
� The Parser
◦ Extended the grammar rules and parse tree structure

� The Planer/Optimizer
◦ Each SGB/SJ node processes 1 SGA/SJP and 1 or more GAs/JPs
◦ SGB nodes make use of their inner input plan tree

� Core Equivalence Rules for similarity-aware operators
� Equivalence Among Similarity Operators
� Eager and Lazy Aggregation Transformations with SJ and SGB
� Extended techniques to use Materialized views to answer 

similarity-aware queries
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Performance of SGB while 
increasing dataset size

0

50

100

150

200

2 6 10 14

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Dataset Size (SF)

GB

GB(SGB)_H

GB(SGB)_S

SGB-A_H

SGB-A_S

SGB-A_MD

SGB-A_MS

SGB-D

SGB-U_MD

SGB-U_MS

Comparison of SGB and SJ with queries that obtain the same answer 
using regular operators

Effectiveness of pushing selection under SJ 
Performance of complex TPC 

aggregation queries
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�Many applications scenarios need the support of 
queries that capture and take advantage of 
similarities in the data.
◦Data cleaning
◦Multimedia and video applications
◦Marketing analysis

�Shift from systems that focus on exact semantics of 
data and queries to systems that focus on 
approximate and imprecise semantics.
◦ Similarity-aware query processing in DB
◦ Integration of IR and DB operations
◦Uncertain or probabilistic databases

�We propose to extend the standard database 
operators to exploit similarities in the data

�The main goal of the proposed similarity-aware 
operators  is to generate more meaningful and 
useful answers than those of their regular 
counterparts while maintaining:
◦Low running time
◦Good scalability properties
◦Efficient integration with the query processing 
engine

Similarity Group-by (SGB)

Generic Definition:
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SGB Instances:

Similarity Join (SJ)
Generic Definition:

SJ Instances:
Range Distance 
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Eager and Lazy Aggr. Transf. 
for SGB

Example of Core Equivalence Rules 
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Pushing Similarity Predicate 
from Join-Around to GB
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SMJoin {
get initial outer tuple
get initial Inner tuple
do forever {
  while (outer != inner) {
    if (outer < inner)
      advance outer
    else
      advance inner
  }
  mark inner position
  
  do forever {
    do{
      join outer and inner 
      
      advance inner position
    }
    while (outer == inner) 
    advance outer position
    if (outer == mark)
      restore inner to mark

    else
      break
  }
}
}

INITIALIZE

SKIP_TEST

SKIPOUTER_ADVANCE

SKIPINNER_ADVANCE

SKIP_TEST

JOINTUPLES

NEXTINNER

NEXTOUTER
TESTOUTER
TESTOUTER

NEXTINNER

d. Statea. Sorted Merge Join
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EpsilonJoin {
get initial outer tuple
get initial inner tuple
do forever {
  while (outer !~ inner) {
    if (outer < inner)
      advance outer
    else
      advance inner
  }
  mark inner position

  do forever {
    do{
      join outer and inner
      prevInner ← inner      
      advance inner position
    }
    while (outer ~ inner) 
    advance outer position
    if (outer ~ prevInner)
      restore inner to mark
      break
    else
      break
  }
}
}

b. Epsilon-Join
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c. Join-Around
JoinAround {
get initial outer tuple
get initial inner and nextInner
do forever {
  while ((inner != nextInner)&&    
         (outer !~ inner)) {
      

    advance inner and nextInner
  }
  mark inner position
  if (!check_match()) continue
  do forever {
    do{
      join outer and inner
      prevInner ← inner
      advance inner and nextInner
    }
    while (prevInner == inner) 
    advance outer position
    if (outer ~ prevInner)
      restore inner to mark
      nextInner ← getNext(inner)
    else
      break
  }
}
}
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◦ Single plane sweep approach used to form the 
groups
◦ The tuples to be grouped and the reference points 

are processed simultaneously 
◦ Data tuples and reference points are sorted before 

being processed by the aggregation node
◦ Hash-based approach used to maintain the formed 

groups 

The Executor - SGB

The Executor - SJ
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Effectiveness of Associativity 
transformation for SJ
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Implementation
complexity

Take
advantage of
DB cost
based
optimization

Composable
with other DB
operators
(pipelining)

Supported
Operator
Instances

Similarity Operator Implementation Approach
As Stored
Procedures

(SP)
Outside of DBUsing Basic

SQL Operators
Integrated in
DB Engine

Queries use a
complex mix of
joins and
aggregations

Can reuse
and extend
DB operators
and structures

No

NoNo

Yes (e.g.,
queries can be
pre-aggregated,
use MVs, be
translated, etc.)

No directly

NoYes

AllAllAll

Certain types
may be
unfeasible or
require very
complex queries

Requires the
support of
specialized
structures,
spilling
mechanisms,
etc.

Requires the
support of
specialized
structures,
mechanisms
to deal with
very large
data sets, etc.

Yes (resulting
queries can be
highly complex)


