MapReduce-based Similarity Grouping for Big Data
Students: Adelbert Wadsworth, Kyle Brown, Jason Reed (alumnus)

Motivation

The Problem

- The analysis of massive amounts of data is a crucial requirement in many commercial and scientific applications.
- Analyzing these data sets may require processing tens or hundreds of terabytes of data.
- Big Data Management Systems constitute an answer to the requirements of processing massive datasets in a highly scalable and distributed fashion.
- Grouping operations, which aggregate large datasets and compute aggregation functions for each group, are considered among the most useful operations for data processing and analysis.
Similarity groups contain similar records instead of exact matches, and enable the composition of more useful data analysis queries.

Our Contribution

- Design of a highly distributed and scalable algorithm (MR-SGB) that performs similarity grouping on massive datasets.
- Implementation of the proposed algorithm on Apache Hadoop, a widely used open source Big Data system.

General Considerations

1. A similarity group is defined as a set of points where each point is within epsilon from any other point in the group.
2. MR-SGB is proposed as:
3. An initial way to explore the distribution and clusters in the data.
4. An alternative and more compact way to identify pairs of similar objects (Similarity Join).
5. Our algorithm will be based on partitioning the data into smaller partitions. The algorithm will partition the data around a set of special points named pivots.
6. We will have one partition for each pivot.
7. A cluster could potentially be contained in multiple partitions but it should be outputted/generated in only one.
8. Our criteria will be to output the cluster in the partition that corresponds to the minimum base partition of the points contained in the cluster.

For instance if we have 4 pivots and the cluster has points that belong to base partitions 2 and 3 , then this cluster should be outputted when Partition 2 is being processed.

General Algorithm (Two Rounds)

Key properties of the single-round algorithm:
We can increase the number of pivots (k) such that all the partitions are small enough to be processed in a single node

- For the unlikely case that we still have a large partition, we will add a second level of partitioning
Algorithm:
- Execute algorithm (round 1)
- For each partition P_{i}
- If P_{i} can be processed in a single node, we do this - Else, we save P_{i} in the distributed file system
- For each partition P_{i} that was saved
- Execute second-level algorithm (round 2)

The second level algorithm is similar to the first level one with the difference that we need to keep track of the history of flags for each partition.

Algorithm for k Pivots (First Round)

1. Partition the data [Map]

- Duplicate the points in overlapping areas (each base partition is extended by epsilon)
- Structure of each record: \{RecordID, RecordContent, AssignedPartition, BasePartition \}
- BasePartition: This is the ID of the pivot that is closest to the current record
- AssignedPartition: This is the $I D$ of the pivot associated to the current partition

2. For each partition P_{i}, cluster the points in P_{i} [Reduce]

- For each partition, we know the value of i by looking at the AssignedPartition component of any record
- Structure of each cluster $C_{n}:\left\{\right.$ SetOfPoints, $\left.\left[f_{l}, f_{2}, \ldots, f_{k}\right]\right\}$
\circ Observe that the array has k elements, where k is the number of pivots
f_{s} is a binary flag that is 1 if there is at least one record X in the Cluster such that X.BasePartition $=s, 0$ otherwise

3. For each partition P_{i}, output the clusters (without duplicating clusters) [Reduce]

- For each Cluster C_{n} in partition P_{i}
- minFlag $=$ index of minimum value in $C_{n}:\left[f_{1}, f_{2}, \ldots, f_{k}\right]$ that is 1
- If ($i=$ minFlag) then output C_{n}, otherwise don’t output it (it will be outputted somewhere else)

Example: Case of 2 Pivots

Partitioning and Generation of Similarity Groups
Goals:

- Partition the initial dataset into two partitions such that we can still identify all the similarity groups ($\mathrm{G}_{1}-\mathrm{G}_{7}$)
- Each similarity group should be generated in only one partition

Solution (using two pivots/partitions):

- Partition the input using two pivots $\left(P_{0}\right.$ and $\left.P_{1}\right)$ such that each point belongs to the partition of its closest pivot
- Additionally, duplicate the points in the ε-windows (C and D). Part0 $=A+C+D, P a r t 1=C+D+B$.
- Identify the similarity groups in each partition as follows:

In partition Part0:

If group Then

 Solely in A In A and C Generate Solely in C Generate In C and D Generate Solely in D IgnoreIn partition Part1:
If group Then Solely in C Ignore In C and D Ignore Solely in D Generate In D and B Generate Solely in B \quad Generate

- In the example, similarity groups $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$, and G_{4} are generated in Part0 while $\mathrm{G}_{5}, \mathrm{G}_{6}$, and G_{7} in Part1

