
Similarity Group By for Big Data Analytics
Faculty: Yasin Silva Students: Jeremy Starks, Emerson Cristal, Manuel Sandoval Madrigal, Diana Prado, Xavier Wallace

Arizona State University

Key properties of the single-round algorithm:

• We can increase the number of pivots (k)

such that all the partitions are small enough

to be processed in a single node.

• For the unlikely case that we still have a

large partition, we support additional

partitioning rounds.

Overall Algorithm:

• Execute algorithm (round 1)

• For each partition Pi

• If Pi can be processed in a single node,

then we do so

• Else, we save Pi in the distributed file

system (DFS)

• For each partition Pi saved into the DFS

• Execute a new round to re-partition Pi

The algorithm for additional rounds is very similar
to the first one, with the difference being that we
need to keep track of the history of flags for each
partition.

General Algorithm

Test Setup
1. Partition the data [Map]

• Duplicate the points in overlapping areas (each base

partition is extended by epsilon)

• Structure of each record: {RecordID, RecordContent,

AssignedPartition, BasePartition}

• BasePartition: This is the ID of the pivot that

is closest to the current record

• AssignedPartition: This is the ID of the pivot

associated to the current partition

2. For each partition Pi, cluster the points in Pi [Reduce]

• For each partition, we know the value of i by looking

at the AssignedPartition component of any record

• Structure of each cluster Cn: {SetOfPoints,[f1, f2, …,

fk]}

• Observe that the array has k elements, where k is

the number of pivots

• fs is a binary flag that is 1 if there is at least one

record X in the Cluster such that X.BasePartition

= s, 0 otherwise

3. For each partition Pi, output the clusters (without

duplicating clusters) [Reduce]

• For each Cluster Cn in partition Pi

• minFlag = index of minimum value in Cn.[f1, f2,

…, fk] that is 1

• If (i = minFlag) then output Cn, otherwise don’t

output it (it will be outputted somewhere else)

Datasets

1. Real dataset
• Source: YearPredictionMSD (UCI ML

Repository)
• Data type: numeric vector data (90D)
• Size (Scale Factor 1): 200K records

2. Synthetic dataset
Our generator enables the customization of:
• # of records per group and record repetition
• # of Scale Factors (SF) and # of records per SF
• Epsilon value
• Dimensionality
• Format: Line ID, Aggregation Value, Vector
• Size (Scale Factor 1): 200K records

Experiments

1. Execution time varying dataset size (SF1-SF5)
2. Execution time varying dimensionality (10D, 25D,

100D, 200D)
3. Execution time varying epsilon (1%-5%)

Algorithms

1. Implemented using Hadoop and MapReduce
2. Similarity Group-by (MR-SGB): proposed

similarity grouping operator
3. K-means (MR-Kmeans): standard clustering

algorithm

4. Group-by (MR-GB): standard non-similarity-based

database grouping operator

1) Tang, M., Tahboub, R., Aref, W., Atallah, M., Malluhi, Q., Ouzzani, M., Silva, Y. N. Similarity

Group-by Operators for Multi-dimensional Relational Data. IEEE Transactions on Knowledge and

Data Engineering (TKDE), 28, 2, pp 510-523, 2016.

2) Silva, Y. N., Aref, W., Ali. M. Similarity Group-by. In: ICDE (2009)

3) Silva, Y.N., Reed, J.M. Exploiting MapReduce-based similarity joins. In: SIGMOD (2012)

4) Silva, Y.N., Reed, J.M., Tsosie, L.M. MapReduce-based similarity join for metric spaces. In:

VLDB/Cloud-I (2012)

5) Vernica, R., Carey, M.J., Li, C. Efficient parallel set-similarity joins using MapReduce. In:

SIGMOD 2010 (2010)

6) Afrati, F.N., Sarma, A.D., Menestrina, D., Parameswaran, A., Ullman, J.D. Fuzzy joins using

MapReduce. In: ICDE (2012)

7) Metwally, A., Faloutsos, C. V-SMART-join: a scalable MapReduce framework for all-pair similarity

joins of multisets and vectors. In: VLDB (2012)

References

Algorithm for K Pivots

1. Implement Group-By, K-Means, and Similarity Group-By in
Apache Spark to compare the algorithms across the two popular
distributed computing frameworks.

2. Conduct thorough experimental evaluation using the generated real
and synthetic datasets across the two frameworks (Hadoop and
Spark).

3. Prepare a publication detailing the design, implementation details
and performance comparison of Similarity Group-By and
alternative algorithms.

9.0333

1.2167
0.4667

0

1

2

3

4

5

6

7

8

9

10

MR-Kmeans MR-SGB MR-GB

TI
M

E
IN

 M
IN

U
TE

S

ALGORITHM

MR-SGB performs significantly better
than K-means. Moreover, MR-SGB’s
execution time is only 2.59 times the

one of MR-GB, which only groups
records with exactly the same value.

Preliminary Results

K-means (k=10), SGB (eps=1, pivots=10), GB (count), dataset (2D,
small)

Motivation
The Problem

• Analyzing massive amounts of data is critical for

many commercial and scientific applications.

However, this task can require processing tens to

hundreds of terabytes of data.

• Big Data Systems like Apache Hadoop and Spark and

their MapReduce (MR) programming framework

enable analyzing very large datasets in a highly

parallel and scalable way.

• Grouping operations are among the most useful

operators for data processing and analysis.

General Considerations

1. A similarity group is defined as a set of points where

each point is within epsilon of each other.

2. We propose MR-SGB, a MapReduce-based algorithm

to efficiently identify similarity groups in large

datasets.

3. Our algorithm is based on partitioning the data into

smaller partitions. Each partitioning round uses a set of

special points named pivots. Each data point will be

associated with the group corresponding to its closest

pivot.

4. Even though the algorithm processes the data in

parallel over many nodes, it guarantees that each

similarity group is generated only once.

• Implemented and compared implemented algorithms using Apache

Hadoop

• Compared algorithms: MR-GB, MR-Kmeans, and MR-SGB

• All the algorithms were modified to accept the same input data format

Future WorkExample: Case of 2 Pivots

P0 P1

ε ε

Part1

Generated Partitions

Part0

Initial Dataset (2D space)

A BC D

G1
G2

G3

G4

G6
G7

P0

ε ε

A C D

G1
G2

G3

G4

G6

P1

ε ε

BC D

G2

G3

G4

G6
G7

G5

G5 G5

Partitioning and Generation of Similarity Groups

In partition Part0:

If group Then

Solely in A Generate

In A and C Generate

Solely in C Generate

In C and D Generate

Solely in D Ignore

Goals:

 Partition the initial dataset into two partitions such that

we can still identify all the similarity groups (G1-G7)

 Each similarity group should be generated in only one

partition

Solution (using two pivots/partitions):

 Partition the input using two pivots (P0 and P1) such that

each point belongs to the partition of its closest pivot

 Additionally, duplicate the points in the ε-windows (C

and D). Part0 = A+C+D, Part1 = C+D+B.

 Identify the similarity groups in each partition as follows:

 In partition Part1:

If group Then

Solely in C Ignore

In C and D Ignore

Solely in D Generate

In D and B Generate

Solely in B Generate

 In the example, similarity groups G1, G2, G3, and G4

are generated in Part0 while G5,G6, and G7 in Part1

