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ReferencesMain Algorithm
• DSG uses pivot-based data partitioning to distribute 

and parallelize the computational tasks.
• The goal is to divide a large dataset into partitions 

that can be processed independently and in parallel to 
identify the similarity groups.

• The pivots are a subset of input data records and each 
pivot is associated with a partition. 

• Each input record is assigned to the partition 
associated with its closes pivot. DSG also replicates 
the records at the boundary between partitions. 

• If a partition is small enough to be processed at a 
single node, the algorithm will identify groups in that 
partition. 

• If this is not the case, the partition is stored for 
further processing in a subsequent round 

• DSG is a multi-round algorithm.
• In practice, we can increase the number of pivots 

such that all the partitions are small enough to be 
processed in a single round.

• DSG keeps track of the history of partitions assigned 
to each record.

Overall Algorithm
• Partition the input data using a set of pivots
• For each partition Pi obtained in this round 

• If Pi can be processed in a single node, 
then we do so

• Else, we save Pi for further processing
• For each Pi saved for further processing

• Execute a new round to re-partition Pi

Example with Two Pivots

Motivation 
The Problem
• Analyzing massive amounts of data is critical for many 

commercial and scientific applications. 

• Big Data Systems like Apache Hadoop and Spark 
enable the analysis of very large datasets in a highly 
parallel and scalable way.

• Grouping operations are among the most useful 
operators for data processing and analysis.

• Simple grouping operations are fast but are limited to 
equality-based grouping. More sophisticated grouping 
techniques capture complex groups but often at a steep 
increase in execution time.

• Previous work introduced the Similarity Grouping 
(SG) operator which aims to have fast execution times 
and capture complex groups. SG, however, was 
proposed for single node relational database systems.

Our Contributions
1. We introduce the Distributed Similarity Grouping 

(DSG) operator to efficiently identify similarity groups 
in big datasets. 

2. DSG supports the identification of similarity groups 
where all the elements of a group are within a given 
threshold (Ɛ) from each other.

3. DSG guarantees that each group is generated only once. 

4. DSG can be used with any metric and supports many 
data types.

5. We present guidelines to implement DSG in both 
Apache Spark and Hadoop. 

6. We extensively assess DSG’s performance and 
scalability properties. 

Experimental ResultsTest Setup
Algorithms (Implemented using Apache Hadoop and Spark)

1. Distributed Similarity Grouping (DSG): proposed 
similarity grouping operator

2. K-means: standard clustering algorithm

3. Standard Grouping: standard non-similarity-based 
grouping operator

Computer Cluster

• Fully distributed clusters in Google Cloud Platform.
• Default cluster configuration:

• One master
• Ten worker nodes

• Each node used the Cloud Dataproc 1.3 image and had 4 
virtual CPUs, 15 GB of memory and 500 GB of disk space. 

• Number of reducers per Hadoop job: 0.95 × (# of worker 
nodes) × (# of vCPUs per node - 1) 

• Number of splits per Spark job: 2 × (# of worker nodes) ×
(# of vCPUs)

Data

• We implemented a parametrized synthetic dataset generator.
• The datasets are composed of multidimensional vector-based 

similarity groups separated by 2Ɛ.
• DSG and K-Means are expected to have the same output.
• Standard Grouping only identifies equality-based groups. 

• Each data record consisted of an ID, an aggregation attribute, 
and a multidimensional vector.

• Dataset Size (Scale Factor): 200,000 (SF1) – 1,000,000 (SF5) 
• Dimensionality: 100D, 200D, 300D, 400D, and 500D
• The SF1 datasets contains about 13,000 similarity groups and 

each of them contained 50 to 100 records. Each record was 
duplicated between 1 and 3 times.

www.public.asu.edu/~ynsilva/SimCloud/

Increasing Dataset Size

Increasing Dimensionality

Increasing Dataset Size and Cluster Size

Increasing Number of Pivots and Memory Threshold
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Partitioning and Generation of Similarity Groups
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In partition Part0:
If group       Then
Solely in A          Generate
In A and C        Generate
Solely in C        Generate
In C and D        Generate
Solely in D        Ignore
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Goals:
• Partition the initial dataset into two partitions such that 

we can still identify all the similarity groups (G1-G7) 
• Each similarity group should be generated in only one 

partition

Solution (using two pivots/partitions):
• Partition the input using two pivots (P0 and P1) such that 

each point belongs to the partition of its closest pivot
• Additionally, duplicate the points in the ε-windows (C 

and D). Part0 = A+C+D, Part1 = C+D+B.
• Identify the similarity groups in each partition as follows:
        In partition Part1:

If group       Then
Solely in C        Ignore
In C and D        Ignore
Solely in D          Generate
In D and B        Generate
Solely in B          Generate

• In the example, similarity groups G1, G2, G3, and G4 
are generated in Part0 while G5,G6, and G7 in Part1  

G5

G5 G5

Algorithm 1 DistSimGrouping
Input:  inputData, eps, numPivots, memT Output: similarity 
groups in inputData
pivots = selectPivots(numPivots, inputData)
//Partitioning -  r: 〈ID, value, assignedPartitionSeq, 
basePartitionSeq〉 
for each record r in a chunk of inputData do
   Pc = getClosestPivot(r, pivots)
   output 〈Pc, r〉 //intermediate output
   for each pivot p in {pivots-Pc} do
      if (dist(r, p) - dist(r, Pc))/2 ≤ eps then
         output 〈p, r〉 //intermediate output
      end if
   end for
end for
//Shuffle: records with same key => partition
//Group Formation
for each partition Pi do
   if size of Pi > memT then
      store Pi for processing in subsequent round
   else
      Ci = findSimGroups(Pi, eps) //Ci:{Ci_k}, 
      //Ci_k:〈records, flags〉, flags:{Fm}, Fm:{fm_n}
      //Output Generation (without duplication)
      for each cluster Ci_k in partition Pi do
         generate minFlags //minFlags[o]={index 
         //of 1st element in Ci.flags[o] equal to 1}
         aPartitionSeq = r.assignedPartitionSeq 
         //r is any record in Pi
         if ∀o,minFlags[o]=aPartitionSeq[o] then
            output Ci_k //final output
         end if
      end for
   end if
end for
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