
Similarity Grouping for Big Data
Faculty: Yasin Silva Students: Nathan Middlebrook and Jeremy Starks

Arizona State University

Example: Case of 2 Pivots

9.0333

1.2167
0.4667

0

1

2

3

4

5

6

7

8

9

10

MR-Kmeans MR-SGB MR-GB

TI
M

E
IN

 M
IN

U
TE

S

ALGORITHM

Motivation
Key properties of the single-round algorithm:

◦ We can increase the number of pivots (k) such

that all the partitions are small enough to be

processed in a single node.

◦ For the unlikely case that we still have a large

partition, we will add a second level of

partitioning.

Algorithm:

◦ Execute algorithm (round 1)

◦ For each partition Pi

◦ If Pi can be processed in a single node,

then we do so

◦ Else, we save Pi in the distributed file

system

◦ For each partition Pi that was saved

◦ Execute the second-level algorithm

(round 2)

The second level algorithm is similar to the first
level one, with the difference being that we need to
keep track of the history of flags for each partition.

General Algorithm Algorithm for K Pivots Experimental Setup

Preliminary Results
K-means (k=10), SGB (eps=1, pivots=10), GB (count), dataset (2D, small)

1. A similarity group is defined as a set of points

where each point is within epsilon from any

other point in the group.

2. MR-SGB is proposed as:

A. An initial way to explore the distribution

and clusters in the data.

B. An alternative, more compact way to

identify pairs of similar objects

(Similarity Join).

3. Our algorithm will be based on partitioning

the data into smaller partitions. The algorithm

will generate these partitions around a set of

special points named pivots.

4. We will have one partition for each pivot.

5. A cluster could potentially be contained in

multiple partitions; however, it should be

output into/generated in only one of them.

6. Our criteria will be to output the cluster in the

partition that corresponds to the minimum

base partition of the points contained in the

cluster.

For instance: given 4 pivots and the cluster

has points belonging to base partitions #2

and #3, then this cluster should be output

when Partition #2 is being processed.

General Considerations

P0 P1

ε ε

Part1

Generated Partitions

Partitioning and Generation of Similarity Groups

Part0

In partition Part0:

If group Then

Solely in A Generate

In A and C Generate

Solely in C Generate

In C and D Generate

Solely in D Ignore

Initial Dataset (2D space)

A BC D

G1
G2

G3

G4

G6
G7

P0

ε ε

A C D

G1
G2

G3

G4

G6

P1

ε ε

BC D

G2

G3

G4

G6
G7

Goals:

 Partition the initial dataset into two partitions such that

we can still identify all the similarity groups (G1-G7)

 Each similarity group should be generated in only one

partition

Solution (using two pivots/partitions):

 Partition the input using two pivots (P0 and P1) such that

each point belongs to the partition of its closest pivot

 Additionally, duplicate the points in the ε-windows (C

and D). Part0 = A+C+D, Part1 = C+D+B.

 Identify the similarity groups in each partition as follows:

 In partition Part1:

If group Then

Solely in C Ignore

In C and D Ignore

Solely in D Generate

In D and B Generate

Solely in B Generate

 In the example, similarity groups G1, G2, G3, and G4

are generated in Part0 while G5,G6, and G7 in Part1

G5

G5 G5

P0 P1

ε ε

Part1

Generated Partitions

Partitioning and Generation of Similarity Groups

Part0

In partition Part0:

If group Then

Solely in A Generate

In A and C Generate

Solely in C Generate

In C and D Generate

Solely in D Ignore

Initial Dataset (2D space)

A BC D

G1
G2

G3

G4

G6
G7

P0

ε ε

A C D

G1
G2

G3

G4

G6

P1

ε ε

BC D

G2

G3

G4

G6
G7

Goals:

 Partition the initial dataset into two partitions such that

we can still identify all the similarity groups (G1-G7)

 Each similarity group should be generated in only one

partition

Solution (using two pivots/partitions):

 Partition the input using two pivots (P0 and P1) such that

each point belongs to the partition of its closest pivot

 Additionally, duplicate the points in the ε-windows (C

and D). Part0 = A+C+D, Part1 = C+D+B.

 Identify the similarity groups in each partition as follows:

 In partition Part1:

If group Then

Solely in C Ignore

In C and D Ignore

Solely in D Generate

In D and B Generate

Solely in B Generate

 In the example, similarity groups G1, G2, G3, and G4

are generated in Part0 while G5,G6, and G7 in Part1

G5

G5 G5

1. Partition the data [Map]

◦ Duplicate the points in overlapping areas (each base

partition is extended by epsilon)

◦ Structure of each record: {RecordID, RecordContent,

AssignedPartition, BasePartition}

◦ BasePartition: This is the ID of the pivot that

is closest to the current record

◦ AssignedPartition: This is the ID of the pivot

associated to the current partition

2. For each partition Pi, cluster the points in Pi [Reduce]

◦ For each partition, we know the value of i by looking

at the AssignedPartition component of any record

◦ Structure of each cluster Cn: {SetOfPoints,[f1, f2, …,

fk]}

◦ Observe that the array has k elements, where k is

the number of pivots

◦ fs is a binary flag that is 1 if there is at least one

record X in the Cluster such that X.BasePartition

= s, 0 otherwise

3. For each partition Pi, output the clusters (without

duplicating clusters) [Reduce]

◦ For each Cluster Cn in partition Pi

◦ minFlag = index of minimum value in Cn.[f1, f2,

…, fk] that is 1

◦ If (i = minFlag) then output Cn, otherwise don’t

output it (it will be outputted somewhere else)

Datasets
1. Real dataset: YearPredictionMSD (UCI ML Repository)

Vector, 90D, size(SF1): 200K
2. Synthetic dataset

Vector, 9xD, size(SF1): 200K

Experiments
1. Execution time varying dataset size (SF1-SF5)
2. Execution time varying dimensionality (2D, 5D, 25D, 100D, 200D)
3. Execution time varying epsilon (1%-5%)

Algorithms (implemented using the MapReduce Big Data framework)
1. Similarity Group-by (MR-SGB): proposed similarity grouping

operator
2. K-means (MR-Kmeans): standard clustering algorithm

3. Group-by (MR-GB): standard non-similarity-based database

grouping operator

The Problem:

◦ Analyzing massive amounts of data is now critical

for many commercial and scientific applications.

◦ The analysis of such datasets may require

processing tens, possibly hundreds of terabytes of

data.

◦ Big Data Management Systems comprise a

solution to the requirements of processing massive

datasets in a highly scalable and distributed

fashion.

◦ Grouping operations (large dataset aggregators,

with group-specific functions) are considered

among the most useful operations for data

processing and analysis.

◦ Similarity groups contain similar records, instead

of exact matches, thus enabling the composition of

more useful data analysis queries.

Our Contribution:

◦ The design of a highly distributed, scalable

algorithm (MR-SGB) that performs similarity

grouping on massive datasets.

◦ Implementation of the proposed algorithm on

Apache Hadoop, a widely used open source Big

Data framework.

1) Silva, Y. N., Aref, W., Ali, M. Similarity Group-by. In: ICDE (2009)

2) Silva, Y.N., Reed, J.M.: Exploiting MapReduce-based similarity joins. In: SIGMOD (2012)

3) Silva, Y.N., Reed, J.M., Tsosie, L.M.: MapReduce-based similarity join for metric spaces. In:

VLDB/Cloud-I (2012)

4) Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using MapReduce. In:

SIGMOD 2010 (2010)

5) Afrati, F.N., Sarma, A.D., Menestrina, D., Parameswaran, A., Ullman, J.D.: Fuzzy joins using

MapReduce. In: ICDE (2012)

6) Okcan, A., Riedewald, M.: Processing theta-joins using MapReduce. In: SIGMOD (2011)

7) Metwally, A., Faloutsos, C.: V-SMART-join: a scalable MapReduce framework for all-pair similarity

joins of multisets and vectors. In: VLDB (2012)

8) Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate detection. In:

WWW (2008)

References

MR-SGB performs significantly better
than K-means. Moreover, MR-SGB’s
execution time is only 2.59 times the

one of MR-GB, which only groups
records with exactly the same value.

