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Cyberbullying has become a widespread phenomenon among adolescents in part due to rapid increases in their social A — Post |
media usage. Studies on the negative consequences of cyberbullying underscore the importance of tools for detecting | | A — Non-Cyberbullying Comment
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cyberbullying instances. However, relatively little is known about the temporal nature of cyberbullying messages on social
media and how the frequency and timing of these messages relate to the identification and perceptions of the severity of
cyberbullying. In an exploratory study, we examined temporal aspects of cyberbullying messages for a set of Instagram

USers.
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Data & Analytic Strategy

Our initial dataset, obtained from Hosseinmardi and colleagues (University of Colorado),
consisted of 2,218 Instagram posts from users with public profiles. Each post contained at
least 15 comments, resulting in a total of 157,147 comments in the full dataset. In previous
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cyberbullying or not. Approximately 20% of posts were identified as containing cyberbullying / s i
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classified in the original study. To address this, we employed a bullying trace classifier (Xu et S e :

al., 2012) to identify cyberbullying at the level of each individual comment. That is, whereas sthere anyceruling i thenlin pos? Markyesf hereareneatvowrdsanor g _

Hosseinmardi et al. (2015) generated their dataset by manual (human) coding at the ‘post G T e e e S N D_ i
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level’, we added an automated method to identify cyberbullying at the ‘comment level’. Only
comments classified as cyberbullying with a value larger than .671 were identified as a cyberbullying message in the present study.
This criterion identified 31,023 cyberbullying comments, which represented approximately 20% of all available comments.

Finally, we identified 65 posts with less than two cyberbullying comments, which we excluded from the present study given our
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interest in temporal aspects of cyberbullying. Moreover, due to recording error in the date of some of the posts (i.e., the date of the R e (NN N --—
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first cyberbullying comment precedes the first recorded comment in the dataset), an additional 37 posts were excluded. g R R R A AR R -
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The model was trained and tested using 10-fold cross-
validation method for 5 times. The optimal prediction model
was achieved when mtry (i.e., number of variables randomly
sampled at each split) was 1 and ntree (i.e., number of trees to
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