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The Problem 
• Similarity joins  are a key tool in analyzing and 

processing data. 

• Some standalone Similarity Join algorithms 

have been proposed. 

• Little work on implementing Similarity Joins as 

physical database operators has been done. 

Our Contribution 
• DBSimJoin, a general Similarity Join database 

operator for metric spaces implemented inside 

PostgreSQL. 

• Non-blocking behavior 

• Prioritizes early generation of results  

• Fully supports the iterator interface 

• We show how this operator can be used in 

real-world data analysis scenarios: 

• Identify similar images (vectors)  

• Identify similar publications (strings) 

Partitioning in DBSimJoin 

Partitioning a Base Partition 
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Partitioning a Window Partition 

• The data is partitioned in 

a generalized hyperplane 

using a set of K pivots. 

• Two types of partitions 

exist: base partitions and 

window-pair partitions. 

• Each data record is 

placed into the base 

partition of its closest 

pivot. 

• Window partitions hold 

data that is within ε of 

the boundary between 

partitions. 
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DBSimJoin Rounds 

• The first round 

partitions the 

input data.  All 

partitions too large 

to be processed 

immediately in-

memory are stored 

on-disk. 

• Additional rounds 

re-partition 

partitions that 

have been stored 

on disk. 

• Partitions data in 

successive rounds 

until the partitions 

are small enough to 

be joined with a 

nested loop. 

• Partitioning is done 

in a series of 

rounds. 

• The algorithm is 

structured as a 

finite-state machine 

in order to support 

the database 

iterator interface. 
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Performance DBSimJoin Algorithm 

0

200

400

600

800

1000

1200

1400

1600

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 3 4

O
u

tp
u

t 
Si

ze
 (

n
o

. o
f 

lin
ks

) 

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
o

n
d

s)
 

Scale Factor (SF) 
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Increasing Scale Factor 

Increasing Epslion 
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