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ABSTRACT
Concurrent with the growth and widespread use of social network-
ing platforms has been a rise in the prevalence of cyberbullying and
cyberharassment, particularly among youth. Although cyberbully-
ing is frequently defined as hostile communication or interactions
that occur repetitively via electronic media, little is known about
the temporal aspects of cyberbullying on social media, such as how
the number, frequency, and timing of posts may vary systemati-
cally between cyberbullying and non-cyberbullying social media
sessions. In this paper, we aim to contribute to the understanding
of temporal properties of cyberbullying through the analysis of
Instagram data. That is, the paper presents key temporal charac-
teristics of cyberbullying and trends obtained from descriptive and
burst analysis tasks. Our results have the potential to inform the
development of more effective cyberbullying detection models.

CCS CONCEPTS
• Security and privacy → Social aspects of security and pri-
vacy.
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1 INTRODUCTION
With the growing popularity of social media and online networking
platforms, cyberbullying – often defined as aggressive behavior
performed on electronic media with the intention to harm another
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person [18] – has become a common phenomenon. The increased
prevalence of cyberbullying is especially problematic given the
range of negative outcomes associated with cyberbullying victim-
ization, including anxiety, low self-esteem, depression, and suicide
[10, 18]. To better understand cyberbullying and how to effectively
prevent it, researchers from a number of disciplinary perspectives
have begun investigating cyberbullying on social networking sites
[9, 13, 29]. Within psychology, research efforts have been largely
focused on developing an understanding of underlying psycho-
logical factors that give rise to cyberbullying victimization and
perpetration, the harmful consequences of cyberbullying, and the
effectiveness of interventions aimed at preventing cyberbullying.
In computer science, several computational models have been de-
veloped to detect cyberbullying instances in social networking
platforms.

One of the key characteristics of cyberbullying is the repetitive
nature of the hostile conduct [18]. Yet, little is known about the
repetitive nature of cyberbullying, such as how the number, fre-
quency, and timing of cyberbullying messages may differ systemati-
cally from non-cyberbullying messages or how these characteristics
may evolve over time. This study seeks to contribute to such an
understanding through the analysis of an Instagram dataset and
subsequent identification of temporal patterns and properties of
cyberbullying. A better understanding of the temporal properties
of cyberbullying can inform the development and refinement of
more accurate cyberbullying detection models and thus improve
mechanisms for early cyberbullying identification.

The main contributions of this paper are:

• Human-Labeled Dataset: A thoroughly-coded dataset that
includes human labels at the comment and post level [30].

• Descriptive Analysis: Identification of key temporal proper-
ties of cyberbullying instances in Instagram.

• Burst Analysis: A detailed evaluation of how the frequency of
cyberbullying messages changes and peaks over time using
Kleinberg’s Burst Detection Algorithm.

• Human vs. Machine Learning Labels: Comparison of the
identified temporal properties and trends between human-
labeled and machine-learning-labeled datasets.

The remaining sections of the paper are organized as follows. Sec-
tion 2 presents relevant previous work on temporal aspects of
cyberbullying and cyberbullying detection. Section 3 describes the
procedures used to collect and label the datasets in our analyses.
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Section 4 summarizes the main descriptive and burst analysis find-
ings in the human-labeled and machine learning-labeled datasets.
Finally, Section 6 discusses conclusions and pivotal directions for
future work.

2 RELATEDWORK
Whereas cyberbullying research in psychology and related social
science fields has been crucial in identifying robust predictors of and
outcomes associated with cyberbullying [11, 18], considerably less
empirical attention has been devoted to understanding temporal
aspects of cyberbullying. Furthermore, the relatively few studies
that speak to temporal factors within psychology have adopted a
longitudinal approach by investigating the stability of reports of
cyberbullying, cyberbullying roles, and longer-term predictors and
outcomes associated with cyberbullying over the course of 1-2 or
several months [1, 2, 12, 19]. To our knowledge, there has been no
psychological research to date that examines temporal dynamics of
cyberbullying at the level of social media session.

Existing cyberbullying research in computer science has been
directed primarily at developing automated cyberbullying detec-
tion models. For instance, previous work in this area has explored
the detection of data patterns in text [5, 6, 8, 9, 21, 31], social net-
work features [3, 16, 20], and other social media content such as
images and videos [7, 14, 15, 26, 27]. However, there have been
fewer studies investigating temporal characteristics of cyberbully-
ing instances on social media or integrating temporal properties
into cyberbullying detection models. Below, we briefly review the
extant literature most relevant to the identification of temporal
properties of cyberbullying.

Potha and Maragoudakis [23–25] applied time series modeling
to extract temporal information pertaining to sexual cyberbully-
ing behavior, with the goal of improving online sexual predation
detection. In line of research, they used data from real-world com-
munications between cyber-predators and victims (obtained from
Perverted-Justice, an organization that investigates online sexual
predation of minors) that was manually labeled based on the sever-
ity [23] or type [24] of the predatorial interaction. Subsequent anal-
yses were performed to model each predator’s questions as a time
series by applying Support Vector Machines (SVM) and Neural Net-
works. Singular Value Decomposition (SVD) was implemented as a
feature-reduction technique in the process of pattern discovery and
a sliding window validation technique was used to analyze textual
information before modeling it as time series. In related work [25],
they investigated sexual cyberbullying using a combination of time
series analysis and a biology-inspired algorithm, Multiple Sequence
Alignment (MSA). After transforming the sexual cyberbullying data
into a time series using Symbolic Aggregate approXimation (SAX),
the researchers used the MSA algorithm to identify behavioral pat-
terns in the data. Using this approach, they were able to detect
variations in sexual cyberbullying behavior and temporal patterns
across different predators. Together, these studies were among the
first to propose approaches for predicting future cyberbullying
behavior patterns and severity by implementing temporal-based
mechanisms.

Previous work also presented some general temporal character-
istics of cyberbullying. Hosseinmardi et al. [14, 15] collected social

media sessions from Instagram and employed human coders to la-
bel each session (i.e., the original post with its associated sequence
of comments) as cyberbullying, cyberaggression, or a normal ses-
sion. Although a primary aim of this work was to contrast the
properties of cyberbullying and cyberaggression, it also presented
some temporal properties of cyberbullying such as the interarrival
time of comments and the correlation between cyberbullying in-
tensity and the temporal properties of comment arrival. Soni and
Sigh [28] explored additional temporal properties of cyberbullying
using the same dataset, with the goals of identifying temporal differ-
ences between cyberbullying and normal sessions and improving
cyberbullying detection models by incorporating time-aware mech-
anisms. The temporal features used in this study include the arrival
time of each comment, the duration of a session, the time before
the first comment, the inter-comment interval (ICI) mean, the ICI
variance, the ICI coefficient of variation, and the number of bursts
of activity using the Poisson Surprise method. The researchers
found that cyberbullying sessions had less immediate responses,
lower ICI means, variances, and coefficients of variance, and higher
activity levels than regular sessions. Most recently, Cheng et al. [6]
employed a hierarchical attention network to capture the patterns
in the sequences of words and comments of social media sessions.
The model integrated a time interval prediction component to im-
prove the detection of cyberbullying using Hosseinmardi et al.’s
[15] session-level labeled dataset.

In the present research, we also use the Instagram dataset from
Hosseinmardi et al. [15]. However, in contrast to the analytic ap-
proach of Soni and Singh [28], who examined temporal charac-
teristics of the Instagram sessions that were holistically labeled
as cyberbullying versus normal, we aim to perform a more fine-
grained analysis by considering comment-level labels in addition to
the session-level labels. A crucial contribution of our work is thus
a better understanding of temporal characteristics of cyberbullying
activity within individual social media sessions. In this paper, we
present the results of a range of descriptive and burst analysis tasks
that, together, offer novel insights into how cyberbullying interac-
tions occur over time. These findings may ultimately inform the
development of more effective cyberbullying detection models and
interventions.

3 DATASETS
We performed all descriptive and burst detection analyses on two
versions of Hosseinmardi et al.’s original Instagram dataset [14].
The original dataset contained 2,218 Instagram sessions, with each
session comprised of a user’s initial Instagram post and all associ-
ated comments. As mentioned above, Hosseinmardi et al.’s dataset
included session-level labels indicating whether a given session had
been labeled as cyberbullying or normal (i.e., non-cyberbullying)
by a team of five (human) judges (recruited via the website, Crowd-
flower). That is, the judges read through each Instagram session
and indicated whether, when considered together, the initial post
and associated comments constituted cyberbullying. Those sessions
determined by at least 4 of the 5 judges to constitute cyberbullying
were given a final label of cyberbullying by the researchers. Approx-
imately 29% of the original sessions were labeled as cyberbullying
instances; the rest were labeled as non-bullying sessions.
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From Hosseinmardi et al.’s data, we developed two datasets for
our own analyses: (1) a human-labeled dataset, comprised of a
subset of Instagram sessions, with human-generated cyberbully-
ing labels at the level of each comment (within a session) and
each session, and (2) a machine learning-labeled (ML) dataset, with
comment- and session-level cyberbullying labels generated using a
machine-learning cyberbullying detection algorithm.
Human-labeled data. We extracted a subset of 100 Instagram ses-
sions from the Hosseinmardi et al. dataset. 50 of these sessions
were labeled as bullying and 50 as normal (i.e., non-bullying) in the
original dataset. We had two well-trained members of our research
team manually label each comment within each session as cyber-
bullying or normal and each session as a whole as a cyberbullying
or normal session. Discrepancies in the ratings made by the two
judges were resolved by a third team member. Our session-level
labels were very similar to the ones assigned in the original dataset,
48 sessions were labeled as cyberbullying and 52 as normal.
ML-labeled data. The ML-labeled dataset included the full 2,218
Instagram sessions from Hosseinmardi et al. We employed an eX-
treme Gradient Boosting Model (XGBoost) [4] to classify each com-
ment and each session as cyberbullying or normal. XGBoost was
previously found to be effective in cyberbullying detection [6]. The
features used in the model included word count vectors, word-level
TF-IDF vectors, and psychological features from Linguistic Inquiry
Word Count (LIWC) [22]. The accuracy of the model was 90%.

In sum, both the human-labeled and ML datasets were devel-
oped from Hosseinmardi et al.’s original dataset and each contains
cyberbullying labels not only at the level of each session (as in the
original dataset) but also at the level of each comment.

4 ANALYSES
We grouped our results in three sets. The first two include descrip-
tive analysis results for the human- and ML-labeled data, respec-
tively, and the third includes detailed burst analysis results with
both datasets.

4.1 Descriptive Analysis: Human-Labeled Data
The human-labeled dataset contains 100 sessions; 48 of which were
labeled as cyberbullying and 52 that were labeled normal.

4.1.1 Percentage of cyberbullying comments in Instagram sessions.
Figure 1.a presents the number of sessions classified as cyberbul-
lying vs. non-cyberbullying, distributed along the x-axis based on
the percentage of comments within the session that was classified
as cyberbullying (e.g., the black bar for (0,5] represents cyberbully-
ing sessions in which the percentage of cyberbullying comments
was between 0 [non-inclusive] and 5 [inclusive]). As shown in this
figure, the number of sessions labeled as non-cyberbullying rapidly
decreases as the percentage of cyberbullying comments (within a
session) increases. In fact, all sessions labeled as non-cyberbullying
had 10% or fewer comments within them labeled as cyberbullying.
In contrast, 25% of cyberbullying sessions had between 25% and
50% of their comments labeled as cyberbullying and about half had
between 0 and 25% comments labeled as cyberbullying.

4.1.2 Cyberbullying comments over time. Figure 1.b shows the num-
ber of cyberbullying comments (per session) in cyberbullying and

non-cyberbullying sessions over time (i.e., the first 21 hours after
the initial post). In both cyberbullying and non-cyberbullying ses-
sions, most of the bullying activity occurred in the first hours after
an initial post. Also evident is that cyberbullying sessions contained
larger numbers of cyberbullying messages than non-cyberbullying
sessions. For cyberbullying sessions, there were, on average, 2 cy-
berbullying comments within the first hour. That number decreases
to about 1 per hour after 3 hours and remains under 0.5 comments
per hour after that. For non-cyberbullying sessions, there were, on
average, 0.1 cyberbullying comments per session in the first hour
and the number remains under 0.02 after that. Interestingly, the
figure reveals that non-cyberbullying sessions did, in fact, contain
some comments that were individually labeled as cyberbullying. We
found that out of the 52 non-cyberbullying sessions, 11 (21%) con-
tained cyberbullying comments (in all of the cases, these sessions
contained three or fewer cyberbullying comments.).

4.1.3 Non-cyberbullying activity between cyberbullying comments.
Figure 1.c presents the distribution of cyberbullying-comment-pairs
–where a cyberbullying comment and the next comment in the
sequence labeled as cyberbullying together form a cyberbullying-
comment-pair– based on the number of non-cyberbullying com-
ments posted between the pairs. For instance, the first bar shows
that only 5 pairs of consecutive cyberbullying comments did not
have any non-cyberbullying comments in between. The second
bar shows that 344 pairs of consecutive cyberbullying comments
had 1 to 5 non-cyberbullying comments in between, highlighting
that a significant number of cyberbullying-comment-pairs have at
least a few non-cyberbullying interactions in between the bullying
comments. These interactions could correspond to “protective” be-
haviors from other social media users. The number of cyberbullying-
comment-pairs quickly decreases, however, as the number of non-
cyberbullying comments increases. Only 13 pairs have between 11
and 15 non-bullying comments in between and the number of pairs
does not exceed 3 for more than 20 non-bullying comments.

4.1.4 Temporal distribution of first cyberbullying comments. Figure
1.d shows the distribution of cyberbullying sessions based on the
time at which the first cyberbullying comment appeared. As shown
in this figure, for the majority of sessions, the first cyberbullying
comment appeared within the first hours of the session. Specifically,
the first cyberbullying comment occurred within the first hour of a
session for roughly 50% of the sessions; for about 75% of the sessions,
they occurred within the first 5 hours of a session. Notably, the
frequency count (number of sessions) decreases as the time range
increases. The first cyberbullying comment occurred after 8 hours
for only a few sessions.

4.1.5 Time interval between cyberbullying comments. Figure 1.e
presents the distribution of the time interval (up to 26 hours) be-
tween consecutive cyberbullying comments. The first bar in this
figure shows that for most (582) of the cyberbullying-comment-
pairs, the separation between the first and second comment was at
most 1 hour. This set represents 64% of the considered comment
pairs. The frequency count of cyberbullying-comment-pairs de-
creases exponentially as the time interval increases. An additional
16% of cyberbullying-comment-pairs had intervals between 1 and
4 hours and only a few pairs (8%) had intervals of greater than 12
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Figure 1: Descriptive analysis with human-labeled data

hours. These results highlight the relatively short interval of time
between consecutive cyberbullying comments.

4.1.6 Cyberbullying and non-cyberbullying comments over time.
Figure 1.f shows the average number of cyberbullying and non-
cyberbullying comments in cyberbullying sessions during the first
24 hours. As shown in this figure, while there is cyberbullying activ-
ity across the entire time range, the number of non-cyberbullying
comments always exceeds the number of cyberbullying comments.
Moreover, the number of both types of comments tends to decrease
over time. Specifically, the average number of non-cyberbullying

comments goes from 7.0 in the first hour to 1.6 during the fifth hour,
while the number of cyberbullying comments goes from 2.0 to 0.4
in the same time interval.

Figure 1.g presents information that is parallel to Figure 1.f but
for non-cyberbullying sessions instead. As was the case for cyber-
bullying sessions, the number of non-cyberbullying comments is
significantly larger than the number of cyberbullying comments
at all time points. Notably, however, whereas the ratio of cyberbul-
lying to non-cyberbullying comments during the first hour is 0.29
for cyberbullying sessions, the ratio for non-cyberbullying sessions
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is 0.01. This figure also indicates that the number of both types of
comments tends to decrease over time. Specifically, the number of
non-cyberbullying comments goes from 12.0 in the first hour to 1.9
during the fifth hour, while the number of cyberbullying comments
goes from 0.1 to 0.02 in the same time interval. A crucial obser-
vation in these figures is that the number of comments does not
decrease monotonically over time. Instead, as discussed in further
detail below, the figures reveal some bursts of activity over time.

4.2 Descriptive Analysis: ML-Labeled Data
The ML-labeled dataset contains 2,218 sessions, of which 674 were
labeled as cyberbullying and 1544 were labeled as normal. This
section presents a subset of the most relevant analyses included in
Section 4.1.

4.2.1 Percentage of cyberbullying comments in Instagram sessions.
Figure 2.a shows the distribution of cyberbullying and non-cyber-
bullying sessions based on their percentage of cyberbullying com-
ments. Similar to the equivalent image for the human-labeled data
(Figure 1.a), the majority of non-cyberbullying sessions (89%) had
fewer than 20% comments within them labeled as cyberbullying,
whereas a relatively large number of cyberbullying sessions (47%)
had more than 20% of comments labeled as cyberbullying. In con-
trast to the results for the human-labeled data, however, Figure 2.a
reveals that in theML-labeled data, the number of non-cyberbullying
sessions increases moving from 0% to 10% of comments labeled as
cyberbullying before gradually decreasing. Similarly, the number
of cyberbullying sessions increases between 0% and 20% comments
labeled as cyberbullying and then gradually decreases.

4.2.2 Time interval between cyberbullying comments. Figure 2.b
presents the distribution of the time interval between consecutive
cyberbullying comments. As was the case for the human-labeled
data, for the majority (72%) of cyberbullying-comment-pairs, the
interval of time between the first and second comment was at
most 1 hour (see Figure 1.e). As the time interval between consec-
utive cyberbullying comments increases, the frequency count of
cyberbullying-comment-pairs also decreases rapidly. An additional
15% of cyberbullying-comment-pairs had intervals between 1 and
4 hours, and only 3% of the pairs had intervals of greater than 12
hours.

4.2.3 Cyberbullying and non-cyberbullying comments over time.
Figures 2.c and 2.d show the average number of cyberbullying/non-
cyberbullying comments per cyberbullying and non-cyberbullying
session, respectively. Overall, the results in both figures reveal
similar temporal patterns as the ones identified for the human-
labeled data (see Figures 1.f and 1.g).

Figure 2.c also indicates that while cyberbullying sessions con-
tained cyberbullying activity over the full range of time displayed
(24 hours), within each 1-hour interval, the number of non-cyber-
bullying comments always exceeded the number of cyberbullying
comments. Furthermore, the number of both types of comments
tends to decrease over time. For instance, the average number of
non-cyberbullying comments goes from 11 in the first hour to 1.7
during the fifth hour, while the number of cyberbullying comments
goes from 2.6 to 0.4 in the same time interval.

In Figure 2.d we observe that, for the case of non-cyberbullying
sessions, there are significantly more cyberbullying comments than
cyberbullying ones at each time range. While in the case of cy-
berbullying sessions, the ratio of cyberbullying comments to non-
cyberbullying comments during the first hour is 0.24, the ratio in
non-cyberbullying sessions is 0.1. We also observe that the num-
bers of both types of comments tend to decrease over time. For
instance, the number of non-cyberbullying comments goes from
11 in the first hour to 1.1 during the fifth hour, while the number
of cyberbullying comments goes from 1.1 to 0.1 in the same time
intervals.

4.3 Burst Analysis
To gain further insight into temporal patterns within cyberbullying
sessions, we performed burst detection analysis using the approach
developed by Kleinberg [17], which models bursts of heightened
activity within a stream of events. Specifically, the approach uses an
algorithm to identify bursts of activity in a series of events by mod-
eling transitions between two states–baseline and bursty. Bursty
states, indicative of bursts of activity, are defined by significantly
shorter inter-arrival times between two events in the same stream.
Because Kleinberg’s burst detection algorithm adopts an infinite-
state automaton model, bursts appear in a hierarchical, nested
structure. In other words, there can be multiple levels of bursty
states, with higher-level bursts nested within lower-level bursts.
The different levels of burst activity can also relay information
about differences in the intensity of bursty states, with higher-level
bursts indicating more intense activity than lower-level bursts.

There are two key parameters, s and gamma, that can bemodified
in Kleinberg’s algorithm to determine which state (baseline vs.
bursty) reflects the activity level at a point in time:

• S: This parameter controls the threshold of event frequen-
cies, or intensiveness, for each state. That is, s establishes
how intense the activities – how short the inter-arrival time
between events – needs to be in order for a stream to be
classified as a bursty state at the various levels.

• Gamma: Gamma determines the difficulty of changing states.
It influences the cost or effort required to transition from
one state to a higher-level state.

Using Kleinberg’s burst detection algorithm, we adopted two
different timeframes for analyzing each of the datasets: (1) a short-
term timeframe, which included the first 24 hours after the initial
Instagram post, and (2) a long-term timeframe, which included the
30 days after the initial Instagam post. By performing burst analyses
using two different timeframes, we hoped to gain different and
potentially complementary insights into the nature of cyberbullying
bursts.

Figures 3 and 4 display the burst detection output graphs for the
short-term (24 hour) and long-term (30 day) timeframes, respec-
tively, using the human-labeled data. Figures 5 and 6 are equivalent
images using the human-labeled data. In each graph, values on the
x-axis represent the time points (in either hours or days). Values on
the y-axis represent different levels of burst activity, with higher
y values indicating higher burst activity levels (i.e., more frequent
cyberbullying comments). Observe that each line representing the
output at a given burst activity level has two values associated with
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Figure 2: Descriptive analysis with ML-labeled data

the two reported states, the higher value represents the bursty state
and the lower value the baseline one. Because it is harder to enter
into higher levels of burstiness, there are fewer bursty states at
higher intensity levels and the duration of these bursts is shorter.

Additionally, a variety of different s and gamma values were
experimentally evaluated to obtain optimal visual outputs for each
dataset in each timeframe. We varied s from 1 to 3 in increments
of 0.1 and gamma from 0.1 to 3.0 in increments of 0.1. The opti-
mal visual representations were chosen based on the clarity of the
identified bursts, which was determined by comparing the burst
detection algorithm plots to the direct representations of the raw
data (i.e., frequency graphs). Using this criteria, we found that s =
1.4 and gamma = 0.1 were the optimal parameter values, resulting
in graphs that most clearly depicted the naturally-occurring bursts
for both datasets and both timeframes. Below, we discuss in greater
detail the burst analysis results for each dataset and each timeframe.

4.3.1 Human-labeled dataset (Short-term). As shown in Figure 3,
within the first 24 hours after the initial post, a cluster of strong
bursts appeared during the first 5 hours and peaked within the first
hour. In other words, a series of intense cyberbullying comments
occurred during the first 5 hours after the original post, and these

activities were even more intense within the first hour. Additional
bursts occurred between 6 and 9 hours, 14 and 15 hours, and around
19 hours, but these were notably weaker than the first group of
bursts. Overall, the intensity, frequency, and duration of bursts
decreases over time after the first 2 hours.

4.3.2 Human-labeled dataset (Long-term). As shown in Figure 4,
over the course of 30 days, the first and strongest cluster of bursts
appeared during the first 4 days and peaked within the first day
(24 hours). Additional isolated peaks of bursts also occurred, the
strongest of which appeared around the 22nd day. Compared to the
initial strong bursts, however, these subsequent bursts are shorter
in duration and weaker in magnitude.

4.3.3 ML dataset (Short-term). As with the human-labeled data,
Figure 5 reveals a group of strong bursts that occurred during the
first 5 hours after the initial post and peaked within the first 1 hour.
A few subsequent but noticeably weaker bursts were also observed.

4.3.4 ML dataset (Long-term). As shown in Figure 6, paralleling
our findings with the human-labeled data, the first and strongest
cluster of bursts were observed within the first 4 days. In contrast
to the human-labeled data, however, two peaks in burst activity can
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Figure 4: Bursts in the human-labeled dataset - Long-term (30 days)

be observed in the ML-labeled data, with the second peak appear-
ing between 2 and 3 days. Thus, the most frequent cyberbullying
activity occurred right after the initial post in both the human- and
ML-labeled data, but there was also evidence of increased cyberbul-
lying activity between the 2nd and 3rd day in the ML data. As in
the human-labeled data, another isolated peak of bursts (observed
between 26 and 27 days) and additional clusters of bursts appeared
that were weaker in magnitude than the initial bursts.

Overall, burst analysis performed on the human-labeled and
ML datasets were largely consistent, with similar temporal trends
emerging in each dataset for both the short-term and long-term
timeframes.

5 CONCLUSION
Whereas widely-accepted definitions of cyberbullying include the
element of repetition, relatively few studies have examined tem-
poral characteristics of cyberbullying. Using the Instagram data
previously labeled by [15] for cyberbullying at the session level, we
developed human- and ML-labeled datasets that contain cyberbully-
ing labels at the comment level. We then performed descriptive and
burst analyses on each dataset using different timeframes to gain
insight into temporal properties of cyberbullying on social media.
Our findings shed light on how cyberbullying activities take place
over time and underscore the benefit of incorporating temporal
dynamics into future cyberbullying detection models.
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