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The Problem Dataset Generator

. . — | Performance with Increasing Performance while Increasing Performance with Increasing
* Analyzing massive amounts of data is critical for  Our parametrized data generator produces datasets that . . , ] ] ]
many commercial and scientific applications. contain clusters with certain properties. Dataset Size Cluster Size and Dataset Size Dimensional |ty

However, this task can require processing tens to The generator enables the customization of:
hundreds of terabytes of data.
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* Number of Groups - : : pA foesos

Big Data Systems like Apache Hadoop and # of records per group and record repetition

Apache Spark and their programming # of Scale Factors (SF) and # of records per SF
frameworks enable the analysis of very large Epsilon value

datasets in a highly parallel and scalable way.

Dimensionality l\z
Grouping operations are among the most useful S 5A E’Er K

, , * Record format: Line ID, Aggregation Value, Vector
operators for data processing and analysis.
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Simple grouping operations are fast but don’t
capture complex groups. Clustering techniques Experiments |

. F0eto0 4]  OF=====lF----- ----== o
capture complex groups but are slow. T . . ;oo 0= _
b pIER ETOUP . Execution time varying dataset size (SF1-SF5) e P P , — — |

. . . . . . . i i Scale Factor, Nodes (SF,N# : :
Our Solution . Execution time varying dimensionality (200D, 300D, | | — — | cale Factor, Nodes (SRR Dimension

1. A similarity group is defined as a set of points 400D, 500D) Scale Factor (SF)
where each point 1s within epsilon of each other. . Execution time varying number of nodes (2, 4, 6, 8, 10

We propose MRSGB and SPSGB, a both nodes)
MapReduce and Spark based algorithm to Platform

efficiently 1dentify similarity groups in large  Cloud-based computer clusters in Google Cloud Platform

datasets. Aloorith
orithms ;
Our algorithm is based on partitioning the data 5 =[aja] DZ,E]

into smaller partitions. Each partitioning round . Implemented using Hadoop (MapReduce) and Spark
uses a set of special points named pivots. Each . Similarity Group-by (MRSimGroupBy,
data point will be associated with the group SPS1imGroupBy): proposed similarity grouping operator

corresponding to its closest pivot. .  K-means (MRK-Means, SPK-Means): standard
clustering algorithm
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Even though the algorithm processes the data in

parallel over many nodes, it guarantees that each y (Txrqup.-by (MRGroupBy, SPGrQupBy): standard non- ' ' | sSaFﬁe Factor,slllil?;:rdes (s:if#) | - ""'}Bimensio#"”
similarity group is generated only once. similarity-based database grouping operator - . . |

Scale Factor (SF)

General Similarity Algorithm of a Single Round Example: Case of 2 Pivots References
Grouping Algorithm

1. Partition the data [Map] nitial Dataset (2D
 Duplicate the points in overlapping areas (each nitial Dataset (2D space) 1) Tang, M., Tahboub, R., Aref, W., Atallah, M.,

Overall Algorithm: base partition is extended by epsilon) cD, B Partitioning and Generation of Similarity Groups Malluhi, Q., Ouzzani, M., Silva, Y. N. Similarity
Structure of each record: {RecordID, ARG Goals: Group-by Operators for Multi-dimensional

«  Execute the next round RecordContent, AssignedPartition, e Partition the initial dataset into two partitions such that Relational Data. IEEE Transactions on Knowledge

«  For each partition P; obtained in this round BasePartition; | we can still identify all the similarity groups (G1-G») and Data Engineering (TKDE), 28, 2, pp 510-523,

* BasePartition: This is the ID of the pivot S : 2016
that is closest to the current record Each similarity group should be generated in only one

. AssignedPartition: This is the ID of the partition 2) Silva, Y. N., Aref, W., Ali. M. Similarity Group-by.
| ' : . ; .. In: ICDE (2009)
Solution (using two pivots/partitions):

 If P, can be processed 1n a single node,
then we do so

*  Else, we save P; for further processing pivot associated to the current partition

« For each partition P; saved for further 2. For each partition P,, cluster the points in P; [Reduce] e  Partition the input using two pivots (P, and Py) such that 3) Silva, Y.N., Reed, J.M. Exploiting MapReduce-
processing * For each partition, we know the value of i by

. . . each point belongs to the partition of its closest pivot based similarity joins. In: SIGMOD (2012)
° Execute a hew round tO re_partition Pi IOOklng at the ASSlgnedParl‘ll‘ZOI”l COInpOIlent Of

any record R Additionally, duplicate the points in the e-windows (C 4) Silva, Y.N., Reed, J.M., Tsosie, L.M. MapReduce-

Key Properties of Each Round of the Algorithm: Structure of each cluster C.: {SetOfPoints,[f,, f;, Iadnedn’ltﬁ‘). ;2“3& I'::;tc-l-?(,)tljasrtil =eaCc-II;D:?rft.ition < follows: based similarity join for metric spaces. In:
AL | 2R Y y group P - VLDB/Cloud-I (2012)

 Observe that the array has k elements, where k p— In partition Part0: In partition Part1: : : .
is the number of pivots ; If group Then If group Then 5) Vernica, R., Carey, M.J., L1, C. Efficient parallel

- - set-similarity joins using MapReduce. In:
* /. 1s abinary flag that is 1 if there 1s at least : . Solely in A Generate Solely in C Ignore Y &P
For the unlikely case that we still have a large one record X in the Cluster such that : : InAand C Generate In C and D Ignore SIGMOD 2010 (2010)
partition, we support additional partitioning X.BasePartition = s, 0 otherwise ; : SolelyinC ~ Generate SolelyinD  Generate 6) Afrati, FN., Sarma, A.D., Menestrina, D.,
rounds. 3. For each partition P,, output the clusters (without ' 1 : InCand D Generate InD and B Generate Parameswaran, A., Ullman, J.D. Fuzzy joins using
To properly support a multi-round approach that only duplicating clusters) [Reduce] | Solely in D Iignore Solely in B Generate MapReduce. In: ICDE (2012)

I

I
| .
outputs each 1dentified cluster once, we keep track of * For each Cluster C, in partition P, | . - Co
the history of partitions that a records has been . minFlag = index of minimum value in C,.[f,, 3 e : ) In the example, similarity groups G4, G,, G3, and Gy4 7) Metwally, A., Faloutsos, C. V-SMART-join: a

assigned to during the execution of our algorithm. fo oo, f] thatis 1 | | Part1 are generated in Part0 while Gs,Gg, and Gy in Part1 scalable MapReduce framework for all-pair

+  If (i = minFlag) then output C,, otherwise Generated Partitions similarity joins of multisets and vectors. In: VLDB
don’t output it (1t will be outputted somewhere (2012)
clse)

www.public.asu.edu/~ynsilva/SimCloud/ -‘

* We can increase the number of pivots (k)
such that all the partitions are small enough
to be processed 1n a single node.
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