
 join outer and inner
 prevInner ← inner
 advance inner and nextInner
 }
 while (prevInner == inner)
 advance outer position
 if (outer ~ prevInner)
 restore inner to mark
 nextInner ← getNext(inner)
 else
 break
 }
}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

INITIALIZE

TESTOUTER

SKIP_TEST

◦ Single plane sweep approach used to form the
groups
◦ The tuples to be grouped and the reference points

are processed simultaneously
◦ Data tuples and reference points are sorted before

being processed by the aggregation node
◦ Hash-based approach used to maintain the formed

groups

The Executor - SGB

The Executor - SJ

0

500

1000

1500

2000

2500

3000

0 5 10 15

Ex
ec

ut
io

n
Ti

m
e

(s
)

Dataset Size (SF)

SGB-A_H

SGB-A_S

SGB(GB)

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
Ti

m
e

(s
)

Dataset Size (SF)

SJ-JoinAround

RegOps-JoinAround

SGB SJ

0

40

80

120

160

PushSel_LHS PushSel_RHS1 PushSel_RHS2

Ex
ec

ut
io

n
Ti

m
e

(s
)

C

S

R2

o

C

S

R2

o

C

S

R2

o o

0
50

100
150
200
250
300

Ex
ec

ut
io

n
Ti

m
e

(s
)

Effectiveness of Associativity
transformation for SJ

0
40
80

120
160
200

AssocRule_LHS AssocRule_RHS

Ex
ec

ut
io

n
Ti

m
e

(s
)

C

S

R2

S

R1 R2

S

R1

S

C

Implementation
complexity

Take
advantage of
DB cost
based
optimization

Composable
with other DB
operators
(pipelining)

Supported
Operator
Instances

Similarity Operator Implementation Approach
As Stored
Procedures

(SP)
Outside of DBUsing Basic

SQL Operators
Integrated in
DB Engine

Queries use a
complex mix of
joins and
aggregations

Can reuse
and extend
DB operators
and structures

No

NoNo

Yes (e.g.,
queries can be
pre-aggregated,
use MVs, be
translated, etc.)

No directly

NoYes

AllAllAll

Certain types
may be
unfeasible or
require very
complex queries

Requires the
support of
specialized
structures,
spilling
mechanisms,
etc.

Requires the
support of
specialized
structures,
mechanisms
to deal with
very large
data sets, etc.

Yes (resulting
queries can be
highly complex)

