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General Similarity 
Grouping Algorithm 1. Partition the data [Map]

• Duplicate the points in overlapping areas (each 
base partition is extended by epsilon)

• Structure of each record: {RecordID, 
RecordContent, AssignedPartition, 
BasePartition}

• BasePartition: This is the ID of the pivot
that is closest to the current record

• AssignedPartition: This is the ID of the 
pivot associated to the current partition

2. For each partition Pi, cluster the points in Pi [Reduce]
• For each partition, we know the value of i by 

looking at the AssignedPartition component of 
any record 

• Structure of each cluster Cn: {SetOfPoints,[f1, f2,       
…, fk]}
• Observe that the array has k elements, where k

is the number of pivots
• fs is a binary flag that is 1 if there is at least 

one record X in the Cluster such that 
X.BasePartition = s, 0 otherwise

3. For each partition Pi, output the clusters (without 
duplicating clusters) [Reduce]

• For each Cluster Cn in partition Pi
• minFlag = index of minimum value in Cn.[f1, 

f2, …, fk] that is 1
• If (i = minFlag) then output Cn, otherwise 

don’t output it (it will be outputted somewhere 
else)
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ReferencesAlgorithm of a Single Round

Motivation 

Overall Algorithm:

• Execute the next round
• For each partition Pi obtained in this round 

• If Pi can be processed in a single node, 
then we do so

• Else, we save Pi for further processing
• For each partition Pi saved for further 

processing
• Execute a new round to re-partition Pi

Key Properties of Each Round of the Algorithm:

• We can increase the number of pivots (k) 
such that all the partitions are small enough 
to be processed in a single node.

• For the unlikely case that we still have a large 
partition, we support additional partitioning 
rounds.

To properly support a multi-round approach that only 
outputs each identified cluster once, we keep track of 
the history of partitions that a records has been 
assigned to during the execution of our algorithm. 

Partitioning and Generation of Similarity Groups

In partition Part0:
If group       Then
Solely in A          Generate
In A and C        Generate
Solely in C        Generate
In C and D        Generate
Solely in D        Ignore

Goals:
• Partition the initial dataset into two partitions such that 

we can still identify all the similarity groups (G1-G7) 
• Each similarity group should be generated in only one 

partition

Solution (using two pivots/partitions):
• Partition the input using two pivots (P0 and P1) such that 

each point belongs to the partition of its closest pivot
• Additionally, duplicate the points in the ε-windows (C 

and D). Part0 = A+C+D, Part1 = C+D+B.
• Identify the similarity groups in each partition as follows:
        In partition Part1:

If group       Then
Solely in C        Ignore
In C and D        Ignore
Solely in D          Generate
In D and B        Generate
Solely in B          Generate

• In the example, similarity groups G1, G2, G3, and G4 
are generated in Part0 while G5,G6, and G7 in Part1  
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Example: Case of 2 Pivots

Motivation 
The Problem
• Analyzing massive amounts of data is critical for 

many commercial and scientific applications. 
However, this task can require processing tens to 
hundreds of terabytes of data. 

• Big Data Systems like Apache Hadoop and 
Apache Spark and their programming 
frameworks enable the analysis of very large 
datasets in a highly parallel and scalable way.

• Grouping operations are among the most useful 
operators for data processing and analysis.

• Simple grouping operations are fast but don’t 
capture complex groups. Clustering techniques 
capture complex groups but are slow.

Our Solution
1. A similarity group is defined as a set of points 

where each point is within epsilon of each other.

2. We propose MRSGB and SPSGB, a both 
MapReduce and Spark based algorithm to 
efficiently identify similarity groups in large 
datasets.

3. Our algorithm is based on partitioning the data 
into smaller partitions. Each partitioning round 
uses a set of special points named pivots. Each 
data point will be associated with the group 
corresponding to its closest pivot. 

4. Even though the algorithm processes the data in 
parallel over many nodes, it guarantees that each 
similarity group is generated only once.

Experimental ResultsTest Setup
Dataset Generator

• Our parametrized data generator produces datasets that 
contain clusters with certain properties. 

• The generator enables the customization of:
• Number of Groups
• # of records per group and record repetition
• # of Scale Factors (SF) and # of records per SF
• Epsilon value
• Dimensionality

• Record format: Line ID, Aggregation Value, Vector

• Size: 200K records (Scale Factor 1) - 1M records (SF5)

Experiments

1. Execution time varying dataset size (SF1-SF5)
2. Execution time varying dimensionality (200D, 300D, 

400D, 500D)
3. Execution time varying number of nodes (2, 4, 6, 8, 10 

nodes)
Platform

• Cloud-based computer clusters in Google Cloud Platform

Algorithms 

1. Implemented using Hadoop (MapReduce) and Spark
2. Similarity Group-by (MRSimGroupBy, 

SPSimGroupBy): proposed similarity grouping operator
3. K-means (MRK-Means, SPK-Means): standard 

clustering algorithm
4. Group-by (MRGroupBy, SPGroupBy): standard non-

similarity-based database grouping operator

Performance with Increasing 
Dataset Size 

Performance while Increasing 
Cluster Size and Dataset Size

Performance with Increasing 
Dimensionality

www.public.asu.edu/~ynsilva/SimCloud/
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