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* On January 30, 2020, the World Health Organization (WHO) e o 3
declared the spread of the SARS-CoV-2 to be a public health T Anooons Elot w8
CIMCIZCNCY (Google Trends, 2021; World Health Organization, 2021), o~ . 100000 (“v'*“q\ﬂm g :k 2M g
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* The terms COVID-19 and coronavirus were developed to avoid any *’ Ty R Y RANE, Sy ANS - PV <

1000

cultural, social, regional, or ethnic associations when naming a
disease (World Health Organization, 2015)
* However, given the origins of the virus, COVID-19 was
frequently referred to in the media as the ‘Chinese virus’, the 1 Fig:5 Frequency of positive keywords use on Twitter
‘Wuhan virus’, and the ‘Asian virus’ (Darling-Hammond et al., 2020; Grover,
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positve —— Negativ Although there were more tweets containing positive
Harper, & Langton, 2020; Levenson, 2020; World Health Organization, 2020). . . Fig. 3 Logarithmic scale of the number of negative and positive tweets kCYWOI’dS, OVCI’&H, thCSC tweets were mainly
Fig.1 Count of negative tweets produced per country ,
* The use of these terms has led to an increase @ eresboraTne v The negative keywords were infrequent]y used generated between February 2021 and Apl'll 2021.
in in-person and online anti-Asian Prejudice | e i s ot e sty before March 2020, but there was a significant The most frequently used positive keywords were
during the pandemic (Ruiz, Edwards, & Lopez, 2021). | St e o | increase in that month, and peaking later in the stopasianhate™ and “hateisavirus™
. S lemenme e . Loy month. Positive keywords were used less
* In the United States, there was a 145% increase 1n reports of anti- w frequently throughout the timeline but had O SR
Asian hate crimes and physical violence to the police in 2020,as | major spikes in late February 2021. e |
compared to previous years (Levin & Grisham, 2021) . Viakechinapay |
* The Anti-Defamation League reported an 85% increase in anti- g T
Asian discrimination online (Anti-Defamation League, 2020). 300k = chinmedneopee j |
* Nguyen et al. (2020) found a 64.4% increase in anti-Asian racism B g o e |
on Twitter during the pandemic, while negative tweets towards éiiii Gbn;hf | e
other races remained stable. Fig.2 Count of positive tweets produced per country F ok chingchong n — — — -
* Asian individuals who have been subjected to racism report increased Globally, 4,521,457 distinct tweets i 2 %% %8 %8 % 8% % 8§ {E 5 5 7 et e e ot 8 rottret
levels of depression, anxiety, stress, and chronic diseases (Gee et al., 2009; contained at least one of the 12 $ £ %232 ° 239 248 82 2 2
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Fig.6 Percentages of original tweets and retweets for all keywords
Chinavirus

Chinesevirus

Vines et al. 2017).
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negative keywords, with most of this
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Current Study content generated in the U.S. and et viskechnarey e  We also assessed the proportion of keywords
India (USA = 233,705 tweets; IND = Fig.4 Frequency of negative keywords use on Twitter within original tweets and retweets.

* The aim of this study is to present exploratory and descriptive analyses 228,621 twepts). 6,600,469 distinct A <h " . . it d * Three of the four most frequently retweeted
on anti-Asian prejudice and counter-messaging on Twitter during a 15- twe.et.s contained at le?St one of the 5 foll SHp Pspl .ZS tmT nege: IVF tac Vi yf tcilccutrre keywords were positive, mmplying that tweets
month period of the COVID-19 pandemic and to comprehend the pos@ve keywords, with most (?f the “(Z:ho.wmgv. res,1, ¢ nM m}?lzp OS201r"1S“h Use Ot ] © eﬁn containing negative keywords may have been less
spread of racist content on Twitter during the pandemic. positive content also ge.nerated n the jiooE VITHS I VA o * m,(’)s POAEEt Y appealing to share (i.e., retweet). 88.02% of tweets

U.S., followed by Thailand (USA = used negative keyword was “ccpvirus,” followed by referencing the “stopasianhate” keyword were
* The study presents global figures that incorporate data on COVID-19 263,827 tweets; TH = 82,696 tweets). “chinavirus™ and “chinesevirus.” retweets.

cases with temporal trends 1n positive and negative tweets.
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* Using the Twitter Data Collection API, we * The total sample consisted of 13,008,053
queried tweets containing positive and tweets from 3,298,940 distinct users.  The present study investigated temporal and geographic trends in anti-Asian prejudice and counter-hate messages on Twitter in
negatlYe hashtags related  to ant1-As1ap Usi f toxt matchi loorith the 15 months after the World Health Organization declared COVID-19 a public health emergency. Our findings indicate that the
prejudice from January 30, 2020, to April Smﬁ gcll uzlzy fX e Hcllg ¢ gor(11 tm, qser(—i increased prevalence of anti-Asian prejudice during the early stages of the pandemic was a global phenomenon (x. Tan, R. Lee, and L.
30’ 2021 ) repo . © OCations an ,pre C ermlne, Ruppanner, “Profiling racial prejudice during COVID-19: Who exhibits anti-Asian sentiment in Australia and the United States?”, Australian Journal of Social Issues, vol. 6, ed. 5, 10.1002/ajs4.176. 2021).
ET——— T — locations were matched using the edit
acIst fasntags/Kneyworas OsItive nasntags/Kneyworas . . ° 1 » ” 1 » " ”
o ibiowiapon o pSTR ey distance metric (Cohen, 2022). Specifically, marked increases in anti-Asian hate on Twitter occurred during the months of February 2020 and March 2020.
#Chinavirus #commie #lamnotavarius * Our analyses also revealed geographic differences in the frequency of negative (anti-Asian) and positive (counter-hate)
#GobacktoChina — #Wuflu racismisavirus « All the data was collected according to Twitter content generated by Twitter users on a global scale.
#Chinesevirus #Chingchong #washthehate dat llecti deli d usi th
zChiT{eseplague ﬁl(\:/lake(?hinaPay fracismisavirus AaPEIl cotiection gu(li Zl?es an uslllng © propet By disaggregating the data according to tweet type (e.g., original tweet versus retweet), a more nuanced understanding was
g0o copvirus access provided to researchers (A. D. Dubey, : : : NS ) : - -
#Chinaliedpeopledied “The Health and Surveillnce, vol 6. ed. 4. 102196/19833. gained regarding the sharing of anti-Asian and counter-hate messages, including the ways and extent to which they are shared.

2020resurgence of cyber racism during the COVID19 pandemic and its
after effects: Analysis of sentiments and emotions in Tweets”, JMIR

* We sclected these hashtags based on a Public ). Limitations
review of relevant literature on anti-Asian
prejudice (Heetal,2021)and news publications
(Cava & Lam, 2020; Chiu, 2020; Shim, 2020), during the

 We refer to anti-Asian content as “negative”

o e * Only tweets containing at least one of the (English language) anti-Asian hashtags and keywords were queried.
and counter-hate content as “positive.

beginning of the pandemic. * Further research on anti-Asian content on Twitter 1s important because it's possible for content containing prejudice towards
Asians to be posted without utilizing one of the 13 chosen hashtags.
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