
Similarity Group-by Operators for Multi-dimensional Relational Data 
Mingjie Tang1, Ruby Y. Tahboub1, Walid G. Aref1, Mikhail J.Atallah1, Qutaibah M. Malluhi2,  

Mourad Ouzzani3 , Yasin N. Silva4 

1Purdue University, 2Qatar University, 3Qatar Computing Research Institute, 
 4Arizona State University 

Experiments 

ACKNOWLEGEMENTS 
G

Query Optimization Implementation 

Semantics of Similarity Group-By (SGB) 

Motivation 

Related work 
• Data cluster algorithms  

• Developed on top of the DBMS 
• Takes the DBMS as a black box 
• Suffers from the extraneous I/O due to impedance mismatch with data in the DB 
 

• Similarity query processing algorithms 
• Well studied, but no previous work on multi-dimensional similarity-group-by 

• Tested using TPC-H and social network check-in dataset 

(Gowalla, Brightkite) 

• SGB operators implemented inside PostgreSQL 8.2.4 

• Code is available at https://github.com/merlintang/sgb 

• Tested query performance against straightforward realization 

of SGB, various other cluster algorithms, and standard 

Group-by of PostgreSQL 

The effect of the similarity threshold ε Example Queries 

The effect of increasing data size 

Comparing with Clustering Algorithm 

Comparing with Standard Group By 

Brightkite Gowalla 

GBY2 VS SGB3 and SGB4 GBY3 vs SGB5 and SGB6 

• Developed inside PostgreSQL 
8.2 

• > 8k lines of codes 
• Uses an in-memory R-tree index 

inside query executor 
• Memory protection  
• Transaction consistency 
• Fault recovery     

SGB-All-Join-Any SGB-Any 

SGB-All-Join-Any SGB-Any 

• Table Mobile Devices:                                       

(MDID, Latitude, Longitude) maintains the       

geographic locations of mobile devices 

  

Bounding-rectangle 

+ convex hull 

+ spatial index 

+ disk-based hash  

tables 

  

Spatial index 

+ union-find 

+ disk-based hash  

tables 

• Similarity search is everywhere, so is searching for database elements that are similar or close 
to a given query element.  

• There is a need to group n-dimensional data tuples together that have similar (≈) values. 
• We need to extend the SQL Group-By operator to support similarity-based grouping.

• Given 2D data tuples T, and distance parameter ε, 
return groups of tuples from T that satisfy the 

predefined distance predicates: Distance-to-All (SGB-
All), Distance-to-Any (SGB-Any) 

• Distance-to-All: All the tuples in a group are within  
certain distance threshold ε from each other 

• Distance-to-Any: A tuple belongs to a group if the tuple 
is within distance ε from any other tuple in the group 

• ON-OVERLAP: To decide on a course of action when a 
point p is within Distance ε from more than one group. 

• Possible actions: 

• Identify groups of connected                

mobile devices using signal                      

range as a similarity grouping          

threshold

p

• Identify gateway devices (member of 

multiple groups) 

• A gateway device acts as              an 

entrance from one              group to other 

groups

• Identify devices that can 

communicate with                      

each other directly                   

based on their own signal strength 

 

• Identify devices that cannot serve as 

a gateway, and devices from 

different  group that cannot 

communicate without a gateway 

- ON-OVERLAP JOIN-ANY: Data point p is inserted into any one of the overlapping groups.  
- ON-OVERLAP ELIMINATE: Discard data point p if p overlaps more than one group. 
- ON-Overlap FORM-NEW-GROUP: Insert p into a separate new group that contain all the overlapping points. 

https://github.com/merlintang/sgb
https://github.com/merlintang/sgb
https://github.com/merlintang/sgb

