
Cloud scripts often contain common sub-

expressions (CSEs).

 Initial aggregations are further aggregated or

joined in several parts of the script.

A conventional optimizers will produce a plan

that evaluates these expressions multiple times.

Motivation

R0 = EXTRACT A,B,C,D,E FROM " ...\test.log "
USING LogExtractor;

R = SELECT A,B,C,Sum(D) as S FROM R0

 GROUP BY A,B,C;

R1 = SELECT A,B,Sum(S) as S1 FROM R

 GROUP BY A,B;

R2 = SELECT B,C,Sum(S) as S2 FROM R

 GROUP BY B,C;

OUTPUT R1 TO "result1.out";

OUTPUT R2 TO "result2.out";

Different ways to repartition the
output of node 1

SCOPE Compiler

SCOPE Query

Exec Plan

Execution

SCOPE

Optimizer

Optimize query recording physical properties of shared

nodes

P
H

A
S

E

1

Identification of common sub-expressions

Propagate the information of shared nodes and identify LCAs

Re-optimize query enforcing physical properties at the

shared nodes

P
H

A
S

E

2

1

2

3

4

Solution Overview
The Problem

Our Contribution
We present a framework to correctly optimize

cloud scripts that contain CSEs.

CSEs are executed once and their results used

by multiple consumers.

The selection of the best plan is performed in a

cost-based fashion.

A SCOPE Script

Sequence

Output

GB(R)

GB(R1) GB(R2)

Output

Extract(R0)

A,B,C

A,B B,C

1

2

3 4

5 6

7

1. Identifying CSEs
2. Recording

Physical Properties
3. Propagating information about shared

groups and identifying LCAs

Sequence

Output

GB(R)

GB(R1) GB(R2)

Output

Extract(R0)

A,B,C

A,B B,C

1

2

3 4

5 6

7

P1 P2 Pn...

4. Re-optimizing the query
enforcing physical properties

Handling Large Scripts Experimental Results

0

10000

20000

30000

40000

50000

60000

70000

80000

S1 S2 S3 S4 LS1 LS2Es
ti

m
at

e
d

 c
o

st
 (

Es
t.

 c
o

st
/1

0
 f

o
r

LS
2

)

Script

Conventional Optimization
Exploit. Comm. Subexpressions

Subexpression fingerprints are

employed to quickly identify CSEs.

A fingerprint is a highly compressed

representation of a subexpression.

 At every shared node, we maintain the

history of the physical properties for

which an optimization task is created.

 The history of properties is stored as

a linked list at every shared node.

 The information about shared groups is propagated bottom-up from the

shared groups to the root.

 The process also identifies, for each shared subexpression S, the least

common ancestor group (LCA) of the consumers of S.

Sequence

Output Output Output

Join (RR)

GB (R1) GB (R2)

Spool

LCA(4,5)

4 5

4, 5

54

4, 5

4, 5

Extract (R0)1

3

4 5

7 8 9

6

10

3

3 3

3

3 3 3

3

GB (R)2

 This step re-optimizes the query enforcing physical

properties at the shared groups.

 When an LCA node G is found, the process re-

optimizes the subexpression rooted in G propagating

a set of physical properties to be enforced in the CSE.

Exploiting Independent Shared Groups

 If multiple shared groups with the same LCA are

independent, they can be re-optimized independently.

Performing Promising Rounds Early

 Shared groups are ranked based on potential

repartitioning savings.

 Property sets are ranked based on the number of times

they generated a best local plan during Phase 1.

Sequence

Output

Spool

LCA(7,8), LCA(9,10)

Output

Spool

GB (R1) GB (R2) GB (T2) GB (T1)

5 6

7 8 9 10

1311

15

Extract (R0)1 Extract (T0)2

p1 p2 q1 q2

Output12 Output14

p8... q8...

GB (R)3 GB (T)4

Example - Required rounds:

 {p1,q1}, {p2,q1}, …, {p8,q1}

At this point we know best p (pbest)

 {pbest,q2}, {pbest,q3}, …, {pbest,q8}

15 rounds (instead of 64)

Example – Generated Plans
Sequence

Output

(Parallel)

[result1.out]

Output

(Parallel)

[result2.out]

StreamAgg

(B, A)

StreamAgg

(C, B)

StreamAgg

(Global)

(B, A, C)

StreamAgg

(Global)

(C, B, A)

SortMerge

(B, A, C)

Repartition

(B, A)

SortMerge

(C, B, A)

Repartition

(C, B)

StreamAgg

(Local)

(B, A, C)

StreamAgg

(Local)

(C, B, A)

Sort (B, A, C) Sort (C, B, A)

Extract

(test.log)

Extract

(test.log)
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8) Sequence

Output

(Parallel)

[result1.out]

Output

(Parallel)

[result2.out]

StreamAgg

(B, A)

StreamAgg

(C, B)

SortMerge (B, A, C)

Repartition (B)

StreamAgg

(Local)

(B, A, C)

Sort (B, A, C)

Extract

(test.log)

Spool

StreamAgg (Global) (B, A, C)

Sort (C, B)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Experimental Evaluation Results

Conventional
optimization

Optimization exploiting
common subexpressions

1 1 1

1 1 3

1 2 2

2 2 2

1 1 1

1 1 3

1 2 2

2 2 2

1 1 1

1 1 3

1 2 2

2 2 2

A B C A B C

Partitioning

on {A,B,C}
Partitioning

on {B}

A B C

1

2

3

4

D

1

2

3

4

D

1

2

3

4

D

Sequence

Output

GB (R)

GB (R1) GB (R2)

Output

Extract (R0)1

3

4 5

6 7

8

LCA(4,5)

3

3
5

3
4

3
4

3
5

3
4, 5

Spool

2

Sequence

Output Output

Join (F1)

Spool

LCA(7,8)

Join (F2)

Spool

GB (R1) GB (R2) GB (T2) GB (T1)

5 6

7 8 9 10

1211

13 14

15

7 8 9 10

9, 10

7, 8 9, 10

7, 8 9, 10

Extract (R0)1 Extract (T0)2

5

5 5

5

7, 8

5

6

6 6

6

6

5 6

LCA(9,10)
Round 1: {(5,p1)}

Round 2: {(5,p2)}
Round 1: {(6,q1)}

Round 2: {(6,q2)}

{(5,p1)} {(5,p1)}

{(5,p1)}

{(6,q1)} {(6,q1)}

{(6,q1)}

p1 p2 q1 q2

{(5,p1)} {(6,q1)}

GB (R)3 GB (T)4

FE, the fingerprint of expression E

rooted in R is:

- If R is an operation that directly

reads from a data file, then:

- Otherwise,

. modEF R FileID N

. []
1

(. ()) mod
k

E R child i
i

F R OpID F N

