
Similarity Grouping for Big Data
Faculty: Yasin Silva           Students: Nathan Middlebrook and Jeremy Starks

Arizona State University

Example: Case of 2 Pivots
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Motivation
Key properties of the single-round algorithm:

◦ We can increase the number of pivots (k) such 

that all the partitions are small enough to be 

processed in a single node.

◦ For the unlikely case that we still have a large 

partition, we will add a second level of 

partitioning.

Algorithm:

◦ Execute algorithm (round 1)

◦ For each partition Pi

◦ If Pi can be processed in a single node, 

then we do so

◦ Else, we save Pi in the distributed file 

system

◦ For each partition Pi that was saved

◦ Execute the second-level algorithm 

(round 2)

The second level algorithm is similar to the first 
level one, with the difference being that we need to 
keep track of the history of flags for each partition.

General Algorithm Algorithm for K Pivots Experimental Setup

Preliminary Results
K-means (k=10), SGB (eps=1, pivots=10), GB (count), dataset (2D, small)

1. A similarity group is defined as a set of points 

where each point is within epsilon from any 

other point in the group.

2. MR-SGB is proposed as:

A. An initial way to explore the distribution 

and clusters in the data.

B. An alternative, more compact way to 

identify pairs of similar objects 

(Similarity Join).

3. Our algorithm will be based on partitioning 

the data into smaller partitions. The algorithm 

will generate these partitions around a set of 

special points named pivots. 

4. We will have one partition for each pivot. 

5. A cluster could potentially be contained in 

multiple partitions; however, it should be 

output into/generated in only one of them.

6. Our criteria will be to output the cluster in the 

partition that corresponds to the minimum 

base partition of the points contained in the 

cluster.

For instance: given 4 pivots and the cluster 

has points belonging to base partitions #2 

and #3, then this cluster should be output 

when Partition #2 is being processed.

General Considerations
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Goals:

 Partition the initial dataset into two partitions such that 

we can still identify all the similarity groups (G1-G7) 

 Each similarity group should be generated in only one 

partition

Solution (using two pivots/partitions):

 Partition the input using two pivots (P0 and P1) such that 

each point belongs to the partition of its closest pivot

 Additionally, duplicate the points in the ε-windows (C 

and D). Part0 = A+C+D, Part1 = C+D+B.

 Identify the similarity groups in each partition as follows:

        In partition Part1:

If group       Then

Solely in C        Ignore

In C and D        Ignore

Solely in D          Generate

In D and B        Generate

Solely in B          Generate

 In the example, similarity groups G1, G2, G3, and G4 

are generated in Part0 while G5,G6, and G7 in Part1  
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1. Partition the data [Map]

◦ Duplicate the points in overlapping areas (each base 

partition is extended by epsilon)

◦ Structure of each record: {RecordID, RecordContent, 

AssignedPartition, BasePartition}

◦ BasePartition: This is the ID of the pivot that 

is closest to the current record

◦ AssignedPartition: This is the ID of the pivot

associated to the current partition

2. For each partition Pi, cluster the points in Pi [Reduce]

◦ For each partition, we know the value of i by looking 

at the AssignedPartition component of any record 

◦ Structure of each cluster Cn: {SetOfPoints,[f1, f2, …, 

fk]}

◦ Observe that the array has k elements, where k is 

the number of pivots

◦ fs is a binary flag that is 1 if there is at least one 

record X in the Cluster such that X.BasePartition

= s, 0 otherwise

3. For each partition Pi, output the clusters (without 

duplicating clusters) [Reduce]

◦ For each Cluster Cn in partition Pi

◦ minFlag = index of minimum value in Cn.[f1, f2, 

…, fk] that is 1

◦ If (i = minFlag) then output Cn, otherwise don’t 

output it (it will be outputted somewhere else)

Datasets
1. Real dataset: YearPredictionMSD (UCI ML Repository)

Vector, 90D, size(SF1): 200K 
2. Synthetic dataset

Vector, 9xD, size(SF1): 200K 

Experiments
1. Execution time varying dataset size (SF1-SF5)
2. Execution time varying dimensionality (2D, 5D, 25D, 100D, 200D)
3. Execution time varying epsilon (1%-5%)

Algorithms (implemented using the MapReduce Big Data framework)
1. Similarity Group-by (MR-SGB): proposed similarity grouping 

operator
2. K-means (MR-Kmeans): standard clustering algorithm

3. Group-by (MR-GB): standard non-similarity-based database 

grouping operator

The Problem:

◦ Analyzing massive amounts of data is now critical 

for many commercial and scientific applications. 

◦ The analysis of such datasets may require 

processing tens, possibly hundreds of terabytes of 

data. 

◦ Big Data Management Systems comprise a 

solution to the requirements of processing massive 

datasets in a highly scalable and distributed 

fashion. 

◦ Grouping operations (large dataset aggregators, 

with group-specific functions) are considered 

among the most useful operations for data 

processing and analysis.

◦ Similarity groups contain similar records, instead 

of exact matches, thus enabling the composition of 

more useful data analysis queries.

Our Contribution:

◦ The design of a highly distributed, scalable 

algorithm (MR-SGB) that performs similarity 

grouping on massive datasets. 

◦ Implementation of the proposed algorithm on 

Apache Hadoop, a widely used open source Big 

Data framework.
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MR-SGB performs significantly better 
than K-means. Moreover, MR-SGB’s 
execution time is only 2.59 times the 

one of MR-GB, which only groups 
records with exactly the same value.


