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Key properties of the single-round algorithm:

• We can increase the number of pivots (k) 

such that all the partitions are small enough 

to be processed in a single node.

• For the unlikely case that we still have a 

large partition, we support additional 

partitioning rounds.

Overall Algorithm:

• Execute algorithm (round 1)

• For each partition Pi

• If Pi can be processed in a single node, 

then we do so

• Else, we save Pi in the distributed file 

system (DFS)

• For each partition Pi saved into the DFS

• Execute a new round to re-partition Pi

The algorithm for additional rounds is very similar 
to the first one, with the difference being that we 
need to keep track of the history of flags for each 
partition.

General Algorithm

Test Setup
1. Partition the data [Map]

• Duplicate the points in overlapping areas (each base 

partition is extended by epsilon)

• Structure of each record: {RecordID, RecordContent, 

AssignedPartition, BasePartition}

• BasePartition: This is the ID of the pivot that 

is closest to the current record

• AssignedPartition: This is the ID of the pivot

associated to the current partition

2. For each partition Pi, cluster the points in Pi [Reduce]

• For each partition, we know the value of i by looking 

at the AssignedPartition component of any record 

• Structure of each cluster Cn: {SetOfPoints,[f1, f2, …, 

fk]}

• Observe that the array has k elements, where k is 

the number of pivots

• fs is a binary flag that is 1 if there is at least one 

record X in the Cluster such that X.BasePartition

= s, 0 otherwise

3. For each partition Pi, output the clusters (without 

duplicating clusters) [Reduce]

• For each Cluster Cn in partition Pi

• minFlag = index of minimum value in Cn.[f1, f2, 

…, fk] that is 1

• If (i = minFlag) then output Cn, otherwise don’t 

output it (it will be outputted somewhere else)

Datasets

1. Real dataset
• Source: YearPredictionMSD (UCI ML 

Repository)
• Data type: numeric vector data (90D)
• Size (Scale Factor 1): 200K records

2. Synthetic dataset
Our generator enables the customization of:
• # of records per group and record repetition
• # of Scale Factors (SF) and # of records per SF
• Epsilon value
• Dimensionality
• Format: Line ID, Aggregation Value, Vector
• Size (Scale Factor 1): 200K records

Experiments

1. Execution time varying dataset size (SF1-SF5)
2. Execution time varying dimensionality (10D, 25D, 

100D, 200D)
3. Execution time varying epsilon (1%-5%)

Algorithms

1. Implemented using Hadoop and MapReduce
2. Similarity Group-by (MR-SGB): proposed 

similarity grouping operator
3. K-means (MR-Kmeans): standard clustering 

algorithm

4. Group-by (MR-GB): standard non-similarity-based 

database grouping operator
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Algorithm for K Pivots

1. Implement Group-By, K-Means, and Similarity Group-By in 
Apache Spark to compare the algorithms across the two popular 
distributed computing frameworks.

2. Conduct thorough experimental evaluation using the generated real 
and synthetic datasets across the two frameworks (Hadoop and 
Spark). 

3. Prepare a publication detailing the design, implementation details 
and performance comparison of Similarity Group-By and 
alternative algorithms.
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MR-SGB performs significantly better 
than K-means. Moreover, MR-SGB’s 
execution time is only 2.59 times the 

one of MR-GB, which only groups 
records with exactly the same value.

Preliminary Results

K-means (k=10), SGB (eps=1, pivots=10), GB (count), dataset (2D, 
small)

Motivation 
The Problem

• Analyzing massive amounts of data is critical for 

many commercial and scientific applications. 

However, this task can require processing tens to 

hundreds of terabytes of data. 

• Big Data Systems like Apache Hadoop and Spark and 

their MapReduce (MR) programming framework 

enable analyzing very large datasets in a highly 

parallel and scalable way.

• Grouping operations are among the most useful 

operators for data processing and analysis.

General Considerations

1. A similarity group is defined as a set of points where 

each point is within epsilon of each other.

2. We propose MR-SGB, a MapReduce-based algorithm 

to efficiently identify similarity groups in large 

datasets.

3. Our algorithm is based on partitioning the data into 

smaller partitions. Each partitioning round uses a set of 

special points named pivots. Each data point will be 

associated with the group corresponding to its closest 

pivot. 

4. Even though the algorithm processes the data in 

parallel over many nodes, it guarantees that each 

similarity group is generated only once.

• Implemented and compared implemented algorithms using Apache 

Hadoop 

• Compared algorithms: MR-GB, MR-Kmeans, and MR-SGB

• All the algorithms were modified to accept the same input data format

Future WorkExample: Case of 2 Pivots
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Partitioning and Generation of Similarity Groups

In partition Part0:

If group       Then

Solely in A          Generate

In A and C        Generate

Solely in C        Generate

In C and D        Generate

Solely in D        Ignore

Goals:

 Partition the initial dataset into two partitions such that 

we can still identify all the similarity groups (G1-G7) 

 Each similarity group should be generated in only one 

partition

Solution (using two pivots/partitions):

 Partition the input using two pivots (P0 and P1) such that 

each point belongs to the partition of its closest pivot

 Additionally, duplicate the points in the ε-windows (C 

and D). Part0 = A+C+D, Part1 = C+D+B.

 Identify the similarity groups in each partition as follows:

        In partition Part1:

If group       Then

Solely in C        Ignore

In C and D        Ignore

Solely in D          Generate

In D and B        Generate

Solely in B          Generate

 In the example, similarity groups G1, G2, G3, and G4 

are generated in Part0 while G5,G6, and G7 in Part1  


