

Analyzing Adversarial Strategies and Countermeasures for Cyberbullying Detection

Students: Maddie Juarez, Manny Sandoval Madrigal, Eldor Abdukhamidov

Abstract

- Cyberbullying has harmful effects on users and is increasing on social networking sites, with messages spreading rapidly
- Cyberbullying systems are vulnerable to adversarial attacks, such as TextFooler
- We evaluated the robustness of cyberbullying detection models on traditional machine learning (ML) and newer LLM approaches

Background & Framework

- **Cyberbullying Detection Models**
 - Su
 - Ra
 - K-
 - Na \bullet
 - XC

- Lo
- Bi-
- Bi-
- Ga

Advisors: Mohammed Abuhamad, Yasin N. Silva, Tamer Abuhmed

Baseline Performance of Cyberbullying Detection Models:

 Support Vector Machines (SVM) 		Footures		Instagram	l		Twitter		Vine			
Random Forest (RF)	Method	reatures	F1	Р	R	F1	Р	R	F1	Р	R	
 K-Nearest Neighbors (KNN) Naïve Bayes (NB) XGBoost 	XGBoost	TF-IDF 1000 TF-IDF <i>bi</i> -gram TF-IDF Char Count 1000	0.7282 0.6710 0.6692 <u>0.7290</u>	0.8257 0.8238 0.7825 0.8027	0.6528 0.5666 0.5864 0.6702	0.7638 0.2630 0.7259 0.7639	0.7891 0.7730 0.8021 0.7942	0.7403 0.1596 0.6632 0.7361	0.6047 0.5592 0.5889 0.6050	0.7355 0.6333 0.6907 0.7012	0.5462 0.5069 0.5069 0.5396	
 Long Short Term Memory (LSTM) Bi-directional Long Short Term Memory (Bi-LSTM) Bi-directional Gated Recurrent Unit (Bi-GRU) Gated Recurrent Unit (GRU) Bidirectional Encoder Representations from Transformers (BERT) 	RF	TF-IDF <i>bi</i> -gram TF-IDF Char TF-IDF 1000 Count 1000	0.6506 0.5055 0.6524 0.5743	0.8797 0.8678 0.9016 0.8098	0.5543 0.3571 0.5123 0.4457	0.3397 0.3353 0.4376 0.4463	0.2449 0.2183 0.2965 0.3345	0.5546 0.7239 0.6950 0.6701	0.5856 0.4584 0.5275 0.5744	0.7392 <u>0.7995</u> 0.7271 0.6735	0.4870 0.3294 0.4464 0.5035	
	SVM	TF-IDF <i>bi</i> -gram TF-IDF Char TF-IDF 1000 Count 1000	0.6848 0.5828 0.7139 0.5898	$0.8500 \\ 0.7861 \\ 0.8318 \\ 0.8209$	$0.5916 \\ 0.4631 \\ 0.6283 \\ 0.4606$	$\begin{array}{r} 0.2249 \\ 0.4334 \\ \underline{0.7520} \\ 0.4239 \end{array}$	$\begin{array}{r} 0.7729 \\ 0.3077 \\ \underline{0.8238} \\ 0.2999 \end{array}$	0.1316 0.7325 0.6917 0.7233	0.5021 0.6256 0.6177 0.5473	0.8046 0.7224 0.7583 0.7654	0.3688 0.5527 0.5157 0.4278	
• a fine-tuned version of BERT for cyberbullying detection (CyberBERT)	NB	TF-IDF <i>bi</i> -gram TF-IDF Char TF-IDF 1000 Count 1000	$0.5069 \\ 0.3640 \\ 0.6180 \\ 0.4309$	$0.3762 \\ 0.2388 \\ 0.4256 \\ 0.4141$	0.7787 0.7662 0.8082 0.4506	0.5498 0.4397 0.4775 0.4651	0.8793 0.3731 0.4442 0.4427	0.3999 0.5831 0.5164 0.4901	0.5044 0.5454 0.6021 0.4197	0.3717 0.4342 0.4792 0.5168	0.8971 0.7336 0.7208 0.3555	
 Data Representation Methods Term Frequency-Inverse Document Frequency (TF-IDF) Character-level 	KNN	TF-IDF <i>bi</i> -gram TF-IDF Char TF-IDF 1000 Count 1000	0.4458 0.6301 0.5588 0.4314	0.5123 0.6053 0.5758 0.6875	0.3947 0.6571 0.5429 0.3143	0.3716 0.3764 0.2130 0.3384	0.5312 0.5661 0.4386 0.4676	0.2857 0.2819 0.1406 0.2652	0.5616 <u>0.6538</u> 0.5930 0.5743	0.4824 0.5368 0.4595 0.7250	$\begin{array}{r} 0.6721 \\ \underline{0.8361} \\ \underline{0.8361} \\ 0.4754 \end{array}$	
• Word-level <i>n</i> -grams (1-3 <i>n</i> -grams)	LSTM	Embedding Word2Vec	0.3421	0.4530	0.2813	0.4963	0.4893	0.5035	0.5097	0.4780	0.5655	
• Pre-trained word embeddings like Word2Vec	GRU	Embedding (Trainable)	0.6848	0.7421	0.6358	0.5034	0.5240	0.4852	0.6525	0.6821	0.6254	
• Pretrained language models (BERT)	CyberBERT	Transformer Embeddings	0.7477	0.7612	0.7347	0.7493	0.7134	0.7892	0.7387	0.7523	0.7256	

- Used real-world datasets from Instagram, Twitter, and Vine
- Adversarial attacks are found to significantly reduce the accuracy of detection models
- Future work would expand on adversarial training to improve robustness

Results

Character-level Attacks

- Homoglyph substitutions (e.g., "S" -> "\$")
- Evades traditional token-based defenses
- 1. Greedy word swaps with weighted saliency scores
 - Measures individual contribution to the model's prediction and its interactions with surrounding words

	Example	Prediction
B	—So precious is smart or nah rem-	Non-Bullying (76%)
A	—So precious is smart or naη rem- miem etaylorrose—	Bullying (74%)

-You can only see the symbolism Non-Bullying (73%) blatantly shown in your face-

Modele	Faaturee	Inst	agram		Tv	vitter		Vine				
wiodels	reatures	Success Rate	# Query	Avg. chars	Success Rate	# Query	Avg. chars	Success Rate	# Query	Avg. chars		
	TF-IDF 1000	0.07	5183	3.18	0.19	62	3.99	0.16	1160	3.25		
XGBoost	TF-IDF Char	0.09	4655	7.45	0.35	113	5.72	0.28	1236	5.51		
1102000	Count 1000	0.06	4421	2.83	0.16	78	4.63	0.21	1508	3.37		
	TF-IDF <i>bi</i> -gram	0.07	5948	3.83	0.07	73	4.11	0.10	1490	1.70		
SVM	TF-IDF 1000	0.04	3549	43.09	0.18	66	5.23	0.30	2401	25.64		
	TF-IDF Char	0.13	1643	47.79	0.28	83	8.29	0.24	1384	38.30		
	Count 1000	0.02	4382	76.83	0.13	53	4.78	0.10	1325	15.42		
	TF-IDF <i>bi</i> -gram	0.04	3645	44.06	0.09	74	4.84	0.12	1630	70.12		
	TF-IDF 1000	0.01	3266	6.25	0.19	38	5.28	0.08	1413	7.73		
Dondom Forest	TF-IDF Char	0.00	-	-	0.13	65	5.68	0.05	877	7.00		
Kandom Forest	Count 1000	0.01	3527	8.45	0.17	57	4.27	0.08	1689	4.00		
	TF-IDF <i>bi</i> -gram	0.03	5944	8.45	0.17	57	4.27	0.08	1689	4.00		
	TF-IDF 1000	0.44	980	19.14	0.32	90	5.80	0.16	894	30.61		
Naive Bayes	TF-IDF Char	0.01	2077	77.65	0.31	53	6.82	0.41	616	95.21		
Naive Dayes	Count 1000	0.07	4460	22.43	0.13	92	5.72	0.05	2490	22.80		
	TF-IDF <i>bi</i> -gram	0.41	2357	2.00	0.13	68	6.42	<u>0.39</u>	497	39.26		
	TF-IDF 1000	0.003	3625	1.00	0.32	84	5.63	0.08	561	1.53		
KNN	TF-IDF Char	0.02	3831	1.20	0.32	82	5.16	0.03	481	1.00		
KININ	Count 1000	0.003	3278	1.00	0.17	42	4.66	0.03	1102	1.00		
	TF-IDF bi-gram	0.02	2267	1.14	0.49	94	5.01	0.12	572	1.48		
LSTM	Embeddings	_	-	-	-	-	_	_	-	_		
GRU	Embeddings (Trainable)	0.08	766	4.64	0.42	77	5.89	<u>0.39</u>	1418	5.59		
CyberBERT	Transformer Embeddings	_	_	-	0.10	126	8.20	0.08	1400	43.75		

2. Greedy homoglyph substitution

- Generate similar glyphs for words with high saliency
- Test each substitution by evaluating model predictions
- Accept changes that flip prediction or maximally reduce confidence
- Apply greedy selection for optimal character replacements

3. Iterate through Important Words

- Process words in order of saliency score
- Preserves changes that reduce model confidence
- Continues until prediction flips or all key words are tested

A	$-Y_{0}\cup$ can only see the symbolism blatantly shown in your face—	Bullying (66%)
B	—you dont got a profile pic cuz u	Bullying (87%)

-you dont got a profile pic cuz u Non-Bullying (68%) ugly as f

		Models	Features	Inst	tagram		T	witter	. !		Vine	
Word-level Attacks				Rate	# Ouery	Avg. words	Success Rate	# Ouery	Avg. words	Success Rate	# Ouery	Avg. word
• Aims to generate adversarial examples that change the			TF-IDF 1000	0.41	4561	4.35	0.38	155	2.00	0.57	987	4.00
model's predictions while maintaining the original context	Original Text: "Every single NEL player should be	XGBoost	TF-IDF Char Count 1000	0.37 0.45	1291 4160	7.48 6.83	0.61 0.39	53 90	4.15 3.16	0.59	334 785	7.32 5.68
and meaning σ	kneeling this Sunday Every Single One Dont let this		TF-IDF bi-gram	0.19	4436	8.31	0.11	117	5.52	0.33	768	8.23
	POS President get away withis sh."	0.0.4	TF-IDF 1000 TF-IDF Char	0.19 0.82	10226 1471	30.12 28.44	0.30 0.62	43 90	7.00 10.00	0.65 0.63	1675 538	56.75 23.31
1. Compute Importance Scores	Model Prediction: Negative	SVM	Count 1000 TE-IDE <i>bi</i> -gram	0.04	1994 8178	21.00	0.23	70 57	4.00	0.29	1594	96.67 157.4
• Measured by how the model's prediction probability	Importance Ranking: Low (–) (+) High		TF-IDF 1000	0.03	2030	8.12	0.28	163	2.00	0.15	860	41.54
changes when each word is removed or masked	Substitutions:	Random Forest	TF-IDF Char Count 1000	0.01 0.02	8272 2493	6.70 4.94	0.34 0.25	123 170	3.00 5.00	0.18 0.12	794 762	24.36
2. Iterative Substitution	" POS " \rightarrow "awful" \rightarrow Prediction : Negative (lower probability)		TF-IDF bi-gram	0.04	1243	10.50	0.29	55	7.00	0.09	570	15.00
• Finds semantically similar synonyms using pre-trained	"POS" \rightarrow "controversial" \rightarrow Prediction: <u>Positive</u> (prediction flip)		TF-IDF 1000 TF-IDF Char	0.49	276 589	5.50 7.50	0.49	160 72	4.50 12.00	0.35	838 458	62.00
word embeddings (e.g., Word2Vec GloVe) for each word	Adversarial Example: "Every single NFL player	Naive Bayes	Count 1000	0.18	1928	10.20	0.29	130	4.00	0.11	855	86.35
starting with the most important one	should be kneeling this Sunday Every Single One Doni		TE IDE 1000	0.02	2013	2.40	0.19	72	2.00	0.49	240	28.00

let this controversial President get away wthis sh."

New Prediction: Positive

KNN	TF-IDF 1000 TF-IDF Char Count 1000 TF-IDF <i>bi</i> -gram	0.03 0.04 0.01 0.06	1670 733 629 1341	3.40 2.92 2.00 3.53	0.14 0.36 0.30 0.16	72 69 72 78	3.50 3.58 2.98 4.12	0.10 0.10 0.06 0.25	299 224 674 533	3.37 2.50 2.18 3.31
LSTM	Embedding Word2Vec	0.73	545	10.80	0.59	84	2.37	0.64	273	9.00
GRU	Embeddings (Trainable)	0.88	2568	14.26	0.87	55	6.00	0.88	985	18.05
CyberBERT	Transformer Embeddings	0.12	1750	7.75	0.15	142	6.20	0.10	990	19.00

