[®] ARIZONA STATE INIVERSITY

Motivation

The Problem

- Big-Data systems have been introduced to efficiently process and analyze massive amounts of data.
- One of the key data processing and analysis operations is the Similarity Join (SJ), which finds similar pairs of objects of two datasets.
- Several SJ techniques for Big-Data (MapReduce) have been proposed [1-7] but many of these techniques were not compared against alternative approaches.
 - Some techniques were developed in parallel.
 - Others were not implemented as part of their original publications.
- Consequently, there is not a clear understanding of how these techniques compare to each other and which technique to use in specific scenarios.

Our Contribution

- The classification of Similarity Join techniques based on the supported data types and distance functions
- An extensive set of experimental results:
 - Compare performance based on supported data type and distance function
 - Evaluate performance under various dataset sizes and distance thresholds
- The availability of the authors' open-source implementation of various Similarity Join algorithms [9].

Hadoop Cluster Configuration

- The experiments were performed using a Hadoop cluster running on the Amazon EC2.
- We used a cluster of 10 nodes.
 - 15 GB of memory.
 - 4 virtual cores with 2 EC2 Compute Units each.
 - 1,690 GB of local in-stance storage.
 - 64-bit platform.
- The number of reducers was computed as: $0.95 \times (no.)$ worker nodes \times (max reduce tasks per node) = 25.

An Experimental Survey of MapReduce-based Similarity Joins Yasin Silva, Jason Reed, Kyle Brown, Adelbert Wadsworth, Chuitian Rong Arizona State University

Classification of the Algorithms

	Sunnorted Distance/	Supported Data Types				
Algorithm	Similarity Functions	Text/String	Numeric	Vector	Set	
Naïve Join	Any DF	•	•	*	•	
Ball Hashing 1	Hamming Distance	•				
	Edit Distance					
Ball Hashing 2	Hamming Distance	•				
	Edit Distance					
Subsequence	Edit Distance	•				
Splitting	Hamming Distance	•				
	Edit Distance					
Hamming Code	Hamming Distance	•				
Anchor Points	Hamming Distance	•	*	*		
	Edit Distance					
MRThetaJoin	Any DF	•	•	•	•	
MRSimJoin	Any metric DF	•	•	•	•	
MRSetJoin	JS, TC, CC,	*			•	
	Edit Distance*					
Online Aggregation	JS, RS, DS, SC, VC				•	
Lookup	JS, RS, DS, SC, VC					
Sharding	JS, RS, DS, SC, VC					
 Nativaly Supported 						

Natively Supported

Can be extended to support this data type or distance function JS=Jaccard Similarity, TC=Tanimoto Coefficient, CC=Cosine Coefficient, RS=Ruzicka Similarity, DS=Dice Similarity, SC=Set Cosine Sim., VC=Vector Cosine Sim.

- The algorithms vary significantly in terms of Supported distance functions.
 - MRSimJoin and MRThetaJoin support multiple metrics.
 - Subsequence and Hamming Code support only one.
- No single algorithm outperforms all the others for all the evaluated data types and distance functions.
 - In some cases, an algorithm performs consistently better than the others for a given data type and metric.
 - In others, the identification of the best algorithm depends on the dataset size and distance threshold.

References

- 1. R. Vernica, M. J. Carey, and C. Li. 2010. Efficient Parallel Set-similarity Joins using MapReduce. In SIGMOD, 2010.
- 2. Y. N. Silva, J. M. Reed, L. M. Tsosie. MapReduce-based Similarity Join for Metric Spaces. In VLDB/Cloud-I. 2012.
- **3.** Y. N. Silva, J. M. Reed. Exploiting MapReduce-based Similarity Joins. In SIGMOD, 2012. 4. F. N. Afrati, A. D. Sarma, D. Menestrina, A. Parameswaran, and J. D. Ullman. Fuzzy Joins Using
- MapReduce. In ICDE, 2012.
- 5. A. Okcan and M. Riedewald. Processing Theta-joins using Mapreduce. In SIGMOD, 2011. 6. A. Metwally and C. Faloutsos. V-SMART-join: a Scalable MapReduce Framework for All-pair Similarity Joins of Multisets and Vectors. In VLDB, 2012.
- 7. C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient Similarity Joins for Near Duplicate Detection. In WWW, 2008.
- 8. Harvard Library. Harvard bibliographic dataset. http://library.harvard.edu/open-metadata. 9. SimCloud Project. MapReduce-based Similarity Join Survey. http://www.public.asu.edu/~ynsilva/SimCloud/SJSurvey.

a.	ta	S	e	t
	L U			

- We used a slightly modified version of the Harvard bibliographic dataset [8].
 - Attributes: unique ID, title, date issued, record change date, record creation date, Harvard record-ID, first author, all author names, and 10D vector (augmented).

				_	
/Inimiim	ana	maximiim	lenorn	O T	attributes.
	and	mannum	ICIIZUI		autoutos.
			\bigcirc		

nique)	Title	Date issued	Record change date	Record creation date	Harvard record- ID	First author	All author names
9, 9)	(6, 996)	(4, 4)	(15, 15)	(6, 6)	(10, 10)	(6, 94)	(6, 2462)

- Scale Factor 1 (SF1) dataset contains 200K records.
- Larger datasets were generated in such a way that the number of matches of any SJ in SFN is *N* times the number of matches in SF1.
- The records of each dataset are equally divided between tables *R* and *S*.

Key Findings