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- Big-Data systems have been introduced to efficiently
process and analyze massive amounts of data.
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Our Contribution

- The classification of Similarity Join techniques based
on the supported data types and distance functions

Classification of the Algorithms Key Findings

- An extensive set of experimental results:

® Compare performance based on supported data Algorithm Supported Distance/ Supported Data Types - The algorithms vary significantly in terms of Supported distance functions.
® Evaluate performance under various dataset sizes Naive Join Any DF o o . o B Subsequence and Hamming Code support only one.
' Ball Hashing 1 Hamming Distance o : :
and distance thresholds 2 e it Distagnce - No single algorithm outperforms all the others for all the evaluated data types
- The availability of the authors’ open-source Ball Hashing 2 Hamming Distance ° and distance functions.
Implementation of various Similarity Join algorithms Edit Distance ® In some cases, an algorithm performs consistently better than the others
El} Subsequence Edit Distance ® for a given data type and metric.
Splitting Ha_m”?i”g Distance e ® In others, the identification of the best algorithm depends on the dataset
Edit Distance size and distance threshold.
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