
Similarity Grouping in Big Data Systems
Yasin N. Silva, Manuel Sandoval, Diana Prado, Xavier Wallace, Chuitian Rong

Arizona State University

General DSG Algorithm
1) Apache. Hadoop. https://hadoop.apache.org/.
2) Apache. Spark. https://spark.apache.org/.
3) J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large

clusters. In OSDI, 2004.
4) F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.

Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system
for structured data. ACM Trans. Comput. Syst., 26(2): 1–26, 2008.

5) H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The
Complete Book. Pear-son, 2nd Edition.

6) J. Gray, A. Bosworth, A. Layman, and H. Pirahesh: Data Cube: A Relational
Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. In
ICDE, 1996.

7) S. P. Lloyd. (1982). Least squares quantization in PCM. IEEE Trans. on
Information Theo-ry. 28 (2): 129–137, 1982

8) M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for
Discovering Clusters. In KDD, 1996.

9) Y. N. Silva, W. G. Aref, and M. Ali. Similarity Group-by. In ICDE, 2009.
10) M. Tang, R. Y. Tahboub, W. G. Aref, M. J. Atallah, Q. M. Malluhi, M. Ouzzani,

and Y. N. Silva. Similarity Group-by Operators for Multi-dimensional
Relational Data. IEEE Trans. on Knowledge and Data Engineering, 28(2):
510-523, 2016.

11) P. Berkhin. Survey of clustering data mining techniques. Accrue Software,
2002.

12) M. Li, G. Holmes, and B. Pfahringer. Clustering large datasets using Cobweb
and K-Means in tandem. The Australian Joint Conference on Artificial
Intelligence, 2004.

13) F. Farnstrom, J. Lewis., and C. Elkan: Scalability for clustering algorithms
revisited. SIGKDD Explorations Newsletter, 2 (1): 51–57, 2000.

14) S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for
large data-bases. In SIGMOD Record, 27(2): 73–84, 1999.

15) P. P. Anchalia, A. K. Koundinya and S. N. K. MapReduce Design of K-Means
Clustering Algorithm. In ICISA, 2013.

16) Apache. Spark Clustering. https://spark.apache.org/docs/latest/ml-
clustering.html.

17) Y. N. Silva, M. Arshad, and W. G. Aref. Exploiting Similarity-aware Grouping
in Decision Support Systems. In EDBT, 2009.

18) E. H. Jacox and H. Samet. Metric space similarity joins. ACM Trans.
Database Syst., 33(2):7:1–7:38, 2008.

ReferencesMain Algorithm
• DSG uses pivot-based data partitioning to distribute

and parallelize the computational tasks.
• The goal is to divide a large dataset into partitions

that can be processed independently and in parallel to
identify the similarity groups.

• The pivots are a subset of input data records and each
pivot is associated with a partition.

• Each input record is assigned to the partition
associated with its closes pivot. DSG also replicates
the records at the boundary between partitions.

• If a partition is small enough to be processed at a
single node, the algorithm will identify groups in that
partition.

• If this is not the case, the partition is stored for
further processing in a subsequent round

• DSG is a multi-round algorithm.
• In practice, we can increase the number of pivots

such that all the partitions are small enough to be
processed in a single round.

• DSG keeps track of the history of partitions assigned
to each record.

Overall Algorithm
• Partition the input data using a set of pivots
• For each partition Pi obtained in this round

• If Pi can be processed in a single node,
then we do so

• Else, we save Pi for further processing
• For each Pi saved for further processing

• Execute a new round to re-partition Pi

Example with Two Pivots

Motivation
The Problem
• Analyzing massive amounts of data is critical for many

commercial and scientific applications.

• Big Data Systems like Apache Hadoop and Spark
enable the analysis of very large datasets in a highly
parallel and scalable way.

• Grouping operations are among the most useful
operators for data processing and analysis.

• Simple grouping operations are fast but are limited to
equality-based grouping. More sophisticated grouping
techniques capture complex groups but often at a steep
increase in execution time.

• Previous work introduced the Similarity Grouping
(SG) operator which aims to have fast execution times
and capture complex groups. SG, however, was
proposed for single node relational database systems.

Our Contributions
1. We introduce the Distributed Similarity Grouping

(DSG) operator to efficiently identify similarity groups
in big datasets.

2. DSG supports the identification of similarity groups
where all the elements of a group are within a given
threshold (Ɛ) from each other.

3. DSG guarantees that each group is generated only once.

4. DSG can be used with any metric and supports many
data types.

5. We present guidelines to implement DSG in both
Apache Spark and Hadoop.

6. We extensively assess DSG’s performance and
scalability properties.

Experimental ResultsTest Setup
Algorithms (Implemented using Apache Hadoop and Spark)

1. Distributed Similarity Grouping (DSG): proposed
similarity grouping operator

2. K-means: standard clustering algorithm

3. Standard Grouping: standard non-similarity-based
grouping operator

Computer Cluster

• Fully distributed clusters in Google Cloud Platform.
• Default cluster configuration:

• One master
• Ten worker nodes

• Each node used the Cloud Dataproc 1.3 image and had 4
virtual CPUs, 15 GB of memory and 500 GB of disk space.

• Number of reducers per Hadoop job: 0.95 × (# of worker
nodes) × (# of vCPUs per node - 1)

• Number of splits per Spark job: 2 × (# of worker nodes) ×
(# of vCPUs)

Data

• We implemented a parametrized synthetic dataset generator.
• The datasets are composed of multidimensional vector-based

similarity groups separated by 2Ɛ.
• DSG and K-Means are expected to have the same output.
• Standard Grouping only identifies equality-based groups.

• Each data record consisted of an ID, an aggregation attribute,
and a multidimensional vector.

• Dataset Size (Scale Factor): 200,000 (SF1) – 1,000,000 (SF5)
• Dimensionality: 100D, 200D, 300D, 400D, and 500D
• The SF1 datasets contains about 13,000 similarity groups and

each of them contained 50 to 100 records. Each record was
duplicated between 1 and 3 times.

www.public.asu.edu/~ynsilva/SimCloud/

Increasing Dataset Size

Increasing Dimensionality

Increasing Dataset Size and Cluster Size

Increasing Number of Pivots and Memory Threshold

P0 P1

ε ε

Part1
Generated Partitions

Partitioning and Generation of Similarity Groups

Part0

In partition Part0:
If group Then
Solely in A Generate
In A and C Generate
Solely in C Generate
In C and D Generate
Solely in D Ignore

Initial Dataset (2D space)
A BC D

G1 G2

G3

G4

G6
G7

P0

ε ε

A C D

G1 G2

G3

G4

G6

P1

ε ε

BC D

G2

G3

G4

G6
G7

Goals:
• Partition the initial dataset into two partitions such that

we can still identify all the similarity groups (G1-G7)
• Each similarity group should be generated in only one

partition

Solution (using two pivots/partitions):
• Partition the input using two pivots (P0 and P1) such that

each point belongs to the partition of its closest pivot
• Additionally, duplicate the points in the ε-windows (C

and D). Part0 = A+C+D, Part1 = C+D+B.
• Identify the similarity groups in each partition as follows:
 In partition Part1:

If group Then
Solely in C Ignore
In C and D Ignore
Solely in D Generate
In D and B Generate
Solely in B Generate

• In the example, similarity groups G1, G2, G3, and G4
are generated in Part0 while G5,G6, and G7 in Part1

G5

G5 G5

Algorithm 1 DistSimGrouping
Input: inputData, eps, numPivots, memT Output: similarity
groups in inputData
pivots = selectPivots(numPivots, inputData)
//Partitioning - r: 〈ID, value, assignedPartitionSeq,
basePartitionSeq〉
for each record r in a chunk of inputData do
 Pc = getClosestPivot(r, pivots)
 output 〈Pc, r〉 //intermediate output
 for each pivot p in {pivots-Pc} do
 if (dist(r, p) - dist(r, Pc))/2 ≤ eps then
 output 〈p, r〉 //intermediate output
 end if
 end for
end for
//Shuffle: records with same key => partition
//Group Formation
for each partition Pi do
 if size of Pi > memT then
 store Pi for processing in subsequent round
 else
 Ci = findSimGroups(Pi, eps) //Ci:{Ci_k},
 //Ci_k:〈records, flags〉, flags:{Fm}, Fm:{fm_n}
 //Output Generation (without duplication)
 for each cluster Ci_k in partition Pi do
 generate minFlags //minFlags[o]={index
 //of 1st element in Ci.flags[o] equal to 1}
 aPartitionSeq = r.assignedPartitionSeq
 //r is any record in Pi
 if ∀o,minFlags[o]=aPartitionSeq[o] then
 output Ci_k //final output
 end if
 end for
 end if
end for

1
2
3
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22

23
24
25
26
27
28
29
30

	Slide Number 1

