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Motivation

The Problem

- Big-Data systems have been introduced to efficiently 

process and analyze massive amounts of data. 

- One of the key data processing and analysis 

operations is the Similarity Join (SJ), which finds 

similar pairs of objects of two datasets. 

- Several SJ techniques for Big-Data (MapReduce) 

have been proposed [1-7] but many of these 

techniques were not compared against alternative 

approaches.

 Some techniques were developed in parallel.

 Others were not implemented as part of their 

original publications. 

- Consequently, there is not a clear understanding of 

how these techniques compare to each other and 

which technique to use in specific scenarios.

Our Contribution

- The classification of Similarity Join techniques based 

on the supported data types and distance functions

- An extensive set of experimental results:

 Compare performance based on supported data 

type and distance function

 Evaluate performance under various dataset sizes 

and distance thresholds

- The availability of the authors’ open-source 

implementation of various Similarity Join algorithms 

[9].

This work was supported by Arizona State University’s SRCA and NCUIRE awards, the NSFC (No. 61402329), and the China Scholarship Council.

Dataset

- We used a slightly modified version of the 

Harvard bibliographic dataset [8].

- Attributes: unique ID, title, date issued, record 

change date, record creation date, Harvard 

record-ID, first author, all author names, and 

10D vector (augmented).

- Minimum and maximum length of attributes:

- Scale Factor 1 (SF1) dataset contains 200K 

records.

- Larger datasets were generated in such a way 

that the number of matches of any SJ in SFN is 

N times the number of matches in SF1.

- The records of each dataset are equally divided 

between tables R and S.

Classification of the Algorithms

Hadoop Cluster Configuration
- The experiments were performed using a Hadoop 

cluster running on the Amazon EC2.

- We used a cluster of 10 nodes.

 15 GB of memory.

 4 virtual cores with 2 EC2 Compute Units each.

 1,690 GB of local in-stance storage.

 64-bit platform.

- The number of reducers was computed as: 0.95×⟨no. 

worker nodes⟩×⟨max reduce tasks per node⟩ = 25.

Variable-length Strings – Edit Distance Fixed-length Strings – Hamming Distance

Vector Data (10D) – Euclidean Distance Set Data – Jaccard Distance
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Algorithm
Supported Distance/ 
Similarity Functions

Supported Data Types

Text/String Numeric Vector Set

Naïve Join Any DF ● ● * ●
Ball Hashing 1 Hamming Distance

Edit Distance
●

Ball Hashing 2 Hamming Distance
Edit Distance

●

Subsequence Edit Distance ●
Splitting Hamming Distance 

Edit Distance
●

Hamming Code Hamming Distance ●
Anchor Points Hamming Distance

Edit Distance
● * *

MRThetaJoin Any DF ● ● ● ●
MRSimJoin Any metric DF ● ● ● ●
MRSetJoin JS, TC, CC,

Edit Distance*

* ●

Online Aggregation JS, RS, DS, SC, VC ●
Lookup JS, RS, DS, SC, VC ●
Sharding JS, RS, DS, SC, VC ●
● Natively Supported
* Can be extended to support this data type or distance function
JS=Jaccard Similarity, TC=Tanimoto Coefficient, CC=Cosine Coefficient, RS=Ruzicka Similarity, 
DS=Dice Similarity, SC=Set Cosine Sim., VC=Vector Cosine Sim.
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Unique 

ID

Title Date 

issued

Record 

change date 

Record 

creation 

date 

Harvard 

record-

ID 

First 

author 

All author 

names 

(9, 9) (6, 996) (4, 4) (15, 15) (6, 6) (10, 10) (6, 94) (6, 2462)
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Key Findings
- The algorithms vary significantly in terms of Supported distance functions.

 MRSimJoin and MRThetaJoin support multiple metrics.

 Subsequence and Hamming Code support only one.

- No single algorithm outperforms all the others for all the evaluated data types 

and distance functions. 

 In some cases, an algorithm performs consistently better than the others 

for a given data type and metric.

 In others, the identification of the best algorithm depends on the dataset 

size and distance threshold.


