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Abstract. Social media has revolutionized communication, allowing people world-
wide to connect and interact instantly. However, it has also led to increases in cy-
berbullying, which poses a significant threat to children and adolescents globally,
affecting their mental health and well-being. It is critical to accurately detect the
roles of individuals involved in cyberbullying incidents to effectively address the
issue on a large scale. This study explores the use of machine learning models to
detect the roles involved in cyberbullying interactions. After examining the AM-
iCA dataset and addressing class imbalance issues, we evaluate the performance
of various models built with four underlying LLMs (i.e., BERT, RoBERTa, T5,
and GPT-2) for role detection. Our analysis shows that oversampling techniques
help improve model performance. The best model, a fine-tuned RoOBERTa using
oversampled data, achieved an overall F1 score of 83.5%, increasing to 89.3% af-
ter applying a prediction threshold. The top-2 F1 score without thresholding was
95.7%. Our method outperforms previously proposed models. After investigating
the per-class model performance and confidence scores, we show that the models
perform well in classes with more samples and less contextual confusion (e.g.,
Bystander Other), but struggle with classes with fewer samples (e.g., Bystander
Assistant) and more contextual ambiguity (e.g., Harasser and Victim). This work
highlights current strengths and limitations in the development of accurate mod-
els with limited data and complex scenarios.
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1 Introduction

With the rise of social media, cyberbullying has become a widespread issue that affects
young people worldwide. Bullying, both conventional and online, has been the focus of
numerous studies in the social sciences. Cyberbullying takes a variety of forms, such
as spreading rumors, negative statements about race, gender, physical appearance, dis-
ability, or religion, humiliation, and threats of violence in public posts and comments.



2 M. Sandoval et al.

Cyberbullying is a serious issue with known harmful consequences, including psycho-
logical and social problems [21]. Whereas many studies have focused on detecting cy-
berbullying incidents (e.g., content), relatively fewer have been conducted to identify
the roles of individuals/users involved in cyberbullying interactions [11, 16]. Previous
research has considered the following main roles: victim, bully, bystander assistant,
bystander defender, and outsider. There are several critical benefits of accurate cyber-
bullying role detection: (1) it enables psychology researchers to better understand the
dynamics of cyberbullying, e.g., studying the underlying motivations and behaviors of
bullies and temporal patterns of bystander-defender activity, (2) it can provide key in-
formation to help social media platforms implement targeted measures, e.g., providing
support and counseling resources for victims, (3) it can help social media platforms im-
plement educational initiatives that raise awareness among bystanders about their role
in enabling/resolving cyberbullying incidents and the importance of reporting, and (4)
a better understanding of role dynamics enables the development of effective detection
models for cyberbullying and anti-bullying.

To enable accurate role identification on a large scale, machine learning techniques
could help identify patterns and indicators of cyberbullying behavior. The challenges
of implementing such techniques include the need for large amounts of labeled data
and addressing many scenarios where the roles of cyberbullying can overlap or the con-
text is limited.This study addresses the task of identifying cyberbullying roles in social
media interactions and sheds light on the merits and limitations of existing methods
and datasets, paving the way for future research in this area. To this end, we examine
and process the AMiCA dataset [22] and employ oversampling methods to address the
challenge of the imbalanced nature of the dataset. We then develop and evaluate the
performance of various machine learning models that are based on four large language
models (LLMs): BERT, RoBERTa, T5, and GPT-2. Moreover, we compare the models
we implemented with previously proposed role-detection approaches.

Our results indicate that providing context and employing oversampling signifi-
cantly enhance the performance of models. Among other models, the fine-tuned ROBERTa
model trained on oversampled data achieves an F1 score of 83.5% and a top-2 F1 score
of 95.7%. The top-2 result indicates the probability of having the correct class in the
top two predictions. Achieving this high top-2 F1 score prompted the investigation of
the models’ performance on a per-class granularity and the analysis of common cases
of wrong prediction. For example, using a 25-th percentile confidence score of the vic-
tim samples as a threshold for valid predictions increased the F1-score of fine-tuned
RoBERTa to 89.3% (i.e., 89.3 — 83.5 = 5.8% improvement), with a rejection rate of
16.4% for comments.

Our analysis also emphasizes the importance of training data and the embedded
context within samples when building models to detect cyberbullying roles. The imple-
mented models tend to exhibit strong performance when there are a large number of
samples for a particular class, but encounter difficulties when there are fewer samples
available.

Contributions. The contributions of this study are twofold:

1. Implementing and evaluating different strategies to build machine learning models
for identifying the roles of individuals involved in cyberbullying incidents. These
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strategies involve processing the data, handling the class imbalance, training vari-
ous models, and evaluating and analyzing their performance.

2. Providing insights into the challenging nature of the cyberbullying role identifica-
tion task and the limitations of the AMiCa dataset in addressing role overlap and
extended conversational context.

2 Related Work

Cyberbullying, in its many forms, has received considerable empirical attention within
the social sciences, with much of the focus on the detrimental impact of cyberbullying
on psychological and social outcomes of those involved [21]. To protect internet users,
particularly youth and adolescent users, from significant negative mental and psychoso-
cial consequences, researchers have begun to develop frameworks for understanding
and identifying the roles of different users who engage in or witness cyberbullying.
Cyberbullying Roles in the Social Sciences. Research on both traditional bullying and
cyberbullying has identified several distinct roles, including victim, bully, bully assis-
tant, defender of the victim, and bystander [18], each of which carries out a specific
behavior that can influence the cyberbullying interaction. For instance, bystanders can
reinforce the bully’s actions, given that inaction can convey explicit or implicit cues
that bullying is acceptable, funny, or even entertaining [17]. Crucially, in an online set-
ting, the cyberbullying-bystander feedback loop can manifest in actions specific to the
platform, such as by providing reinforcing comments or by utilizing platform-specific
features (e.g., likes (Facebook, Instagram), upvotes (Reddit), or re-blogging (X, for-
merly known as Twitter). Garnering more followers can also function as a behavior-
affirming signal for the cyberbully. Indeed, in previous research, cyber-bystanders who
encouraged cyberbullying by reinforcing or assisting the aggressors ranked higher in
the justification of violence than cyber-bystanders who defended or supported the vic-
tim [13]. Additionally, users who helped reinforce a cyberbully had the highest scores
in a measure of cyberbullying perpetration, indicating that those who support the ag-
gressors are also likely to be the perpetrators in other cyberbullying interactions [13].
Researchers have proposed that the choice to reinforce the cyberbully or support the
victim is determined by a mix of personal and societal norms [7]. In terms of preven-
tion, cyber-bystanders, i.e., users who witness cyberbullying interactions, can play an
active and key role in potential intervention. That is, bystanders have the capacity to
intervene to support the victim and help alleviate the negative effects of bullying [1].
Cyberbullying Detection via Machine Learning. Many studies have been proposed
that apply off-the-shelf solutions, e.g., SVM, Naive Bayes, and Logistic Regression, to
binary classification (bullying versus non-bullying) [5,24]. Dadvar and Eckert studied
four deep learning architectures, CNN, LSTM, BiLSTM, and BiLSTM with attention
on a cyberbullying-labeled YouTube dataset that included 54k posts and 4k users [6].
Cheng et al. included network-related content such as user profile information, likes,
and follows to identify cyberbullying [4]. In both studies by Cheng ef al. [2] and [3],
they modeled temporal dynamics using a hierarchical representation of social media
sessions, where a session is composed of a sequence of comments, and a comment is
a sequence of words. Other researchers have integrated network-related content, video,
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Fig. 1. Modeling Pipeline: Dataset is processed, and samples are transformed to target/context
form and then processed to handle class imbalance. Using 10-fold cross-validation, LLMs are
employed/evaluated using various methods for role detection.

images, and time-related components into all-in-one deep learning architectures [20,
23]. Ziems et al. [25] collected a new dataset for cyberbullying detection based on
X (formerly Twitter) that attempts to apply the definition of offline bullying, i.e., the
bullying interactions should contain aggressive language, be repetitive, contain harmful
intent, be visible to peers, and present a power imbalance between the attacker and
target.

Cyberbullying Role Detection via Machine Learning. The area of cyberbullying role
detection is relatively unexplored. To the best of our knowledge, the only models that
address this problem are the ones by Jacobs et al. [11] and Rathnayake ef al. [16],
each of which is included in the present performance evaluation. Rathnayak ez al. [16]
used the AMiCA dataset [22] to develop a DistilBERT-based ensemble model [19] to
classify cyberbullying roles. While the authors report that their algorithm (OffensEval)
achieves an F1 score of 83%, their evaluation only considered 4 of the 5 roles in the
AMICA dataset. We found that OffensEval’s performance decreases significantly when
considering all of the roles. Jacobs et al. [11] used the AMiCA data to investigate multi-
ple algorithmic configurations including single-algorithm classifiers (reporting 55% as
the best F1 result with English data and Logistic Regression and 54% as the best score
with Dutch data and Logistic Regression, SVM was the second best performing classi-
fier), ensemble classifiers (reporting 55% as the best F1 result with English data using
the Cascading approach), and transformer-based pretrained language models (reporting
55% as the best F1 score using RobBERT with Dutch data and 60% as the best score
using RoBERTa with English data).

The AMiCA dataset (Question-Answer pairs from AskFM) is the only labeled so-
cial media dataset that includes cyberbullying role labels. This dataset considers 5 cy-
berbullying roles: Harasser, Victim, Bystander Defender, Bystander Assistant, and By-
stander Other. More recently, Hamlett et al. [9] proposed an Instagram dataset that
includes a wide array of labels (including cyberbullying roles). This dataset, however,
only contains 100 social media sessions making it difficult to integrate in robust ML
model development.
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3 Methods

Figure 1 provides an outline of our framework. This section describes the methods and
design considerations.

Problem Definition. Let C' € {p1,p2,ps,...,pn} be a corpus of n samples, where
a given i-th sample p; = {¢;,t;} is a pair of context ¢; and target ¢; text comments
(corresponding to a Q&A pair from the dataset). Let ¢; = {w}*, w5, w5, ..., w;" } and
t; = {wh wh wh ... wlt} be the token representations of ¢; and ¢;, respectively, for
a length of [ tokens. Let Y € {y1,¥y2,¥s, .., yn} be the associated labels for samples
in C, where a given i-th sample p; — y; such that y; = {y¢, 4!} (ie., y¢ and yf
correspond to the labels associated with ¢; and ¢;, respectively). For any given label
y¥ € {0,1,2,3,4} with values of 0, 1, 2, 3, and 4 representing the labels harasser,
victim, bystander-defender, bystander-assistant, and bystander-other, respectively.

Let f(p) — y be a classifier function for cyberbullying roles, where an input p
is assigned to y. Since p is a pair of ¢ and ¢ that are individually assigned to y© and
yt, we present these pairs to a model with a single label that corresponds to the first
text comment in the pair p (e.g., f({c,t}) — y° and f({t,c}) — y*). This reversal
of ¢ and ¢ doubles the size of the corpus. This is done to classify either c or ¢ while
presenting the other comment as a context.

Machine Learning Model. We use LLM model £ to generate embeddings of any sam-
ple z, ie, E{wy, wi,wi,...,wl}) — {ef,e3,e5,..., el }. Using the embeddings
of the first token inp = e (i.e., corresponding to the token (bos)) or the average
of all embeddings (inp = %Zi(ef)) as input to an ML model f, the model learns
the cyberbullying roles of the input z. Since we use ¢ and c pairs, we obtain inp as
inp = inp’ 4+ X inp®, where ) is a scaling constant for the effect of ¢ on the estimation
of y-. = f(inp). In our experiments, we use A = 0.5 to train Random Forest, AdaBoost,
and XGBoost models.

LLMs. LLMs are also used to build role classification models. For an input {¢;, ¢;},
we present tokens {w(’, wh', ..., w, (sep), wS , w, ..., wi} tolearn y!. We modify
the classification head of the LLM to scale the effect of the context c¢; on the output.
Considering f(.) as consecutive m blocks, i.e., f = by, (b1, ... (bo(.))), where by, is
the classification head block, we modify the input to b,, to receive

{bm1(bm—a ... (bo({w))) + X bp_1(bm_2 ... (bo({wS")))}, where A = 0.5. We
apply the same approach when fine-tuning the models.

Data Collection and Processing. The AMiCA dataset [22] is, to our knowledge, the
only available dataset of adequate size that is explicitly labeled with cyberbullying roles.
This dataset was gathered from ASKfm, a social networking site where users can anony-
mously ask and answer questions. The Q&A pairs were collected by crawling through a
set of seed profiles between April and October 2013. The corpora contains 113, 698 En-
glish posts and 78, 387 Dutch posts, of which we excluded the Dutch posts. The dataset
includes role labels for each question and answer, and sub-sentence behavior labels. An
example of these annotations is provided in Table 1. Table 2 provides an overview of the
distribution of classes in the dataset. Although the dataset does contain detailed annota-
tions including the cyberbullying severity and labeled text-spans within each comment,
we chose not to utilize this additional information in training our models and instead
rely solely on the raw text of the comments, given that this information would not be
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Comment Text Role Harm

Q: [Well your the true b-]Ge“' Iasult 16 it not a joke when someone cuts but why Harasser 1

would you cut in the first place (o Cen: tnsue

A: [Are you really doing this right now?]
alone ]Asserlive Self. Def.

Assertive Self. Def. [Please leave me Victim 1

Q: [YOURE NOT EVEN UGLY OMFGGGGGGGGGGGGGGGGG] o0 Characterisics ?)ysfta“;er
[I SHALL STAB THAT PERSON]ThreaBlackmail (yx % X OXOXO0XO crender
A: ILY XOOXX0OX0XO Bystander Other 0

Table 1. Samples of Q&A pairs and their labels.

Class # Comments (%) Median Length (Tokens)
RoBERTa GPT-2 TS5 BERT
0 3574 (2.918%) 11 9 13 12
1 1354 (1.105%) 15 13 17 16
2 424 (0.346%) 32 30 38 33
3 24 (0.020%) 17.5 155 20 16.5
4 117126 (95.612%) 9 7 10 10
Total 122502 (100%) 9 7 10 10

Table 2. AMiCA dataset statistics and comments lengths. Classes 0, 1, 2, 3, and 4 representing
harasser, victim, bystander-defender, -assistant, and -other, respectively.

readily available in real-world scenarios. The anonymity and nature of AMiCA make
it impossible to utilize a large amount of context when identifying roles, and the small
dataset size makes it difficult to train large models effectively. We investigate several
strategies to overcome this challenge.

Transforming Q&A to Context-Target. The AMiCA dataset is structured as Q&A
pairs with labels for each comment. To maintain the connection between the comments,
we generate two samples for each Q&A pair in the original dataset, utilizing both labels.
In the first sample, the question is used as the context and the answer as the target for
role identification. In the second sample, the answer is used as the context and the ques-
tion as the target. Therefore, the original 61,251 English Q&A pairs are transformed
into 122, 502 samples. Because 95% of comments contain bystander-other responses,
we randomly sample 5, 000 pairs with bystander-other label.

Data Imbalance in Latent Space. We use ADASYN [10] with its default parame-
ters and n-neighbors = 15 to oversample the minority classes, Harasser, Victim, By-
stander Defender, and Bystander Assistant, in the latent space. Providing raw sam-
ples to LLMs to obtain representations for ADASYN, we use the following mod-
els, BERT [8], RoBERTa [12] base model (i.e., trained and fine-tuned on 124 million
tweets for sentiment analysis), T5 [15], and GPT-2 [14]. Using the respective tokenizer,
LLMs tokenize each comment separately to a specific length that is determined by the
99-th percentile of the length of the observed comment in the data. Comment length
varies widely, but the vast majority of comments are short with the median comment
length being only 10 tokens when using RoBERTa’s tokenizer (see Table 2). Bystander-
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Fig. 2. ECDF of comment lengths using various tokenizers with zoomed-in chart in the center.
The max-length is set as the 99-th percentile, i.e., 103, 101, 121, and 101 tokens for ROBERTa,
GPT2, TS, and BERT tokenizers, respectively.
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Fig. 3. ECDF of model confidence for correctly identified victim comments for fine-tuned LLMs
on oversampled data. 25-th percentile thresholds are: 0.7863, 0.6737, 0.4198, and 0.5611 for
RoBERTa, GPT2, TS, and BERT, respectively.

defender comments tend to be the longest, with a median length of 32 tokens, while the
bystander-other comments, which are the least related to cyberbullying instances, are
the shortest, with a median length of only 9 tokens. The empirical cumulative distribu-
tion function (ECDF) of the length of the comment is shown in Figure 2.

Comment pairs are padded or truncated to the same length, and then forwarded
together to the model to obtain the final embeddings. For example, an input pair {¢;, ¢; }
with the 99-th percentile of length [ is tokenized and passed as
{whi whi ... ,wfi, (sep), wi’, wy', ..., w;"}, where w}’ and wS' are the (DOS) tokens
for ¢; and c;, respectively. The final representation is the weighted sum vector of the
t; and ¢; embeddings, which is calculated as e/ + ) e{*, where e and e{* correspond
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to wt and w¢’, respectively, and \ is a factor to balance their weights (A=0.5 in our
experiments).

Model Selection. For role detection in cyberbullying interactions, we consider six mod-
els to train on two different types of data obtained using four different types of embed-
ding strategies. Using four LLMSs, i.e., BERT [8], RoBERTa [12], TS5 [15], and GPT-
2 [14], we train various ML models (i.e., Random Forest, AdaBoost, and XGBoost),
and fine-tune and ensemble LLMs to perform the role detection task. Next, we outline
the settings and the fine-tuning process.

Machine Learning Models: Random Forest is constructed with 300 decision trees
grown to the maximum extent and without bootstrapping (i.e., all samples used for each
tree). The final output is done by a majority vote. The AdaBoost classifier starts by
training a decision tree (with a maximum depth of 1) using the dataset and then trains
additional trees after adjusting the weights of incorrectly classified samples, so more
attention is given to difficult cases. The XGBoost classifier uses 100 boosted decision
trees grown to a depth of 6 and trained using a uniform sampling method on half the
dataset for each boosting iteration with a learning rate of 0.3. The tree construction
algorithm is the faster histogram optimized approximate algorithm with 256 histogram
bins.

Dense Neural Network Classification Head: A classification head is added on top
of the LLM, which consists of a two-layer dense feedforward neural network. The first
and second layers of this network have 2,048 and 1,024 units, respectively, and use
ReLU activation functions. The network is then connected to a final softmax output
layer, which is responsible for estimating the probability of each role. To address the
issue of overfitting, we use L2 regularization with a strength coefficient of 0.09 and a
dropout rate of 0.3 for each layer. The training process terminates when the validation
loss ceases to decrease for 40 consecutive epochs.

Ensemble of LLMs with Dense Classification Head: We build the ensemble clas-
sifier using the weights of dense classification heads trained with different epochs. The
minimum number of training epochs to consider model weights in the ensemble is set
to 275. Then, we consider the weights after five-training-epoch intervals. The stopping
condition is met once the validation loss stops decreasing for 40 epochs. The number of
models are 26, 563, 25, and 776 (using augmented data), and 9, 22, 124, and 50 (using
oversampled data) for BERT, RoBERTa, T5, and GPT-2, respectively.

Fine-tuned LLM: We fine-tune the last two blocks and the classification head of
LLMs using our dataset to perform the role detection task. The classification head con-
sists of a single dense layer with 2048 units, a ReLU activation function, and L2 regu-
larization with a strength coefficient of 0.09 and dropout with a rate of 0.3. This layer is
connected to the output layer with five units and a softmax activation function to gen-
erate the probabilities of each role. The classification head is modified to receive the
weighted sum of the BOS tokens of the target and context pair.

Compute/GPU Settings: ML models are trained on a local workstation with an
Intel Xeon Gold 6230R 2.1GHz CPU and 256 GB of RAM. The training and fine-
tuning LLMs are conducted using GPU-enabled VMs on Colab and Lambda Cloud.
The resources are selected for performance and efficiency and should not affect the
results of the experiment.
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Overall Metrics Metrics with Threshold

Model ‘

LLM
A R P Fl Tp2Fl] A R P Fl RR
Base-RoBERTa [11] 0.676 0.676 0.509 0.580 0.669 | — — — — —
Baseline OffensEval Filtered [16] ~ 0.540 0.540 0.641 0.561 0.623 | — — — — —
OffensEval Unfiltered [16] 0.264 0.264 0258 0217 0282 | — — — — —
Random Forest 0.544 0.544 0.522 0.527  0.807 [0.573 0.573 0.554 0.556 0.101
XGBoost 0.614 0.614 0.588 0.593  0.833 |0.640 0.640 0.622 0.621 0.085
BERT  AdaBoost 0.340 0.340 0.430 0.368  0.651 |0.429 0.429 0.533 0.463 0.284
Classification Head 0.486 0.486 0.491 0.413  0.790 |0.547 0.547 0.590 0.509 0.189
Ensemble 0.444 0.444 0.498 0.406  0.748 |0.529 0.529 0.621 0.529 0.259
Fine-tuned LLM 0.736 0.736 0.727 0.721  0.903 |0.761 0.761 0.757 0.748 0.069
Random Forest 0.507 0.507 0.502 0.496  0.785 |0.534 0.534 0.528 0.523 0.112
XGBoost 0.558 0.558 0.545 0.549  0.809 |0.597 0.597 0.585 0.588 0.129
ROBERT 2daBoost 0.388 0.388 0.429 0.404 0.706 [0.436 0.436 0.478 0.452 0.175
Classification Head 0.662 0.662 0.700 0.664 0.910 [0.768 0.768 0.821 0.775 0.303
Ensemble 0.647 0.647 0.705 0.649  0.900 |0.750 0.750 0.819 0.758 0.300
Fine-tuned LLM 0.835 0.835 0.834 0.835  0.957 |0.894 0.894 0.892 0.893 0.164
Random Forest 0.5210.521 0.516 0.512  0.784 |0.550 0.550 0.545 0.540 0.109
XGBoost 0.581 0.581 0.570 0.574 0.811 [0.621 0.621 0.610 0.614 0.133
s AdaBoost 0.365 0.365 0.428 0.386  0.695 |0.396 0.396 0.458 0.417 0.106
Classification Head 0.541 0.541 0.559 0.527 0.834 |0.628 0.628 0.707 0.626 0.278
Ensemble 0.538 0.538 0.580 0.537 0.831 |0.644 0.644 0.739 0.654 0.322
Fine-tuned LLM 0.709 0.709 0.681 0.669 0.888 |0.718 0.718 0.700 0.681 0.030
Random Forest 0.512 0.512 0.495 0.496  0.794 |0.546 0.546 0.532 0.530 0.114
XGBoost 0.568 0.568 0.549 0.556  0.817 |0.605 0.605 0.588 0.593 0.116
Gpry  AdaBoost 0.340 0.340 0.430 0.368  0.651 |0.429 0.429 0.533 0.463 0.284
Classification Head 0.427 0.427 0.430 0.379  0.701 [0.497 0.497 0.536 0.475 0.333
Ensemble 0.3520.352 0.461 0.324  0.628 |0.407 0.407 0.541 0.380 0.247
Fine-tuned LLM 0.737 0.737 0.739 0.733  0.896 |0.783 0.783 0.785 0.780 0.130

Table 3. Model performance of baselines and proposed models. The proposed models use over-
sampled data via ADASYN. Accuracy, Recall, Precision, F1 score, and Rejection Rate (RR) are
provided with/without confidence threshold using 10-fold stratified cross-validation. Best results
per LLM are in bold.

Performance Evaluation. We use weighted average F1-score and F1-scores per class
to determine the performance of the model. We also record the overall accuracy and the
weighted average of the recall and precision for each experiment. The confusion matri-
ces of the models are analyzed to evaluate their performance and gain a better under-
standing of the challenges differentiating among distinct classes. A common instance
of confusion is mistaking harassers for victims and vice versa, but there are several
other instances of overlap, such as harassers and bystander assistants, which have very
similar behavior in cyberbullying interactions. This can be qualitatively explained as
victims aggressively defending themselves, which can make it appear, especially with
limited context, that they are the harassers. To provide a meaningful quantitative metric
that accounts for these types of confusion, we also calculate thresholds for predicting a
class and top-2 metrics.
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Prediction Threshold. Prediction threshold is adopted after the experiments are com-
plete and the threshold used is standardized as the 25-th percentile of correctly clas-
sified victim comments. This cut-off is based on the ECDF of model confidence for
correctly identified comments, shown in Figure 3, and the fact that predicted victim
comments typically have the lowest associated model confidence. This ensures thresh-
olding is only applied when the model is relatively uncertain by its standards to predict
the correct class. For thresholded metrics, an adjusted model prediction is used. If the
probability of the model’s original prediction exceeds the threshold or is correct, then
the original prediction is used. If the model is not confident in its prediction and the
probability is below the threshold, then the model’s second choice class with the next
highest probability is used instead. This provides a view of how often the correct class is
in the top two choices of the model and shows how frequently two classes are confused
with one another.

4 Experiments and Results

In this section, we compare the results of the proposed models and the models im-
plemented to serve as baselines. All models were evaluated on the same AMiCa [22]
dataset.

Baseline 1: OffensEval. OffensEval [16] is an LLM based model composed of three
DistilBERT models functioning as an ensemble for cyberbullying role classification. In
the original authors’ configuration of the dataset, each question and answer is a stan-
dalone post/training sample. The function of the ‘outer’ model is to determine whether
or not a post is cyberbullying, i.e., binary classification. If the post is classified as bully-
ing, the ‘bully’ model determines whether the role is Harasser or Bystander Assistant.
Likewise, if the outer model determines a post is not bullying, the ‘defender’ model
determines if the role is Victim or Bystander Defender. To overcome class imbalance,
this approach uses 10 stratified fold cross validation paired with weighted random sam-
pling when training the outer model. To the best of our understanding, OffensEval was
not trained to classify Bystander Other. To more comprehensively evaluate OffensEval
with our approaches, which consider the full set of 5 roles in the dataset, we consid-
ered two approaches, OffensEval Filtered and OffensEval Unfiltered. For OffensEval
Filtered we trained and tested the model on a reduced dataset with only the samples
of roles Harasser, Victim, Bystander Defender, and Bystander Assistant. This approach
directly replicates the model implemented by the original authors as they did not con-
sider the Bystander Other role. For OffensEval Unfiltered, we expanded the testing set
of each fold to include Bystander Other. This second approach enables a more direct
comparison with the approaches we propose. Observe that considering real-world sce-
narios, OffensEval Filtered assumes that existence of a previous model that will filter
the Bystander Other interactions from the dataset.

Baseline 2: Base-RoBERTa. To serve as a baseline for comparison, we implemented
the RoBERTa-based model proposed in [11]. The authors of this paper stated that this
model achieved an F1 score of 0.6. To the best of our understanding, the original authors
interpreted the ‘Bystander Other’ role as their ‘Not Bullying’ class. Moreover, due to the
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Model Class Overall Metrics ‘ Metrics with Threshold
R P Fl Top2Fl| R P Fl RR Support
Harasser 0.479 0.507 0.493 0.850 [0.521 0.559 0.539 0.136 3574
Victim 0.195 0.322 0.243  0.462 ]0.242 0.377 0.295 0.175 1354
Random Forest Bystander Defender 0.380 0.222 0.280 0.515 ]0.436 0.272 0.335 0.222 424
Bystander Assistant 0 0 0 0 0 0 0 0375 24
Bystander Other  0.706 0.649 0.676 0.899 ]0.726 0.661 0.692 0.090 5000
Harasser 0.599 0.575 0.587 0.886 [0.655 0.631 0.643 0.169 3574
Victim 0.312 0.399 0.350 0.611 ]0.390 0.495 0.436 0.243 1354
XGBoost Bystander Defender 0.410 0.290 0.340 0.557 |0.467 0.357 0.404 0.231 424
Bystander Assistant 0 0 0 0 0 0 0 0208 24
Bystander Other ~ 0.735 0.736 0.736  0.912 ]0.768 0.762 0.765 0.105 5000
Harasser 0.279 0.416 0.334  0.728 ]0.343 0.500 0.407 0.167 3574
Victim 0.182 0.162 0.171  0.401 ]0.219 0.211 0.215 0.168 1354
AdaBoost Bystander Defender 0.474 0.127 0.200 0.494 10.479 0.131 0.206 0.127 424
Bystander Assistant 0 0 0 0 0 0 0 0.125 24
Bystander Other ~ 0.567 0.582 0.574 0.836 ]0.619 0.624 0.621 0.172 5000
Harasser 0.755 0.654 0.701 0.965 [0.828 0.739 0.781 0.204 3574
Victim 0.376 0.568 0.452  0.805 [0.495 0.690 0.576 0.278 1354

Classification Head Bystander Defender 0.509 0.579 0.542 0.744 (0.620 0.709 0.661 0.323 424
Bystander Assistant 0 0 0 0.074 ]0.042 0.100 0.059 0.292 24
Bystander Other ~ 0.878 0.883 0.881 0.955 [0.904 0.902 0.903 0.084 5000

Harasser 0.728 0.657 0.691 0.968 [0.797 0.742 0.769 0.198 3574
Victim 0.393 0.562 0.462 0.803 ]0.488 0.656 0.560 0.261 1354
Ensemble Bystander Defender 0.588 0.560 0.574 0.743 |0.654 0.642 0.648 0.294 424

Bystander Assistant 0.045 0.048 0.047 0.077 |0.045 0.063 0.053 0.364 24
Bystander Other ~ 0.882 0.881 0.881 0.955 ]0.909 0.894 0.901 0.074 5000

Harasser 0.824 0.802 0.813  0.967 |0.894 0.875 0.885 0.204 3574
Victim 0.654 0.665 0.660 0.907 ]0.775 0.805 0.790 0.310 1354
Fine-tuned LLM  Bystander Defender 0.639 0.727 0.680 0.831 [0.759 0.826 0.791 0.344 424

Bystander Assistant 0 0 0 0.167 ]0.042 0.091 0.057 0.458 24

Bystander Other ~ 0.913 0.916 0.914 0.978 ]0.941 0.937 0.939 0.079 5000
Table 4. Per-class results for best models of each type. The base LLMs used are BERT for Ran-
dom Forest and XGBoost, GPT-2 for AdaBoost, and RoBERTa for Classification Head, Ensem-
ble, and Fine-tuned LLM. Augmented data generally yields the best results, although, in the case
of RoBERTa Fine-tuned LLM, the best results are achieved using oversampled data.

significant class imbalance presented by the few occurrences of ‘Bystander Assistant’,
they merged ‘Bystander Assistant’ into ‘Harasser’.

Model Performance. Table 3 shows the performance of different models trained us-
ing oversampled, as well as the performance for the baseline models. Regarding the
performance of baseline methods, we can observe that SAC-LR achieved a F1 score
of 67%, SAC-SVM obtained a F1 score of 65%, OffensEval filtered obtained an F1
score of 53%, and finally, OffensEval unfiltered, i.e., OffensEval predicting all 5 classes,
achieved an F1 score of 21%. Of our proposed methods, fine-tuning the last two blocks
of RoBERTa proved to be uniformly the best model for every metric when using over-
sampling. It achieves an accuracy of 83.5%, which increases roughly 6% after thresh-
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Q Q A A

Question Answer Pred. Actual Pred. Actual
Role Role Role Class

come visit me [l busy [ ] 4 0 0 1

sit on my face | 1 0 0 0

wants some butter u | I Who the lll even puts butter on crackers 0 0 0 1

CRACKER you

gpirst;}‘;ilire you told me you weren’ta vir- Pretty sure you [l ur dad awks 1 0 0 1

Table 5. Examples of harasser and victim comment confusion.

olding with a rejection rate of 16.4%. This model also outperforms all the baseline
methods. Generally, there is a notable increase in the top-2 F1 score compared to the F1
score. This indicates the challenge that the model encounters in accurately determining
the top prediction and resolving confusion. Applying a confidence threshold helps the
model reject uncertain predictions due to either limited context or class ambiguity.
Per-class Model Performance. Detailed per-class metrics are also reported in Table 4
for the model that performs the best for each type, measured by the weighted average
F1 score without thresholding. Although there is some variation among models, gen-
erally, the bystander-other and harasser comments are the easiest to distinguish, with
similar levels of recall and precision and high F1 scores around 0.9 and 0.8 for the best
models, respectively. Victim and bystander defender comments lie in the middle with F1
scores slightly below 0.7. Although the sample size of victim comments is larger, they
prove to be slightly more difficult to recognize compared to the comments of bystander
defender. This could be due to the observed overlap between victims and the more fre-
quent harasser class when victims defend themselves using aggressive language. Most
models tend to ignore or incorrectly recognize the bystander-assistant class. This is
likely due to a combination of only having 24 total occurrences of the role in the entire
dataset and the similarity of this role to harassers, particularly without more available
context. The top-2 F1 scores per-class show that the models frequently choose between
two similar classes. Although the top-1 F1 scores for victims and bystander defenders
are 0.66 and 0.68, respectively, they increase to 0.91 and 0.83 when considering the
top-2 predicted classes. The increase in F1 scores is the largest by far for victims, most
likely due to their confusion with harassers. The top-2 metrics provide insight into the
potential performance of the proposed models when using different datasets that have
more diverse/distinct classes or clearer guidelines for annotating samples, e.g., when
aggressive victims use the same language as harassers.

5 Discussion

Class Confusion. The fine-tuned RoOBERTa model performs well in most situations,
but struggles in some surprising situations such as distinguishing between harassers and
victims. For seemingly opposite roles, having 8.22% of harasser comments mistakenly
labeled as victims and 23.12% of victims labeled as harassers is unexpected. Table 5
shows a sample of Q&A pairs with harassers and victims mistaken for one another. In
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several cases, victims mimic the language used by the harasser in their defensive re-
sponse or otherwise aggressively defend themselves with language typically associated
with harassment. This makes it difficult, even for a human familiar with the subject
reading these comments, to identify with a high degree of certainty who the victim is in
these interactions. Although the exact reasoning behind the model’s struggles remains
unclear, by analyzing the model’s mistakes, it is clear that the task is not trivial and
that before substantial improvement in role prediction performance can be achieved,
we likely need to either clarify role definitions or expand the number of possible roles
for each comment.

Model Application. While the proposed models consider the Ask.fm Question-Answer
pair format, the models could be easily applied to data formats used in other platforms.
For instance, a majority of platforms utilize a thread based discussion focused around
a single post, e.g., Reddit, Youtube, Facebook, and Instagram. To adapt the thread-
based format, we could build a Q-A pair using the initial post text as the question and
each individual comment as an answer. Another approach would be to consider each
instance of a user mention, often seen as one user tagging another via the ‘@’ symbol.
Each instance of a comment with a user mention and the response by the mentioned
user can constitute a Q-A pair.

6 Conclusion

Our work investigates cyberbullying role detection in social media interactions using an
imbalanced dataset with five classes (AMiCA dataset), i.e., Harasser, Victim, Bystander
Assistant, Bystander Defender, and Bystander Other. The issue of cyberbullying has fre-
quently posed a challenge, with over half of adolescents reporting instances of bullying
while using social networks or engaging in online chats. Having a model for identifying
the roles of cyberbullying instances would be beneficial for adolescents and parents, as
this model could enable the implementation of more effective anti-bullying tools. Pre-
vious studies have focused on determining whether a post exhibits bullying behavior
or not. More recently, some research has begun exploring the detection of different
roles involved in cyberbullying, including victim, bully, and bystander. Contributing to
the detection of cyberbullying roles in social media comments, this study explores the
performance of various models with different training strategies and sheds light on the
strengths and shortcomings of the employed methods. We plan to publish the code upon
paper acceptance.

An important task for future work is the development of a more comprehensive
labeled dataset that enables better detection models by more accurately capturing the
roles linked to a given comment. This could be achieved, for instance, by enabling
the assignment of multiple roles to a single comment (e.g., a single comment could be
labeled as a Bystander Defender and a Harasser). Moreover, the labeling approach could
be extended by including a degree of each role (e.g., mild vs. severe harasser). Both
mechanisms would help capture more accurately complex instances of role overlap.
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