
Exploiting Database Similarity Joins for Metric Spaces
Yasin N. Silva, Spencer S. Pearson

Arizona State University

The Problem
• Similarity joins are a key tool in analyzing and

processing data.

• Some standalone Similarity Join algorithms

have been proposed.

• Little work on implementing Similarity Joins as

physical database operators has been done.

Our Contribution
• DBSimJoin, a general Similarity Join database

operator for metric spaces implemented inside

PostgreSQL.

• Non-blocking behavior

• Prioritizes early generation of results

• Fully supports the iterator interface

• We show how this operator can be used in

real-world data analysis scenarios:

• Identify similar images (vectors)

• Identify similar publications (strings)

Partitioning in DBSimJoin

Partitioning a Base Partition

Base Partitions Window-pair Partition

P0 P1

P0 P1

ε ε

t2

t3

P0_P1

T

A B

A B

t4

t6

t1 t5

t2

t3

t1 t4

t6

t5 t1 t5

Base Partitions
Window-pair

Partitions

Q0

Q1

Q1

Q0

Q0_Q1{2}

Q0_Q1{1}

P0_P1

A B A B

C

D

E

F

ε
ε

E

D

F

C
t1

t6

t2
t7

t8
t3

t1 t6

t2

t7

t8

t3

t2
t7

t1

t8

t5

t4 t9

t5

t4 t9

Partitioning a Window Partition

• The data is partitioned in

a generalized hyperplane

using a set of K pivots.

• Two types of partitions

exist: base partitions and

window-pair partitions.

• Each data record is

placed into the base

partition of its closest

pivot.

• Window partitions hold

data that is within ε of

the boundary between

partitions.

Main memory

Pivots

Partitions that are small

enough for in-memory SJ

...

Disk

...

Partitions that

require further

repartitioning

Q1

Q2

Q4

Q5

Qk

In-memory

Similarity Join

Result links

Disk

Partitions that

require further

repartitioning

...

...

P1...

P2...

Pk...

P2...

Pk...

Q2...

Qk...

Q3

DBSimJoin Rounds

• The first round

partitions the

input data. All

partitions too large

to be processed

immediately in-

memory are stored

on-disk.

• Additional rounds

re-partition

partitions that

have been stored

on disk.

• Partitions data in

successive rounds

until the partitions

are small enough to

be joined with a

nested loop.

• Partitioning is done

in a series of

rounds.

• The algorithm is

structured as a

finite-state machine

in order to support

the database

iterator interface.

Process Next

Base Partition

Process Next

Window-Pair

InMemSJBase

(outputs SJ

links)

Base partition can

be processed

in-memory

All base

partitions

processed

Partition Next

Large

Window-Pair

All window-

pairs

processed

Partition Next

Large Base

Partition

Unprocessed

base

partitions

exist

Window-pair can
be processed
in-memory

Unprocessed

window-pairs

exist

No window-
pairs exist

Hibernate

Partition

Base partition cannot
be processed in-memory

Hibernate

Window-Pair

Window-pair cannot
be processed
in-memory

InMemSJWin

(outputs SJ

window links)

Initial

Partitioning

No more base

partitions or

window-pairs exist

1

2

3

4

5

6

7

8

9

Performance DBSimJoin Algorithm

0

200

400

600

800

1000

1200

1400

1600

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 3 4

O
u

tp
u

t
Si

ze
 (

n
o

. o
f

lin
ks

)

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Scale Factor (SF)

SynthData(6D), Eps:2.5%

Output Size

Exec. Time - DBSimJoin

Exec. Time - RegDBOps

Increasing Scale Factor

Increasing Epslion

0

50

100

150

200

250

300

350

400

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.5 1.0 1.5 2.0 2.5

O
u

tp
u

t
Si

ze
 (

n
o

. o
f

lin
ks

)

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Epsilon (%)

SynthData(6D), SF1

Output Size

Exec. Time - DBSimJoin

Exec. Time - RegDBOps

