
Similarity Grouping for Big Data – Experimental Evaluation
Faculty: Yasin Silva Students: Manuel Sandoval Madrigal, Diana Prado, Xavier Wallace

Arizona State University

General Similarity
Grouping Algorithm 1. Partition the data [Map]

• Duplicate the points in overlapping areas (each
base partition is extended by epsilon)

• Structure of each record: {RecordID,
RecordContent, AssignedPartition,
BasePartition}

• BasePartition: This is the ID of the pivot
that is closest to the current record

• AssignedPartition: This is the ID of the
pivot associated to the current partition

2. For each partition Pi, cluster the points in Pi [Reduce]
• For each partition, we know the value of i by

looking at the AssignedPartition component of
any record

• Structure of each cluster Cn: {SetOfPoints,[f1, f2,
…, fk]}
• Observe that the array has k elements, where k

is the number of pivots
• fs is a binary flag that is 1 if there is at least

one record X in the Cluster such that
X.BasePartition = s, 0 otherwise

3. For each partition Pi, output the clusters (without
duplicating clusters) [Reduce]

• For each Cluster Cn in partition Pi
• minFlag = index of minimum value in Cn.[f1,

f2, …, fk] that is 1
• If (i = minFlag) then output Cn, otherwise

don’t output it (it will be outputted somewhere
else)

1) Tang, M., Tahboub, R., Aref, W., Atallah, M.,
Malluhi, Q., Ouzzani, M., Silva, Y. N. Similarity
Group-by Operators for Multi-dimensional
Relational Data. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 28, 2, pp 510-523,
2016.

2) Silva, Y. N., Aref, W., Ali. M. Similarity Group-by.
In: ICDE (2009)

3) Silva, Y.N., Reed, J.M. Exploiting MapReduce-
based similarity joins. In: SIGMOD (2012)

4) Silva, Y.N., Reed, J.M., Tsosie, L.M. MapReduce-
based similarity join for metric spaces. In:
VLDB/Cloud-I (2012)

5) Vernica, R., Carey, M.J., Li, C. Efficient parallel
set-similarity joins using MapReduce. In:
SIGMOD 2010 (2010)

6) Afrati, F.N., Sarma, A.D., Menestrina, D.,
Parameswaran, A., Ullman, J.D. Fuzzy joins using
MapReduce. In: ICDE (2012)

7) Metwally, A., Faloutsos, C. V-SMART-join: a
scalable MapReduce framework for all-pair
similarity joins of multisets and vectors. In: VLDB
(2012)

ReferencesAlgorithm of a Single Round

Motivation

Overall Algorithm:

• Execute the next round
• For each partition Pi obtained in this round

• If Pi can be processed in a single node,
then we do so

• Else, we save Pi for further processing
• For each partition Pi saved for further

processing
• Execute a new round to re-partition Pi

Key Properties of Each Round of the Algorithm:

• We can increase the number of pivots (k)
such that all the partitions are small enough
to be processed in a single node.

• For the unlikely case that we still have a large
partition, we support additional partitioning
rounds.

To properly support a multi-round approach that only
outputs each identified cluster once, we keep track of
the history of partitions that a records has been
assigned to during the execution of our algorithm.

Partitioning and Generation of Similarity Groups

In partition Part0:
If group Then
Solely in A Generate
In A and C Generate
Solely in C Generate
In C and D Generate
Solely in D Ignore

Goals:
• Partition the initial dataset into two partitions such that

we can still identify all the similarity groups (G1-G7)
• Each similarity group should be generated in only one

partition

Solution (using two pivots/partitions):
• Partition the input using two pivots (P0 and P1) such that

each point belongs to the partition of its closest pivot
• Additionally, duplicate the points in the ε-windows (C

and D). Part0 = A+C+D, Part1 = C+D+B.
• Identify the similarity groups in each partition as follows:
 In partition Part1:

If group Then
Solely in C Ignore
In C and D Ignore
Solely in D Generate
In D and B Generate
Solely in B Generate

• In the example, similarity groups G1, G2, G3, and G4
are generated in Part0 while G5,G6, and G7 in Part1

P0 P1

ε ε

Part1
Generated Partitions

Part0

Initial Dataset (2D space)
A BC D

G1 G2

G3

G4

G6
G7

P0

ε ε

A C D

G1 G2

G3

G4

G6

P1

ε ε

BC D

G2

G3

G4

G6
G7

G5

G5 G5

Example: Case of 2 Pivots

Motivation
The Problem
• Analyzing massive amounts of data is critical for

many commercial and scientific applications.
However, this task can require processing tens to
hundreds of terabytes of data.

• Big Data Systems like Apache Hadoop and
Apache Spark and their programming
frameworks enable the analysis of very large
datasets in a highly parallel and scalable way.

• Grouping operations are among the most useful
operators for data processing and analysis.

• Simple grouping operations are fast but don’t
capture complex groups. Clustering techniques
capture complex groups but are slow.

Our Solution
1. A similarity group is defined as a set of points

where each point is within epsilon of each other.

2. We propose MRSGB and SPSGB, a both
MapReduce and Spark based algorithm to
efficiently identify similarity groups in large
datasets.

3. Our algorithm is based on partitioning the data
into smaller partitions. Each partitioning round
uses a set of special points named pivots. Each
data point will be associated with the group
corresponding to its closest pivot.

4. Even though the algorithm processes the data in
parallel over many nodes, it guarantees that each
similarity group is generated only once.

Experimental ResultsTest Setup
Dataset Generator

• Our parametrized data generator produces datasets that
contain clusters with certain properties.

• The generator enables the customization of:
• Number of Groups
• # of records per group and record repetition
• # of Scale Factors (SF) and # of records per SF
• Epsilon value
• Dimensionality

• Record format: Line ID, Aggregation Value, Vector

• Size: 200K records (Scale Factor 1) - 1M records (SF5)

Experiments

1. Execution time varying dataset size (SF1-SF5)
2. Execution time varying dimensionality (200D, 300D,

400D, 500D)
3. Execution time varying number of nodes (2, 4, 6, 8, 10

nodes)
Platform

• Cloud-based computer clusters in Google Cloud Platform

Algorithms

1. Implemented using Hadoop (MapReduce) and Spark
2. Similarity Group-by (MRSimGroupBy,

SPSimGroupBy): proposed similarity grouping operator
3. K-means (MRK-Means, SPK-Means): standard

clustering algorithm
4. Group-by (MRGroupBy, SPGroupBy): standard non-

similarity-based database grouping operator

Performance with Increasing
Dataset Size

Performance while Increasing
Cluster Size and Dataset Size

Performance with Increasing
Dimensionality

www.public.asu.edu/~ynsilva/SimCloud/

	Slide Number 1

