
SIMILARITY JOIN FOR BIG GEOGRAPHIC DATA
YASIN SILVA, JASON REED, LISA TSOSIE, TIMOTHY MATTI, KYLE GERVAIS

ARIZONA STATE UNIVERSITY

The Problem

• Cloud-based systems are crucial to
processing and analyzing large
amounts of data

• Similarity Joins (SJ) are a key data
processing and analysis tool

• Very little work on Similarity Joins
has been done for big geographic
data

Our Contribution

• We propose MRSimJoin –a
MapReduce-based algorithm to
efficiently solve the SJ problem

• The algorithm is general enough to
be used with data that lies in any
metric space

• Our focus is on the study of this
operation with big geographic data

• Thorough evaluation of performance
and scalability with real world and
synthetic geographic data sets

Input/Intermediate Data

Map Map Map

Reduce Reduce Reduce

Shuffle

Map

Reduce

These partitions require

further repartitioning

Distributed File System

...

Final Output

Pivots

Node 1 Node 2 Node 3

Pivots Pivots

This partition was small

enough to find the links

on a single node

• MRSimJoin iteratively partitions the
data into smaller partitions until each
partition is small enough to be
efficiently processed by a single-node
SJ routine

• This process is done in multiple
rounds, each corresponding to a
MapReduce job

• Each round outputs result links and
intermediate data requiring further
partitioning

• Data partitioning is performed using a set of K pivots (conceptually similar
to QuickJoin), which are a random subset of the records to be partitioned

• The process generates two types of partitions: base partitions and window-
pair partitions
1)A base partition contains all the records that are closer to a given pivot

than to any other pivot
2)A window-pair partition contains the records in the boundary between

two base partitions

Tests run over 2 million (SF1) records

Increasing Epsilon

Increasing Scale Factor

Base Partitions Window-pair
Partition

P0 P1 P0_P1

A B

P0 P1

ε ε

A B

T

• Geographic data uses latitude (φ) and
longitude (λ) coordinates to represent
a location on a sphere

• There are several methods of
calculating distance between two
points

• Euclidean Distance
• Great Circle Distance
• Tunnel Distance

• This presentation considers the case of
Euclidean Distance on a plane where a
spherical earth is projected using
equirectangular projection

• Euclidean Distance is fast to compute
and accurate at small distances

• Given two points
• r1 = (φ1,λ1)
• r2 = (φ2,λ2)

• The Euclidean Distance between them
is as follows:

𝑔𝑒𝑜𝐷𝑖𝑠𝑡(𝑟1, 𝑟2) = 𝑅 (∆𝜑)
2+(cos(𝜑𝑚)∆𝜆)

2

0

20000000

40000000

60000000

80000000

100000000

120000000

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5

O
u

tp
u

t
S
iz

e
 (

n
o

.
o

f
lin

k
s)

E
x
e

c
u

ti
o

n
 T

im
e

 (
se

c
o

n
d

s)

Epsilon (miles)

GeoNames, SF1Output Size

MRSimJoin

MRThetaJoin

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5

O
u

tp
u

t
S
iz

e
 (

n
o

.
o

f
lin

k
s)

E
x
e

c
u

ti
o

n
 T

im
e

 (
se

c
o

n
d

s)

Scale Factor (SF)

GeoNames, Eps:2
Output Size

MRSimJoin

MRThetaJoin

