
Cloud scripts often contain common sub-

expressions (CSEs). 

 Initial aggregations are further aggregated or 

joined in several parts of  the script. 

A conventional optimizers will produce a plan 

that evaluates these expressions multiple times. 

 
 
  
 
 

Motivation 

R0 = EXTRACT A,B,C,D,E FROM " ...\test.log " 
USING LogExtractor; 

 

R = SELECT A,B,C,Sum(D) as S FROM R0     

    GROUP BY A,B,C; 

R1 = SELECT A,B,Sum(S) as S1  FROM R  

     GROUP BY A,B; 

R2 = SELECT B,C,Sum(S) as S2 FROM R  

     GROUP BY B,C; 

 

OUTPUT R1 TO "result1.out"; 

OUTPUT R2 TO "result2.out"; 
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Solution Overview 
The Problem 

Our Contribution 
We present a framework to correctly optimize 

cloud scripts that contain CSEs.  

CSEs are executed once and their results used 

by multiple consumers.  

The selection of  the best plan is performed in a 

cost-based fashion. 

A SCOPE Script 
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1. Identifying CSEs 
2. Recording 

Physical Properties 
3. Propagating information about shared 

groups and identifying LCAs 

Sequence

Output

GB(R)

GB(R1) GB(R2)

Output

Extract(R0)

A,B,C

A,B B,C

1

2

3 4

5 6

7

P1 P2 Pn...

4. Re-optimizing the query 
enforcing physical properties 

Handling Large Scripts Experimental Results 
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Conventional Optimization
Exploit. Comm. Subexpressions

Subexpression fingerprints are 

employed to quickly identify CSEs.  

A fingerprint is a highly compressed 

representation of  a subexpression. 

 At every shared node, we maintain the 

history of  the physical properties for 

which an optimization task is created. 

 The history of  properties is stored as 

a linked list at every shared node. 

 The information about shared groups is propagated bottom-up from the 

shared groups to the root.  

 The process also identifies, for each shared subexpression S, the least 

common ancestor group (LCA) of  the consumers of  S.  
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 This step re-optimizes the query enforcing physical 

properties at the shared groups. 

 When an LCA node G is found, the process re-

optimizes the subexpression rooted in G propagating 

a set of  physical properties to be enforced in the CSE. 

Exploiting Independent Shared Groups 

 If  multiple shared groups with the same LCA are 

independent, they can be re-optimized independently. 

Performing Promising Rounds Early 

 Shared groups are ranked based on potential 

repartitioning savings. 

 Property sets are ranked based on the number of  times 

they generated a best local plan during Phase 1. 
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Example - Required rounds: 

 {p1,q1}, {p2,q1}, …, {p8,q1} 

At this point we know best p (pbest) 

 {pbest,q2}, {pbest,q3}, …, {pbest,q8} 

15 rounds (instead of  64) 

 

Example – Generated Plans 
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Experimental Evaluation Results 
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FE, the fingerprint of  expression E 

rooted in R is: 

- If  R is an operation that directly 

reads from a data file, then: 

 

- Otherwise, 
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