
Key properties of the single-round algorithm:

◦ We can increase the number of pivots (k) such that all

the partitions are small enough to be processed in a

single node

◦ For the unlikely case that we still have a large partition,

we will add a second level of partitioning
Algorithm:

◦ Execute algorithm (round 1)

◦ For each partition Pi

◦ If Pi can be processed in a single node, we do this

◦ Else, we save Pi in the distributed file system

◦ For each partition Pi that was saved

◦ Execute second-level algorithm (round 2)

The second level algorithm is similar to the first level one with
the difference that we need to keep track of the history of flags
for each partition.

1. Partition the data [Map]

◦ Duplicate the points in overlapping areas (each base partition is extended by epsilon)

◦ Structure of each record: {RecordID, RecordContent, AssignedPartition, BasePartition}

◦ BasePartition: This is the ID of the pivot that is closest to the current record

◦ AssignedPartition: This is the ID of the pivot associated to the current partition

2. For each partition Pi, cluster the points in Pi [Reduce]

◦ For each partition, we know the value of i by looking at the AssignedPartition component

of any record

◦ Structure of each cluster Cn: {SetOfPoints,[f1, f2, …, fk]}

◦ Observe that the array has k elements, where k is the number of pivots

◦ fs is a binary flag that is 1 if there is at least one record X in the Cluster such that

X.BasePartition = s, 0 otherwise

3. For each partition Pi, output the clusters (without duplicating clusters) [Reduce]

◦ For each Cluster Cn in partition Pi

◦ minFlag = index of minimum value in Cn.[f1, f2, …, fk] that is 1

◦ If (i = minFlag) then output Cn, otherwise don’t output it (it will be outputted

somewhere else)

1. A similarity group is defined as a set of points where

each point is within epsilon from any other point in the

group.

2. MR-SGB is proposed as:

1. An initial way to explore the distribution and clusters

in the data.

2. An alternative and more compact way to identify

pairs of similar objects (Similarity Join).

3. Our algorithm will be based on partitioning the data into

smaller partitions. The algorithm will partition the data

around a set of special points named pivots.

4. We will have one partition for each pivot.

5. A cluster could potentially be contained in multiple

partitions but it should be outputted/generated in only

one.

6. Our criteria will be to output the cluster in the partition

that corresponds to the minimum base partition of the

points contained in the cluster.

For instance if we have 4 pivots and the cluster has

points that belong to base partitions 2 and 3, then this

cluster should be outputted when Partition 2 is being

processed.

The Problem

◦ The analysis of massive amounts of data is a crucial

requirement in many commercial and scientific

applications.

◦ Analyzing these data sets may require processing tens

or hundreds of terabytes of data.

◦ Big Data Management Systems constitute an answer to

the requirements of processing massive datasets in a

highly scalable and distributed fashion.

◦ Grouping operations, which aggregate large datasets

and compute aggregation functions for each group, are

considered among the most useful operations for data

processing and analysis.

◦ Similarity groups contain similar records instead of

exact matches, and enable the composition of more

useful data analysis queries.

Our Contribution

◦ Design of a highly distributed and scalable algorithm

(MR-SGB) that performs similarity grouping on

massive datasets.

◦ Implementation of the proposed algorithm on Apache

Hadoop, a widely used open source Big Data system.

Motivation

General Considerations

MapReduce-based Similarity Grouping for Big Data
Faculty: Yasin Silva Students: Adelbert Wadsworth, Kyle Brown, Jason Reed (alumnus)

Arizona State University

Example: Case of 2 Pivots

Algorithm for k Pivots (First Round)

P0 P1

ε ε

Part1

Generated Partitions

Partitioning and Generation of Similarity Groups

Part0

In partition Part0:

If group Then

Solely in A Generate

In A and C Generate

Solely in C Generate

In C and D Generate

Solely in D Ignore

Initial Dataset (2D space)

A BC D

G1
G2

G3

G4

G6
G7

P0

ε ε

A C D

G1
G2

G3

G4

G6

P1

ε ε

BC D

G2

G3

G4

G6
G7

Goals:

 Partition the initial dataset into two partitions such that

we can still identify all the similarity groups (G1-G7)

 Each similarity group should be generated in only one

partition

Solution (using two pivots/partitions):

 Partition the input using two pivots (P0 and P1) such that

each point belongs to the partition of its closest pivot

 Additionally, duplicate the points in the ε-windows (C

and D). Part0 = A+C+D, Part1 = C+D+B.

 Identify the similarity groups in each partition as follows:

 In partition Part1:

If group Then

Solely in C Ignore

In C and D Ignore

Solely in D Generate

In D and B Generate

Solely in B Generate

 In the example, similarity groups G1, G2, G3, and G4

are generated in Part0 while G5,G6, and G7 in Part1

G5

G5 G5

General Algorithm (Two Rounds)

P0 P1

ε ε

Part1

Generated Partitions

Partitioning and Generation of Similarity Groups

Part0

In partition Part0:

If group Then

Solely in A Generate

In A and C Generate

Solely in C Generate

In C and D Generate

Solely in D Ignore

Initial Dataset (2D space)

A BC D

G1
G2

G3

G4

G6
G7

P0

ε ε

A C D

G1
G2

G3

G4

G6

P1

ε ε

BC D

G2

G3

G4

G6
G7

Goals:

 Partition the initial dataset into two partitions such that

we can still identify all the similarity groups (G1-G7)

 Each similarity group should be generated in only one

partition

Solution (using two pivots/partitions):

 Partition the input using two pivots (P0 and P1) such that

each point belongs to the partition of its closest pivot

 Additionally, duplicate the points in the ε-windows (C

and D). Part0 = A+C+D, Part1 = C+D+B.

 Identify the similarity groups in each partition as follows:

 In partition Part1:

If group Then

Solely in C Ignore

In C and D Ignore

Solely in D Generate

In D and B Generate

Solely in B Generate

 In the example, similarity groups G1, G2, G3, and G4

are generated in Part0 while G5,G6, and G7 in Part1

G5

G5 G5

