
Exploiting Database Similarity Joins for Metric Spaces

Yasin N. Silva
Arizona State University

4701 W. Thunderbird Road
Glendale, AZ 85306, USA

ysilva@asu.edu

Spencer Pearson
Arizona State University

4701 W. Thunderbird Road
Glendale, AZ 85306, USA
sspearso@asu.edu

ABSTRACT
Similarity Joins are recognized among the most useful data
processing and analysis operations and are extensively used
in multiple application domains. They retrieve all data
pairs whose distances are smaller than a predefined thresh-
old ε. Multiple Similarity Join algorithms and implemen-
tation techniques have been proposed. They range from
out-of-database approaches for only in-memory and exter-
nal memory data to techniques that make use of standard
database operators to answer similarity joins. Recent work
has shown that this operation can be efficiently implemented
as a physical database operator. However, the proposed op-
erator only support 1D numeric data. This paper presents
DBSimJoin, a physical Similarity Join database operator
for datasets that lie in any metric space. DBSimJoin is a
non-blocking operator that prioritizes the early generation
of results. We implemented the proposed operator in Post-
greSQL, an open source database system. We show how this
operator can be used in multiple real-world data analysis
scenarios with multiple data types and distance functions.
Particularly, we show the use of DBSimJoin to identify sim-
ilar images represented as feature vectors, and similar publi-
cations in a bibliographic database. We also show that DB-
SimJoin scales very well when important parameters, e.g.,
ε, data size, increase.

1. INTRODUCTION
It is widely recognized that the move from exact semantics

of data and Boolean semantics of queries to imprecise and
approximate semantics of data and queries is one of the key
paradigm shifts in data management. This shift is fueled
in part by the recognition that many application scenarios
can significantly benefit from the identification of similar-
ities in the data. One of the most useful similarity-aware
data analysis operations is the Similarity Join (SJ), which
retrieves all data pairs whose distances are smaller than a
predefined threshold ε. Similarity Joins have been studied
and extensively used in multiple application domains, e.g.,

record linkage, multimedia applications and marketing anal-
ysis. Several Similarity Join algorithms and implementa-
tion techniques have been previously proposed. They range
from out-of-database approaches for only in-memory or ex-
ternal memory data [4, 7], to techniques that use standard
database operators to answer Similarity Joins [3]. Very little
work, however, has addressed the implementation of Simi-
larity Join as a first-class database operator. The work in
[9, 8] showed the feasibility of this approach but proposed
operators that support only 1D numeric data.

This paper presentsDBSimJoin, a physical Similarity Join
database operator for datasets that lie in any metric space.
DBSimJoin extends the previously proposed standalone (non
integrated with database engine) QuickJoin algorithm [7] by
adapting it to the database engine framework and integrat-
ing techniques to: (1) enable a non-blocking behavior, (2)
prioritize the early generation of results, and (3) fully sup-
port the iterator interface and its functions open, getNext,
and close. We implemented the proposed operator in Post-
greSQL [2], an open source database system. We show how
this operation can be used in multiple real-world data anal-
ysis scenarios with multiple data types and distance func-
tions. Particularly, we show the use of DBSimJoin to iden-
tify: (1) similar images represented as feature vectors, and
(2) publications in the DBLP bibliographic database with
similar titles. We show that DBSimJoin scales very well
when important parameters, e.g., ε, data size, and number
of dimensions, increase.

The implementation of Similarity Join as a physical database
operator has the following advantages: (1) SJ operators
can be interleaved with regular and similarity operators and
their results pipelined for further processing; (2) important
optimization techniques, e.g., pushing selection under join
and pre-aggregation, can be extended to the new operator
[9]; and (3) the implementation of SJ can reuse and extend
other operators and structures to handle large datasets.

This paper presents DBSimJoin and the guidelines to im-
plement it as an integrated component of a database system,
and describes the demonstration scenarios.

2. THE DBSimJoin OPERATOR
The Similarity Join (SJ) operation between two datasets

R and S is defined as R ◃▹θε(r,s) S = {⟨r, s⟩|θε(r, s), r ∈
R, s ∈ S}, where θε(r, s) represents the Similarity Join pred-
icate, i.e., dist(r, s) ≤ ε. The result pairs ⟨r, s⟩ are referenced
as links. Even though the tuples of relations R and S are
combined by DBSimJoin, each tuple is assumed to have an
attribute that identifies which relations the tuple belongs to.



Base Partitions Window-pair Partition

P0 P1

P0 P1

t2

t3

P0_P1

T

A B

A B

t4

t6

t1 t5

t2

t3

t1 t4

t6

t5 t1 t5

Figure 1: Repartitioning a base partition.

Base Partitions
Window-pair 

Partitions

Q0

Q1

Q1

Q0

Q0_Q1{2}

Q0_Q1{1}

P0_P1

A B A B

C

D

E

F

E

D

F

C
t1

t6

t2
t7

t8
t3

t1 t6

t2

t7

t8

t3

t2
t7

t1

t8

t5

t4 t9

t5

t4 t9

Figure 2: Repartitioning a window-pair partition.

DBSimJoin partitions the data until the partitions are
small enough to be processed by an in-memory SJ routine.
The overall process is divided into a sequence of rounds.
The initial round partitions the input data while any sub-
sequent round partitions the data of a previously generated
partition. Data partitioning is performed using a set of K
pivots (subset of the tuples to be partitioned). The process
generates two types of partitions. A base partition contains
all the records that are closer to a given pivot than to any
other pivot. A window-pair partition contains the records in
the boundary between two base partitions. In general, the
window-pair records are a superset of the records whose dis-
tance to the hyperplane that separates the base partitions
is at most ε. Such hyperplane does not always explicitly
exist in a metric space. Instead, the hyperplane is implicit
and known as generalized hyperplane. Since the distance of
a record t to the generalized hyperplane between two par-
titions with pivots P0 and P1 cannot always be computed
exactly, a lower bound of the distance is used [6]:

gen hyperplane dist(t, P0, P1) = (dist(t, P0)−dist(t, P1))/2

Processing the window-pair partitions guarantees the iden-
tification of the links between records that belong to differ-
ent base partitions. Figure 1 represents the repartitioning
of a base partition using two pivots. The SJ links in T is
the union of the links in P0 and P1, and the links in P0 P1

where one element belongs to window A and the other one to
window B. We refer to this last type of links as window links.
Figure 2 represents the repartitioning of a window-pair par-
tition P0 P1. The set of window links in P0 P1 is the union
of the window links in Q0, Q1, Q0 Q1{1} and Q0 Q1{2}.
Note that windows C and F do not form a window-pair par-
tition because their window links are a subset of the window
links in Q0. Similarly, the window links between E and D
are a subset of the window links in Q1. Rounds that iden-
tify all the links in the input data are referred to as base
rounds. Rounds that identify only the window links, i.e.,
links between records that correspond to different previous
partitions, are referred to as window-pair rounds.

While DBSimJoin’s partitioning is conceptually similar to
the one of QuickJoin [7], DBSimJoin is a non-blocking op-
erator, uses a sequence of rounds that prioritizes the early
generation of results and fully supports the iterator inter-
face. The remaining part of this section presents guidelines
to implement DBSimJoin inside the query engine of DBMSs.

2.1 The Parser and the Planner
To add support for Similarity Joins in the parser, the raw-

parsing grammar rules, e.g., yacc rules in PostgreSQL, are
extended to recognize the syntax of the new SJ predicates.
The parse and query tree data structures are extended to
include the information of the new operator, i.e., type of join,
value of ε and distance function. The routines in charge of
transforming the parse tree into the query tree are updated
accordingly to process the new fields in the parse tree. Our
implementation support the following SJ syntax.

SELECT R.r, S.s FROM R, S

WHERE R.r WITHIN <ε> OF S.s USING <dist_function>

In the planner, a new plan node is created for the DB-
SimJoin operator. This node is similar to the regular join
node but stores also information about ε and the distance
function. If a query has multiple SJ predicates, they are pro-
cessed one at a time, i.e., multiple SJ nodes are pipelined.

2.2 The Executor
The main DBSimJoin’s executor routine is presented in

Algorithm 1. The routine first creates two lists that will keep
track of the base and window-pair partitions (line 1). Each
partition is assigned a certain space in memory (memT ). If
a partition needs to grow beyond the assigned space, the
partition is stored on disk and part of the memory space as-
signed to this partition is used as a buffer. The routine par-
titions the initial input data (R∪ S) into base and window-
pair partitions (line 2). The main loop in the algorithm will
be executed while there is at least one base partition that
needs to be processed (lines 3-28). In each iteration, the
routine processes all the base partitions executing Inmem-
orySimJoin to identify SJ links in small partitions (line 6)
and hibernating larger partitions, i.e., transferring any in-
memory data to disk (line 8). Then, the routine processes
the window-pair partitions (and their sub-partitions) until
all their SJ links have been produced (lines 11 to 23). The
routine iteratively (1) processes all the current window-pair
partitions executing InmemorySimJoinWin in the case of
small partitions (line 14) and hibernating larger partitions
(line 16), and (2) gets the first window-pair partition that
needs further processing and repartitions it calling Parti-
tionWinPairPart (lines 19-22). When all the window-pair



Algorithm 1 DBSimJoin(R, S, eps, numPiv, memT )

Input: R and S (input datasets), eps (epsilon), numPiv
(number of pivots), memT (memory threshold)

Output: all the results of the Similarity Join operation
R ◃▹θε(r,s) S

1. create basePList and winPairPList
2. PartitionBasePart(R∪S, basePList, winPairPList, eps,

numPiv)
3. while basePList.size> 0 do
4. for each partition P of basePList do
5. if P ≤ memT then
6. InmemorySimJoin(P, eps)
7. else
8. HibernatePartition(P )
9. end if

10. end for
11. while winPairPList.size> 0 do
12. for each partition W of winPairPList do
13. if W ≤ memT then
14. InmemorySimJoinWin(W, eps)
15. else
16. HibernatePartition(W )
17. end if
18. end for
19. if winPairPList.size> 0 then
20. W ← winPairPList.getFirst()
21. PartitionWinPairPart(W , winPairPList, eps,

numPiv)
22. end if
23. end while
24. if basePList.size> 0 then
25. P ←basePList.getFirst()
26. PartitionBasePart(P , basePList, winPairPList,

eps, numPiv)
27. end if
28. end while
29. delete basePList and winPairPList

partitions have been fully processed, the routine gets the
first base partition that needs further processing and repar-
titions it calling PartitionBasePart (lines 24-27). After this
step, the main while loop iterates again. PartitionBasePart
and PartitionWinPairPart update the partition lists as fol-
lows: base partitions generated in a base round are added to
basePList, all other partitions are added to winPairPList.
Unlike QuickJoin, the main routine prioritizes the early

generation of links. After any partitioning step, the algo-
rithm processes first all the partitions that can be solved
in-memory. The routine has the potential to produce re-
sult links starting at the first round. This behavior enables
the support of the iterator interface and its getNext function.
The algorithm also prioritizes the processing of window-pair
partitions before base partitions. This is done to reduce the
number of partitions that the routine needs to keep track
of. Window-pair partitions are in general smaller than base
partitions. Consequently, in general, it takes less time to
reach the point where they can be processed in memory.
InmemorySimJoin and InmemorySimJoinWin are in-memory

routines to find SJ links and window links, respectively.
They are implemented using a variation of the Quickjoin
algorithm [7] that iteratively partitions the data in memory
until the partitions are small enough to solve the SJ using a

Main memory

Pivots

Partitions that are small 

enough for in-memory SJ

...

Disk

...

Partitions that 

require further 

repartitioning

Q1

Q2

Q4

Q5

Qk

In-memory

Similarity Join

Result links

Disk

Partitions that 

require further 

repartitioning

...

...

P1...

P2...

Pk...

P2...

Pk...

Q2...

Qk...

Q3

Figure 3: Round I.

nested loop join. These routines are also implemented using
a non-blocking approach to minimize the time to produce
the next result link.

Figure 3 represent the processing performed by the main
routine in a generic round I. The round repartitions P1.
Some generated partitions are small enough to be processed
by the in-memory SJ routines , e.g., Q1, Q3, Q4 and Q5,
the remaining ones are stored on disk, e.g., Q2 and Qk.

DBSimJoin’s routines are realized in a way that allows
generating links one at a time, i.e., using the iterator in-
terface and its functions open, getNext, and close. Further-
more, DBSimJoin is a non-blocking operator. That is, it
does not require the full generation of results before it can
start reporting results. The open routine initializes data
structures and computes the value of the number of pivots
based on the available memory. The close routine deletes
all the temporary data structures. The getNext routine is
implemented in the fashion of a state machine that uses the
states and transitions presented in Figure 4. States that
produce results are marked in gray. When getNext is called
in the DBSimJoin operator, the routine transitions over the
states until it produces the next tuple. The system keeps
track of the current state and other required information to
resume execution when the next getNext is invoked. The
states InMemSJBase and InMemSJWin (3 and 7) represent
the in-memory SJ routines. These two routines are also im-
plemented using a state machine approach to further reduce
the time to produce the next link. The states and transi-
tions of these routines are similar to the ones of getNext but
use nested loop join instead of InMemSJBase and InMem-
SJWin, and do not hibernate data.

3. DEMONSTRATION SCENARIOS
The demonstration of DBSimJoin will be performed us-

ing our implementation in PostgreSQL 8.2.4. The demo user
will be able to interactively run arbitrary SJ queries using
the syntax presented in Section 2.1. The user will also be
able to configure and run SJ queries in two particular real-
world data analysis scenarios using multiple data types and
distance functions. In each demonstration scenario, the ex-
ecution time of DBSimJoin will be compared to the ones of
alternative approaches. Furthermore, we will show how the
different approaches scale when important parameters, e.g.,
ε, data size and number of dimensions, increase. To facili-
tate the understanding of the inner workings of SJ queries,



Process Next 

Base Partition

Process Next 

Window-Pair

InMemSJBase 

(outputs SJ 

links)

Base partition can

be processed

in-memory

All base 

partitions

processed

Partition Next 

Large 

Window-Pair

All window-

pairs

processed

Partition Next 

Large Base 

Partition

Unprocessed

base

partitions

exist

Window-pair can 

be processed 

in-memory

Unprocessed

window-pairs

exist

No window-

pairs exist

Hibernate

Partition

Base partition cannot

be processed in-memory

Hibernate

Window-Pair

Window-pair cannot

be processed

in-memory

InMemSJWin 

(outputs SJ 

window links)

Initial

Partitioning

No more base

partitions or

window-pairs exist

1

2

3

4

5

6

7

8

9

Figure 4: DBSimJoin’s GetNext.

we will show execution statistics, query plans and anima-
tions of the state machine-based DBSimJoin algorithm.

3.1 Identifying Similar Images
In this scenario, DBSimJoin is used to identify similar

images in the Corel image collection [5] as shown in Fig-
ure 5. The scenario uses two different datasets: ColorMo-
ments and CoOccurrenceTexture. Both dataset have 68,040
records each (scale factor 1). Each record of ColorMoments
is a 9D feature vector with components in the range [-4.8 -
4.4]. Each vector contains the following values: the mean,
standard deviation, and skewness for each of H, S and V in
the HSV color space. Each record of CoOccurrenceTexture
is a 16D feature vector. CoOccurrenceTexture was generated
converting the images to 16 gray-scale images. Each vector
contains the following values: the Second Angular Moment,
Contrast, Inverse Difference Moment, and Entropy in 4 di-
rections (horizontal, vertical, and two diagonal directions).
We use the Euclidean distance function to measure the sim-
ilarity between images. The queries in this scenario show
that DBSimJoin significantly outperforms queries that get
similar results using only regular, i.e., non-similarity, oper-
ators.

3.2 Identifying Similar Publications
In this scenario, DBSimJoin queries are used to iden-

tify publications with similar titles in the DBLP biblio-
graphic dataset [1]. The scale factor 1 dataset has 10,000
records. The title of each publication record is a string of
7 to 342 characters. The Levenshtein distance function is
used to measure the similarity between publication titles.

Figure 5: Finding similar images in ColorMoments.

The queries in this scenario show that DBSimJoin performs
significantly better than q-gram based techniques [3].

4. CONCLUSIONS
Similarity Join is recognized as one of the most useful

data analysis operations. While multiple implementation
techniques have been proposed for this operation, very little
work has addressed its study as a physical database opera-
tor. This paper presents DBSimJoin, a physical Similarity
Join database operator for any dataset that lies in a met-
ric space. We implemented the proposed operator in Post-
greSQL and show how this operator can be used in multiple
real-world data analysis scenarios with multiple data types
and distance functions. Particularly, we show the use of DB-
SimJoin to identify similar images and similar publications.
We show that DBSimJoin scales very well when important
parameters increase.

5. REFERENCES
[1] Dblp bibliography.

http://www.informatik.uni-trier.de/~ley/db/.

[2] Postgresql. http://www.postgresql.org/.

[3] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In ICDE,
2006.

[4] V. Dohnal, C. Gennaro, and P. Zezula. Similarity join
in metric spaces using ed-index. In Database and Expert
Systems Applications, volume 2736 of Lecture Notes in
Computer Science, pages 484–493. 2003.

[5] A. Frank and A. Asuncion. UCI machine learning
repository. http://archive.ics.uci.edu/ml, 2010.

[6] G. R. Hjaltason and H. Samet. Index-driven similarity
search in metric spaces (survey article). ACM Trans.
Database Syst., 28:517–580, December 2003.

[7] E. H. Jacox and H. Samet. Metric space similarity joins.
ACM Trans. Database Syst., 33:7:1–7:38, June 2008.

[8] Y. N. Silva, A. M. Aly, W. G. Aref, and P.-A. Larson.
Simdb: a similarity-aware database system. In ACM
SIGMOD, 2010.

[9] Y. N. Silva, W. G. Aref, and M. H. Ali. The similarity
join database operator. In ICDE, 2010.


