

Faculty: Yasin Silva

- environments where programs are created by connecting blocks.

- dynamically gets its content executing a database query.
- different results when the underlying data changes.

Generating Bar Graphs

Group By: CID Aggr: count(SID)

Displaying data using a bar graph

Database: University DB Table Courses Data tables: Students, Courses Program: Shows the number of students registered in each course. A course is represented by a sequence of line segments. Each line segment represents a student in that course..

Sample Programs

Delivery Schedule en 🍋 click Allows custon Build-i Can w Data g Data Delivery t 33.48047 -112.238543 2 33.553427 -112.219815 3 33.596932 -112.169 33.568108 -112.083047 5 33.509225 -112.030551 = 🚺 to length of Delivery 1 to length of Grades item (ast of item i) of Delivery) + (112.432810) 480 / 0.8101 Phoenix 33.782050 - item 2 of item i of Delivery 360 / 0.505825 delete Hosted Open s Public Query Query Query Query Query Query Shows Suppo Tools results Uses t Web a **Displaying the delivery route** over a map of the city roject Latitude, Longitude Select CID = 'URE585' Course_Student Database: Delivery DB Data tables: Delivery_Schedule Program: This program uses a equation to scale the coordinates based on the size of the map window and moves to each point (x, y) to draw the path of the delivery schedule.

The Sound of Data Grades to Grades (A 3) (B 5) (C 1) (D 1) for 🧊 = 1 to item (ast 🗸 of item 🧊 of Grades) Playing different notes based on retrieved data Database: University DB Data tables: Course_Student Program: Represents the number of grades received by the students of a given class. Plays a beep for each student and different notes for different letter grades.

Creating Data-Driven Programs by Snapping Blocks

Students: Alaura Symons, Thomas Schenk, Anthony Nieuwenhuyse

Comparison with other Learning Tools

Feature	DBSnap++	SQLSnap	DataSnap	Bags	iDFQL	R
nentation technologies	HTML5,	HTML5,	HTML5,	HTML5,	Borland C++	Java
nemation technologies	JavaScript	JavaScript	JavaScript	JavaScript		
importing or connecting to	•	•	•	•	•	
n datasets	•		•			
ork without external data source	•		-	•		
raphs	•		•			
manipulation (insert, update,	•					
d Service	•			•		
source code	•	•				
y available	•	•		•	•	
ing Capabilities: Aggregations	•	•	•	٠	•	
ing Capabilities: Grouping	•	•		٠	•	
ing Capabilities: Joins	•	•		•	•	
ing Capabilities: Projection	•	•	•	•	•	
ing Capabilities: Selection	•	•	•	•	•	
ing Capabilities: Set Operations	•			•	•	
ing Capabilities: Views	•					
query results as query is built	•					
rts data-aware programs	•	•	•			
to explore intermediate query	•			•	•	
ree-based query representation	•				٠	
pplication	•	•	•	٠		

ALT Swing	1.	Y. N. Silva, A. Nieuwenhuyse, T. G. Schenk, A. Symons. <i>DBSnap++: Creating Data-driven Programs by Snapping</i> <i>Blocks</i> . The 23rd Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE), Larnaca, Cyprus, 2018. Accepted research paper presenting the results of this project.
	2.	Y. N. Silva, J. Chon. <i>Querying Databases by Snapping Blocks</i> . The 31st IEEE International Conference on Data Engineering (ICDE), Seoul, Korea, 2015
	3.	Y. N. Silva, J. Chon. <i>DBSnap: Learning Database Queries</i> <i>by Snapping Blocks</i> . The 46th ACM Technical Symposium on Computer Science Education (SIGCSE), Kansas City, Missouri, USA, 2015
•	4.	J. Gorman, S. Gsell, and C. Mayfield. <i>Learning relational algebra by snapping blocks</i> . In ACM SIGCSE, 2014.
•	5.	J. D. Hellmann. <i>DataSnap: Enabling Domain Experts and</i> <i>Introductory Programmers to Process Big Data in a</i> <i>Block-Based Programming Language</i> (Master's thesis). Virginia Tech, Virginia, USA, 2015.
•	6.	E. Modrow. <i>SQLsnap</i> !. http://snapextensions.uni- goettingen.de/.
•	7.	J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk. <i>Programming by choice: Urban youth learning</i> programming with scratch. In ACM SIGCSE, 2008.
•	8.	C. North and B. Shneiderman. <i>Snap-together visualization: Can users construct and operate coordinated visualizations?</i> Int. J. HumComput. Stud., 53(5):715–739, 2000.