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The Problem

• Cloud-based systems are crucial to 
processing and analyzing large 
amounts of data

• Similarity Joins (SJ) are a key data 
processing and analysis tool

• Very little work on Similarity Joins 
has been done for big geographic 
data

Our Contribution

• We propose MRSimJoin –a 
MapReduce-based algorithm to 
efficiently solve the SJ problem

• The algorithm is general enough to 
be used with data that lies in any 
metric space

• Our focus is on the study of this 
operation with big geographic data

• Thorough evaluation of performance 
and scalability with real world and 
synthetic geographic data sets
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• MRSimJoin iteratively partitions the 
data into smaller partitions until each 
partition is small enough to be 
efficiently  processed by a single-node 
SJ routine

• This process is done in multiple 
rounds, each corresponding to a 
MapReduce job

• Each round outputs result links and 
intermediate data requiring further 
partitioning

• Data partitioning is performed using a set of K pivots (conceptually similar 
to QuickJoin), which are a random subset of the records to be partitioned

• The process generates two types of partitions: base partitions and window-
pair partitions
1)A base partition contains all the records that are closer to a given pivot 

than to any other pivot
2)A window-pair partition contains the records in the boundary between 

two base partitions

Tests run over 2 million (SF1) records
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• Geographic data uses latitude (φ) and 
longitude (λ) coordinates to represent 
a location on a sphere

• There are several methods of 
calculating distance between two 
points

• Euclidean Distance
• Great Circle Distance
• Tunnel Distance

• This presentation considers the case of 
Euclidean Distance on a plane where a 
spherical earth is projected using 
equirectangular projection

• Euclidean Distance is fast to compute 
and accurate at small distances

• Given two points 
• r1 = (φ1,λ1)
• r2 = (φ2,λ2)

• The Euclidean Distance between them 
is as follows:

𝑔𝑒𝑜𝐷𝑖𝑠𝑡(𝑟1, 𝑟2) = 𝑅 (∆𝜑)
2+(cos(𝜑𝑚)∆𝜆)
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