
An Experimental Survey of MapReduce-based Similarity Joins
Yasin Silva, Jason Reed, Kyle Brown, Adelbert Wadsworth, Chuitian Rong

Arizona State University

Motivation

The Problem

- Big-Data systems have been introduced to efficiently

process and analyze massive amounts of data.

- One of the key data processing and analysis

operations is the Similarity Join (SJ), which finds

similar pairs of objects of two datasets.

- Several SJ techniques for Big-Data (MapReduce)

have been proposed [1-7] but many of these

techniques were not compared against alternative

approaches.

 Some techniques were developed in parallel.

 Others were not implemented as part of their

original publications.

- Consequently, there is not a clear understanding of

how these techniques compare to each other and

which technique to use in specific scenarios.

Our Contribution

- The classification of Similarity Join techniques based

on the supported data types and distance functions

- An extensive set of experimental results:

 Compare performance based on supported data

type and distance function

 Evaluate performance under various dataset sizes

and distance thresholds

- The availability of the authors’ open-source

implementation of various Similarity Join algorithms

[9].

This work was supported by Arizona State University’s SRCA and NCUIRE awards, the NSFC (No. 61402329), and the China Scholarship Council.

Dataset

- We used a slightly modified version of the

Harvard bibliographic dataset [8].

- Attributes: unique ID, title, date issued, record

change date, record creation date, Harvard

record-ID, first author, all author names, and

10D vector (augmented).

- Minimum and maximum length of attributes:

- Scale Factor 1 (SF1) dataset contains 200K

records.

- Larger datasets were generated in such a way

that the number of matches of any SJ in SFN is

N times the number of matches in SF1.

- The records of each dataset are equally divided

between tables R and S.

Classification of the Algorithms

Hadoop Cluster Configuration
- The experiments were performed using a Hadoop

cluster running on the Amazon EC2.

- We used a cluster of 10 nodes.

 15 GB of memory.

 4 virtual cores with 2 EC2 Compute Units each.

 1,690 GB of local in-stance storage.

 64-bit platform.

- The number of reducers was computed as: 0.95×⟨no.

worker nodes⟩×⟨max reduce tasks per node⟩ = 25.

Variable-length Strings – Edit Distance Fixed-length Strings – Hamming Distance

Vector Data (10D) – Euclidean Distance Set Data – Jaccard Distance

0

100

200

300

400

500

1 2 3 4

0

1

2

3

4

5

6

7

R
U

N
TI

M
E

(M
IN

U
TE

S)

SCALE FACTOR

O
U

TP
U

T
SI

ZE
 (

O

F
R

EC
O

R
D

S)
 X

 1
0

8

Hamming, ε:3
Output
MRSimJoin
NaïveJoin
Splitting
MRThetaJoin

0

50

100

150

200

1 2 3 4

0

2

4

6

8

R
U

N
TI

M
E

(M
IN

U
TE

S)

DISTANCE THRESHOLD (Ε)

O
U

TP
U

T
SI

ZE
 (

O

F
R

EC
O

R
D

S)
 X

 1
0

8

Hamming, SF1
Output
MRSimJoin
NaïveJoin
Splitting
MRThetaJoin
Ball Hashing 1
Ball Hashing 2

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4

0

1

2

3

4

5

6

7

8

9

10

R
U

N
TI

M
E

(M
IN

U
TE

S)

SCALE FACTOR

O
U

TP
U

T
SI

ZE
 (

O

F
R

EC
O

R
D

S)
 X

 1
0

5

Edit Distance, ε:3
Output

MRSimJoin

NaïveJoin

MRThetaJoin

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4

0

50

100

150

200

250

300

O
U

TP
U

T
SI

ZE
 (

O

F
R

EC
O

R
D

S)
 X

 1
0

5

DISTANCE THRESHOLD (Ε)

R
U

N
TI

M
E

(M
IN

U
TE

S)

Edit Distance, SF1
Output

MRSimJoin

NaïveJoin

MRThetaJoin

Ballhashing 1

0

50

100

150

200

250

300

350

400

1 2 3 4

0

1

2

3

4

5

6

R
U

N
TI

M
E

(M
IN

U
TE

S)

SCALE FACTOR

O
U

TP
U

T
SI

ZE
 (

 O

F
R

EC
O

R
D

S)
 X

 1
0

6

Jaccard Distance, ε:12%
Output

MRSimJoin

NaïveJoin

MRSetJoin

MRThetaJoin

0

50

100

150

200

250

300

350

400

4% 8% 12% 16%

0

5

10

15

20

25

R
U

N
TI

M
E(

M
IN

U
TE

S)

DISTANCE THRESHOLD (Ε)

O
U

TP
U

T
SI

ZE
(#

 O
F

R
EC

O
R

D
S)

 X
 1

0
5

Jaccard Distance, SF1

Output

MRSimJoin

NaïveJoin

MRSetJoin

MRThetaJoin

Algorithm
Supported Distance/
Similarity Functions

Supported Data Types

Text/String Numeric Vector Set

Naïve Join Any DF ● ● * ●
Ball Hashing 1 Hamming Distance

Edit Distance
●

Ball Hashing 2 Hamming Distance
Edit Distance

●

Subsequence Edit Distance ●
Splitting Hamming Distance

Edit Distance
●

Hamming Code Hamming Distance ●
Anchor Points Hamming Distance

Edit Distance
● * *

MRThetaJoin Any DF ● ● ● ●
MRSimJoin Any metric DF ● ● ● ●
MRSetJoin JS, TC, CC,

Edit Distance*

* ●

Online Aggregation JS, RS, DS, SC, VC ●
Lookup JS, RS, DS, SC, VC ●
Sharding JS, RS, DS, SC, VC ●
● Natively Supported
* Can be extended to support this data type or distance function
JS=Jaccard Similarity, TC=Tanimoto Coefficient, CC=Cosine Coefficient, RS=Ruzicka Similarity,
DS=Dice Similarity, SC=Set Cosine Sim., VC=Vector Cosine Sim.

0

0.5

1

1.5

2

0

50

100

150

200

250

300

1 2 3 4

O
U

TP
U

T
SI

ZE
 (

O

F
R

EC
O

R
D

S)
 X

 1
0

8

R
U

N
TI

M
E(

M
IN

U
TE

S)

SCALE FACTOR

Euclidean Distance, ε:5%

Output

MR SimJoin

MR ThetaJoin

0

1

2

3

4

5

6

0

50

100

150

200

250

300

5% 10% 15% 20%

O
U

TP
U

T
SI

ZE
 (

 #
 O

F
R

EC
O

R
D

S)
 X

1
0

8

R
U

N
TI

M
E

 (
M

IN
U

TE
S)

DISTANCE THRESHOLD (Ε)

Output

MRSimJoin

MRThetaJoin

Euclidean Distance, SF4

Unique

ID

Title Date

issued

Record

change date

Record

creation

date

Harvard

record-

ID

First

author

All author

names

(9, 9) (6, 996) (4, 4) (15, 15) (6, 6) (10, 10) (6, 94) (6, 2462)

References
1. R. Vernica, M. J. Carey, and C. Li. 2010. Efficient Parallel Set-similarity Joins using MapReduce. In

SIGMOD, 2010.

2. Y. N. Silva, J. M. Reed, L. M. Tsosie. MapReduce-based Similarity Join for Metric Spaces. In

VLDB/Cloud-I, 2012.

3. Y. N. Silva, J. M. Reed. Exploiting MapReduce-based Similarity Joins. In SIGMOD, 2012.

4. F. N. Afrati, A. D. Sarma, D. Menestrina, A. Parameswaran, and J. D. Ullman. Fuzzy Joins Using

MapReduce. In ICDE, 2012.

5. A. Okcan and M. Riedewald. Processing Theta-joins using Mapreduce. In SIGMOD, 2011.

6. A. Metwally and C. Faloutsos. V-SMART-join: a Scalable MapReduce Framework for All-pair Similarity

Joins of Multisets and Vectors. In VLDB, 2012.

7. C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient Similarity Joins for Near Duplicate Detection. In

WWW, 2008.

8. Harvard Library. Harvard bibliographic dataset. http://library.harvard.edu/open-metadata.

9. SimCloud Project. MapReduce-based Similarity Join Survey.

http://www.public.asu.edu/~ynsilva/SimCloud/SJSurvey.

Key Findings
- The algorithms vary significantly in terms of Supported distance functions.

 MRSimJoin and MRThetaJoin support multiple metrics.

 Subsequence and Hamming Code support only one.

- No single algorithm outperforms all the others for all the evaluated data types

and distance functions.

 In some cases, an algorithm performs consistently better than the others

for a given data type and metric.

 In others, the identification of the best algorithm depends on the dataset

size and distance threshold.

