Arizona State University

Motivation

The Problem

- Analyzing massive amounts of data is critical for many commercial and scientific applications.
- Big Data Systems like Apache Hadoop and Spark enable the analysis of very large datasets in a highly parallel and scalable way.
- Grouping operations are among the most useful operators for data processing and analysis.
- Simple grouping operations are fast but are limited to equality-based grouping. More sophisticated grouping techniques capture complex groups but often at a steep increase in execution time.
- Previous work introduced the Similarity Grouping (SG) operator which aims to have fast execution times and capture complex groups. SG, however, was proposed for single node relational database systems.

Our Contributions

- We introduce the Distributed Similarity Grouping (**DSG**) operator to efficiently identify similarity groups in big datasets.
- 2. DSG supports the identification of similarity groups where all the elements of a group are within a given threshold (E) from each other.
- DSG guarantees that each group is generated only once.
- DSG can be used with any metric and supports many data types.
- We present guidelines to implement DSG in both Apache Spark and Hadoop.
- 6. We extensively assess DSG's performance and scalability properties.

General DSG Algorithm

- DSG uses pivot-based data partitioning to distribute and parallelize the computational tasks.
- The goal is to divide a large dataset into partitions that can be processed independently and in parallel to identify the similarity groups.
- The pivots are a subset of input data records and each pivot is associated with a partition.
- Each input record is assigned to the partition associated with its closes pivot. DSG also replicates the records at the boundary between partitions.
- If a partition is small enough to be processed at a single node, the algorithm will identify groups in that partition.
- If this is not the case, the partition is stored for further processing in a subsequent round
- DSG is a multi-round algorithm.
- In practice, we can increase the number of pivots such that all the partitions are small enough to be processed in a single round.
- DSG keeps track of the history of partitions assigned to each record.

Overall Algorithm

- Partition the input data using a set of pivots
- For each partition P_i obtained in this round
- If P_i can be processed in a single node, then we do so
- Else, we save P_i for further processing
- For each P_i saved for further processing Execute a new round to re-partition P_i

- - One master

- (# of vCPUs)

Data

	Input: input
	groups in <i>inp</i>
1	pivots = selection
2	//Partitionin
3	basePartition
3	for each reco
4	$P_c = \text{getClo}$
5	output $\langle P_c,$
6	for each pi
7	if (dist(<i>r</i> ,
8	output
9	end if
10	end for
11	end for
12	//Shuffle: red
13	//Group For
14	for each part
15	if size of P
16	store P_i for
17	else
18	$C_i = \text{find}$
19	//C _{i_k} :{ <i>rea</i>
20	//Output
21	for each
22	generat
	//of 1st
23	aPartit
24	// <i>r</i> 1s an
25	if ∀o,m
26	outpu
27	end if
28	end for
29	ena II
30	ena for

Similarity Grouping in Big Data Systems Yasin N. Silva, Manuel Sandoval, Diana Prado, Xavier Wallace, Chuitian Rong Arizona State University

Test Setup

Algorithms (Implemented using Apache Hadoop and Spark)

Distributed Similarity Grouping (DSG): proposed similarity grouping operator

K-means: standard clustering algorithm

Standard Grouping: standard non-similarity-based grouping operator

Computer Cluster

• Fully distributed clusters in Google Cloud Platform. • Default cluster configuration:

• Ten worker nodes

• Each node used the Cloud Dataproc 1.3 image and had 4 virtual CPUs, 15 GB of memory and 500 GB of disk space. • Number of reducers per Hadoop job: $0.95 \times (\# \text{ of worker})$ nodes) \times (# of vCPUs per node - 1)

• Number of splits per Spark job: $2 \times (\# \text{ of worker nodes}) \times$

• We implemented a parametrized synthetic dataset generator. • The datasets are composed of multidimensional vector-based similarity groups separated by 2E.

• DSG and K-Means are expected to have the same output. • Standard Grouping only identifies equality-based groups. • Each data record consisted of an ID, an aggregation attribute, and a multidimensional vector.

• Dataset Size (Scale Factor): 200,000 (SF1) – 1,000,000 (SF5) • Dimensionality: 100D, 200D, 300D, 400D, and 500D

The SF1 datasets contains about 13,000 similarity groups and each of them contained 50 to 100 records. Each record was duplicated between 1 and 3 times.

Main Algorithm

Algorithm 1 *DistSimGrouping*

tData, *eps*, *numPivots*, *memT* **Output**: similarity putData

ectPivots(*numPivots*, *inputData*) **ng** - *r*: (*ID*, *value*, *assignedPartitionSeq*, nSea)

ord *r* in a chunk of *inputData* **do** osestPivot(r, pivots) $r\rangle$ //intermediate output ivot p in {pivots- P_c } do

 $(r, p) - \operatorname{dist}(r, P_c))/2 \le eps$ then $\langle p, r \rangle$ //intermediate output

ecords with same key => partition rmation

tition P_i **do** $P_i > memT$ then for processing in subsequent round

 $\operatorname{lSimGroups}(P_i, eps) //C_i: \{C_i \},$ *ecords*, *flags*, *flags*: $\{F_m\}$, F_m : $\{f_m, n\}$

t Generation (without duplication) cluster $C_{i,k}$ in partition P_i do te *minFlags* //*minFlags*[o]={index t element in C_i .flags[o] equal to 1} tionSeq = r.assignedPartitionSeq ny record in P_i

ninFlags[o]=aPartitionSeq[o] **then** ut $C_{i k}$ //final output

Generated Partitions

Experimental Results

Execution Time-Groups Identified - DSG - K-means - StandardGrouping

Increasing Dimensionality

Increasing Number of Pivots and Memory Threshold

Example with Two Pivots

Execution Time-Groups Identified - DSG - K-means - StandardGrouping

References

- Apache. Hadoop. https://hadoop.apache.org/.
- Apache. Spark. https://spark.apache.org/.
- 3) J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. In OSDI, 2004. 4) F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.
- Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2): 1–26, 2008. 5) H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The
- Complete Book. Pear-son, 2nd Edition.
- 6) J. Gray, A. Bosworth, A. Layman, and H. Pirahesh: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. In ICDE, 1996.
- S. P. Lloyd. (1982). Least squares quantization in PCM. IEEE Trans. on Information Theo-ry. 28 (2): 129–137, 1982
- M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering Clusters. In KDD, 1996.
- 9) Y. N. Silva, W. G. Aref, and M. Ali. Similarity Group-by. In ICDE, 2009. 10) M. Tang, R. Y. Tahboub, W. G. Aref, M. J. Atallah, Q. M. Malluhi, M. Ouzzani, and Y. N. Silva. Similarity Group-by Operators for Multi-dimensional Relational Data. IEEE Trans. on Knowledge and Data Engineering, 28(2): 510-523, 2016.
- 11) P. Berkhin. Survey of clustering data mining techniques. Accrue Software,
- 12) M. Li, G. Holmes, and B. Pfahringer. Clustering large datasets using Cobweb and K-Means in tandem. The Australian Joint Conference on Artificial Intelligence, 2004.
- 13) F. Farnstrom, J. Lewis., and C. Elkan: Scalability for clustering algorithms revisited. SIGKDD Explorations Newsletter, 2 (1): 51–57, 2000.
- 14) S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for large data-bases. In SIGMOD Record, 27(2): 73–84, 1999. 15) P. P. Anchalia, A. K. Koundinya and S. N. K. MapReduce Design of K-Means
- Clustering Algorithm. In ICISA, 2013. 16) Apache. Spark Clustering. https://spark.apache.org/docs/latest/mlclustering.html.
- 17) Y. N. Silva, M. Arshad, and W. G. Aref. Exploiting Similarity-aware Grouping in Decision Support Systems. In EDBT, 2009.
- 18) E. H. Jacox and H. Samet. Metric space similarity joins. ACM Trans. Database Syst., 33(2):7:1–7:38, 2008.