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ABSTRACT

Increased social media use has contributed to the greater preva-
lence of abusive, rude, and offensive textual comments. Machine
learning models have been developed to detect toxic comments
online, yet these models tend to show biases against users with
marginalized or minority identities (e.g., females and African Amer-
icans). Established research in debiasing toxicity classifiers often
(1) takes a static or batch approach, assuming that all information
is available and then making a one-time decision; and (2) uses a
generic strategy to mitigate different biases (e.g., gender and racial
biases) that assumes the biases are independent of one another.
However, in real scenarios, the input typically arrives as a sequence
of comments/words over time instead of all at once. Thus, decisions
based on partial information must be made while additional input
is arriving. Moreover, social bias is complex by nature. Each type of
bias is defined within its unique context, which, consistent with in-
tersectionality theory within the social sciences, might be correlated
with the contexts of other forms of bias. In this work, we consider
debiasing toxicity detection as a sequential decision-making pro-
cess where different biases can be interdependent. In particular, we
study debiasing toxicity detection with two aims: (1) to examine
whether different biases tend to correlate with each other; and (2)
to investigate how to jointly mitigate these correlated biases in an
interactive manner to minimize the total amount of bias. At the core
of our approach is a framework built upon theories of sequential
Markov Decision Processes that seeks to maximize the prediction
accuracy and minimize the bias measures tailored to individual
biases. Evaluations on two benchmark datasets empirically validate
the hypothesis that biases tend to be correlated and corroborate
the effectiveness of the proposed sequential debiasing strategy.
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1 INTRODUCTION

Current machine learning models for toxicity detection exhibit
problematic and discriminatory performance, resulting in poorer
prediction [10, 33] and negatively impacting disadvantaged and
minority groups [14, 21, 43]. That is, Instagram! sessions that in-
clude comments with swear words can be flagged as toxic even
when the swear words are used inoffensively and tweets containing
words related to minority groups are more likely to be identified
as toxic. For example, the widely-used Perspective API? has been
found to identify “Wussup, n*gga!” and “F*cking love this.” as toxic
comments with high probability, revealing swear-words-based lexi-
cal bias [43] and potential dialect-based racial bias against African
American English (AAE), respectively.

Despite promising efforts to debias toxicity detection and re-
lated tasks (e.g., cyberbullying detection), most research to date
(e.g., [9, 14, 42]) is based on two assumptions: (1) bias mitigation
is a “static” problem where the model has access to all of the in-
formation and makes a one-time decision; and (2) different types
of biases are independent of one another. Yet, comments/words in
social media often come in a sequence instead of all at once. In

https://www.instagram.com/
Zhttps://www.perspectiveapi.com/
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Figure 1: Percentages of toxic (red) and non-toxic (green) ses-
sions containing different biases in the benchmark Insta-
gram data [20]. “Swear in WE” denotes that there are swear
words in sessions written in White-aligned English (WE).

this environment, conventional batch-processing can be impracti-
cal. Further, the relations among different biases are complex. As
shown in Fig. 1, sessions containing comments written in Hispanic
English (HE) or AAE with swear words contribute larger portions
of toxic sessions than those without swear words in a benchmark
dataset. Recent work (e.g., [21]) also showed evidence of intersec-
tional bias within toxicity detection: AAE tweets were 3.7 times
as likely and African American male tweets were 77% more likely
to be labeled as toxic [21]. In the social sciences, intersectionality
is the idea that multiple identity categories (e.g., race and gender)
combine interactively in ways that contribute to greater bias than
the bias associated with each category alone. Informed by these
findings, we first hypothesize that biases tend to be correlated in
toxicity detection.

To effectively mitigate potentially correlated biases with a se-
quential input, we address two challenges: (1) making sequential
decisions based on partial information, e.g., comments observed so
far, given that “static” debiasing may cause unnecessary delay and
is less responsive when the input is changing (e.g., topic diversion);
and (2) characterizing unique aspects of individual biases to reduce
the overall bias. Conventional debiasing strategies provide a generic
and one-size-fits-all solution. A straightforward approach is to add
multiple fairness constraints w.r.t. different biases to the training
process of a toxicity classifier. However, it overlooks the unique
characteristics of each bias and confronts challenging optimization
problems. This leads to our second hypothesis: with sequential in-
put, sequential bias mitigation strategies that include bias measures
tailored to individual biases can improve the debiasing performance
in the presence of potentially correlated biases.

To test our hypotheses, we study the novel problem of joint bias
mitigation for toxicity detection via sequential decision-making. The
goal is to effectively detect toxicity and mitigate potentially corre-
lated biases as comments arrive sequentially. This work proposes a
sequential debiasing strategy for toxicity detection — Joint — built
on theories of sequential Markov Decision Processes (MDP) [2]
and a pairwise comparison bias measure that compares every two
groups sampled from the same bias type. Joint is model-agnostic

(i.e., any standard toxicity classifier can be the input model) and
focuses on debiasing with sequential inputs.
The major contributions of this paper are the following:

e We investigate the novel and practical research question of joint
bias mitigation for toxicity detection via sequential decisions;

e We propose two hypotheses that offer new theoretical and prac-
tical insights for research on bias and fairness in Al

e We propose a sequential bias mitigation approach that takes
sequential input seeking to maximize the prediction accuracy
and minimize the bias measures tailored to individual biases.

e Empirical evaluation on two benchmark datasets shows that our
approach can effectively reduce the total amount of bias and
present competitive prediction accuracy.

2 RELATED WORK

We briefly review two lines of research closely related to our work
— toxicity detection and bias mitigation in text classification.

2.1 Toxicity Detection

Toxicity detection has received considerable attention as a tool
for mitigating the detrimental impact of toxicity online (see, e.g.,
[5, 25])-where toxicity is defined as “a rude, disrespectful, or un-
reasonable comment that is likely to make you leave a discussion”
[1]. Toxicity is also used as an umbrella term for different kinds
of toxic language, including language that is ‘hateful’ [31, 35, 39],
‘offensive’ [32, 41], ‘cyberbullying’ [12, 24], or ‘abusive’ [25, 28].

An early work in hate speech detection [38] extracted n-grams
and part-of-speech tags from comments as features to train a Sup-
port Vector Machine (SVM) classifier. Subsequent work [25] ex-
amined the effectiveness of various linguistic features, such as
character/word n-grams and word embeddings. Experimental re-
sults found that models trained with the combination of all fea-
tures achieved the best predictive performance. Other promising
approaches have emerged from research on cyberbullying detec-
tion. For instance, studies that augmented textual features with rich
social media information, such as social network [36] and other
multi-modal information (e.g., time, location) [8], were found to
improve the performance of cyberbullying detection significantly.
Notably, there has been growing interest in models designed specif-
ically for toxicity detection (e.g., [5, 15]). For example, because toxic
users may continually modify their content to circumvent comment
filters, a recent work [5] proposed using sentiment information to
help detect toxicity, based on the hypothesis that it is harder for
toxic users to hide their sentiments. Their results showed that sen-
timent information has a positive impact on toxicity detection.

Recent work [6, 29] has highlighted the role of semantic context
in detecting toxicity. Inspired by the hierarchical attention network
proposed in [40], Cheng et al. [6] used a hierarchical structure to
model a social media session with a sequence of comments and
attention weights to differentiate the word/comment importance.
Surprisingly, others (e.g., Pavlopoulos et al. [29]) have found a
lack of evidence that context improves the performance of toxicity
classifiers. These inconsistent findings point to the need for in-depth
analyses of context-aware toxicity detection.



2.2 Bias Mitigation in Text Classification

Computational methods can reinforce and even propagate unin-
tended biases in text classification tasks that stem from datasets [14],
contextual word embeddings [22], distributed word embeddings [4,
16], machine learning algorithms [9, 42], and human annotators [18].
In a pioneering work [4], word embeddings trained on Google News
articles were found to exhibit gender stereotypes to an alarming
extent. Yet, only a handful of studies [9, 17, 42] have focused on mit-
igating these unintended biases in text classification, broadly, and
toxicity detection, specifically. For example, a recent survey [43]
identified and mitigated three types of biases in toxicity detection:
identity (e.g., “gay”), swear words (e.g., “*k”), and racial biases (e.g.,
AAE). One approach for mitigating bias in text classification-and
mitigating demographic bias, in particular-is data augmentation
[14, 27, 34]. This approach seeks to reduce data bias stemming from
the lower weight and/or under-representation of minority (relative
to majority) groups by balancing the training data sets. Specifically,
one can add external labeled data [14], swap gender-related terms
[27], or assign different weights to instances from various groups
[23]. The primary drawback of these data manipulation methods is
their impracticality (e.g., costliness of labeling data).

Recent work by Zhang et al. [42] sought to address these lim-
itations. The authors assumed that there are discriminative and
non-discriminative data distributions and sought to reconstruct
the non-discriminative data distribution from discriminative ones
by instance weighting. Another approach formulates the task as a
constrained optimization problem [17]. The basic idea is to impose
a fairness constraint w.r.t. a single bias type during model training
such that the model is enforced to converge to a more equitable
solution. Critically, however, prior research takes static or batch
approaches, assuming all information it needs is available. Further-
more, it overlooks the unique aspects within each bias and does
not distinguish the debiasing strategies for different biases.

Our work complements prior work by: (1) studying multiple
potentially correlated biases with sequential input; (2) providing
the first sequential bias mitigation strategy to jointly mitigate these
biases; and (3) conducting an in-depth analysis of the impact of the
size of historical information on sequential debiasing performance.
Our findings offer new insights for both the theoretical and practical
aspects of research on bias and fairness in Al

3 PROBLEM DEFINITION

Given a corpus C of N samples, a sample i € {1,2,..., N} can be a
social media session S; (e.g., an Instagram session) consisting of a
sequence of C comments {cy, €z, ..., cc }. There is also a pre-defined
set of K sensitive attributes # = {p1, p2, ..., px }- For instance, K = 2
and P = {gender, race} when the considered sensitive attributes
are gender and race. A sample i can also be a comment (e.g., a tweet)
comprised of a sequence of W words {w1, wg, ..., wyy }. Moreover,
every sample (a session or a comment) is labeled as “non-toxic”
(Y; = 0) or “toxic” (Y; = 1). Let D be the number of dimensions of
the extracted features x; for every comment c; in a session or every
word w; in a comment. Our proposed sequential debiasing process
for toxicity detection aims to learn a binary classifier that jointly
mitigates the overall bias w.r.t. the set of sensitive attributes #
and accurately identifies if a session or comment is toxic or not,

with sequential input:
F P U{X1,X2,.u X, x.} €ERP 5 Y €{0,1}, (1)

where L denotes the number of comments in a session or words in
a comment. To simplify the presentation, we will use social media
sessions in the Method section for illustration. Experimental results
will be given for both data consisting of sessions and comments.

4 METHOD

Existing research in debiasing toxicity classifiers assumes that the
model observes all the comments and then makes a one-time deci-
sion regarding the prediction and bias mitigation. However, social
media users interact in a sequential manner. Conventional debiasing
approaches, therefore, are less responsive when the conversations
between users are changing. A desired debiasing strategy should be
able to process sequentially revealed comments and make depen-
dent decisions. In addition, prior research studied different biases
either individually (i.e., debiasing one type of bias at a time) or inde-
pendently (i.e., debiasing multiple biases that are independent from
one another). Nevertheless, bias is complex by nature and different
biases might be correlated, as we will show in Sec. 5. Therefore, it
is important for the sequential debiasing strategy to identify and
capture the unique aspects of various biases. In this section, we first
discuss how to measure bias in the presence of multiple types of bi-
ases. Then, we detail the proposed joint bias mitigation approaches
for toxicity detection via sequential decisions.

4.1 Measuring Bias

Measuring bias is key for addressing unfairness in NLP and machine
learning models. This section presents two categories of bias metrics
that quantify the differences in a classifier’s behaviour across a
range of groups within the same identity, e.g., {female, male, other}
for gender. They are the Background Comparison Metric (BCM)
and the Pairwise Comparison Metric (PCM) [11].

4.1.1  Background Comparison Metric. The core idea of BCM is to
compare a measure m (e.g., False Positive/Negative Rate) of a group
over the sensitive attribute p with the group’s background score
using the same measure m. The background score is defined based
on the task at hand and the scientific questions being asked. In
this study, it is defined as measure m over the overall evaluation
set. We use the following common bias metrics in debiasing text
classification as measure m in the toxicity classifier: False Negative
Equality Difference (FNED) and False Positive Equality Difference
(FPED) [14]. FNED and FPED are defined based on the False Positive
Rate (FPR) and False Negative Rate (FNR). Formally, we define the
BCM-based fairness metrics, FPEDgcps and FNED ey, as follows:

FNEDgcy = ), IFNR; = FNRygerar 2)
z€p

FPEDpcy = ), FPR; = FPRoyeran- (3)
z€p

where z denotes the values that a sensitive attribute p € £ can
be assigned to. For example, in case of p = {male, female, other},
the FNR, and FPR; are calculated for every group z € p. They are
then compared to FNR,¢-q17 and FPR,,¢;-q11 — Which are calculated



on the entire population, including all of the considered sensitive
attributes.

4.1.2  Pairwise Comparison Metric. BCM allows us to investigate
how the performance of a toxicity classifier for particular groups
differs from the model’s general performance. When applied to
settings with multiple biases, BCM can be less effective, as it tends
to cancel out the differences of these distinctive biases. In addition,
when a toxicity classifier presents low performance, the BCM-based
metrics may underestimate the bias [11]. Here, we present PCM
that quantifies how distant, on average, the performance for two
randomly selected groups z; and zz within the same attribute p is.
This metric examines whether and to what extent the groups differ
from one another. For example, given the sensitive attribute Race
with three groups {White-American, African-American, Asian}, we
consider performance differences for White-American vs African-
American, White-American vs Asian, African-American vs Asian. We
formally define the PCM-based metrics as follows:

FNEDpcpy = Z |FNR,, — FNR,,|, ()
z1.22€(5)

FPEDpcy = Z [FPR;, — FPR,, |. (5)
ame(l)

In both Eq. 4 and Eq. 5, we measure the difference between every
possible pair of groups in p € P. This forces the algorithm to focus
on the particular aspects of this sensitive attribute, which otherwise
will be averaged out in the overall population.

4.2 Sequential Bias Mitigation

When comments come in a sequence, a toxicity classifier needs to
make decisions based on incomplete information, i.e., comments
observed so far. The current decision will, in turn, influence both
future prediction results and debiasing strategies. In addition, in
the presence of multiple biases, debiasing a toxicity classifier can
be more challenging due to the need to capture the unique charac-
teristics of each bias and potential correlations among biases. To
tackle these challenges, in this section, we present a sequential bias
mitigation approach that leverages a reinforcement learning (RL)
framework that seeks to maximize prediction accuracy and mini-
mize bias measures tailored to individual biases at each timestep.

4.2.1 Debiasing via Sequential Decision Making. As comments ar-
rive in a sequence, a debiased toxicity classifier needs to respond
in a timely manner based only on partial information. This process
might also involve the trade-off between debiasing and prediction
accuracy. Our proposed solution is an RL framework built upon
theories in sequential MDP, which allows learning to trade off
competing objectives in a principled way [19]. It considers two
tasks at each state of the decision-making process: (1) predicting
whether the session is toxic and (2) minimizing the total amount
of biases. In a typical RL framework, an agent A interacts with
the environment over time. At timestep ¢t € {1,2,..., T}, A chooses
an action a; in response to the current state s;, which causes the
environment to change its state and returns the reward value rs11.
Formally, we represent every interaction as an experience tuple
My = (st, as, S+1, r'e+1) used to train A.

state sy H comment 1

Agent ' session i 1
, comment 2 :
i : Training :
' | commentt + 1 Set !

reward 7y

Reward Function

H
=
Evaluation H

|

action a;

Figure 2: Proposed sequential bias mitigation approach for
toxicity detection — Joint. The agent is a biased toxicity clas-
sifier that takes an action a; (i.e., predicting the label) based
on the current state s; (i.e., the comments observed so far). By
maximizing the reward value returned by the reward func-
tion — consisting of the bias measures and prediction error —
the biased classifier is forced to improve the prediction per-
formance and reduce the biases on the selected session from
the evaluation set, which is a subset of the training set.

In sequential bias mitigation for toxicity detection, the environ-
ment includes all of the training sessions and A is a biased toxicity
classifier ¥ . State s; is a sequence of t comments A has observed so
far. A selects an action a € {toxic, non-toxic} based on an action-
selection policy 7(s;), which outputs the probability distribution
over actions based on s;. 7(st, ar) represents the probability of
choosing action a; when observing t comments, i.e., s;. After se-
lecting a;, the environment returns a reward value r;4+1 based on
the state-action set (s¢, a;). The reward values defined by the tox-
icity prediction error and bias metrics are then used to calculate
the cumulative discounted reward G; (i.e., the sum of all rewards
received so far) and optimize the policy 7 (s;). At each state s;, the
RL framework maximizes the expected cumulative reward until ¢ to
force the agent to improve accuracy and mitigate bias. Essentially,
the agent is making dependent decisions to adjust to the sequential
input. Fig. 2 depicts an overview of the RL framework.

4.2.2  Reward Function. As the key element in the RL framework,
the reward function is designed to assess the performance of the
classifier # and jointly mitigate various types of biases over time.
BCM-based bias metrics seek to compare the performance measure
m of a specific group z (e.g., FNR;) with that over the entire popula-
tion (e.g., FNRyyerqir), resulting in a solution that might cancel out
the differences of biases. However, as biases are complex (e.g., cor-
related) and often defined within different contexts, it is important
to distinguish the unique aspects of various biases. Therefore, we
hypothesize that PCM is more appropriate for reducing multiple
biases because it compares m of every pair of groups belonging to
the same sensitive attribute p instead of across all attributes in P.
For example, when P = {race, gender}, PCM requires that the FNR
of all subgroups in gender be similar while BCM seeks for similar
FNR across all groups in both gender and race. With PCM, we only
consider sessions related to a certain bias type instead of all of the



Algorithm 1 The Optimization Algorithm for Joint
Input: The dataset {D, P} with labels y € Y, discount rate y, bias
importance values a; € T, learning rate Ir, number of episodes
E, terminal time T.
Output: Debiased classifier/agent (A)
1: Initialize memory M
2: Initialize agent A with parameters 0 and g
3: while Episode e < E do
4. Initialize so by selecting a random session

5 fort€{0,1,..,T} do

6 A selects an action a; according to 7(s;)
7: M — M+ (¢, a¢, 741, St+1)

8 St < St+1

9 for each timestep t, reward in M; do

10: Gy « Z§:1 Yiris

11 end for

12: Calculate the policy loss using

L(0) =log(mg(st, ar) - Gr)
13: Update the agent A using A0 = [rVy.L(0)
14:  end for
15: end while

sessions. We thus propose to use PCM-based metrics to capture the
unique information of p.

Formally, we describe the RL framework by defining the environ-
ment, the state, the action, and the reward function. The environment
contains the training dataset O in which every session includes a
sequence of comments. At ¢, the environment randomly selects a
session and passes the first # comments of that session to the agent
A, which is a toxicity classifier 7 that outputs a decision probability
4:. We convert §; into an action a; using the following criterion:

toxic qr =05
ar = o (6)
non-toxic gy < 0.5,
Finally, we define the reward function using PCM-based bias metrics
to jointly evaluate various types of biases as follows:

1
rho =~ - Z ai-(—|s I Z [FPR, )
Sp €S Pi

2.22€(%)

- FPR. | + [FNRL, — FNR. |),

where IZ_ denotes the binary prediction loss (e.g., log loss) of the
toxicity classifier F, a; represents the importance value of bias
related to the sensitive attribute p; € #, and Sp, denotes the sessions
with sensitive attribute p;.

Similarly, the reward function using BCM-based bias metrics can
be defined as follows:

rhem =—1= > ai- (D] [FPR. (8)
Sp, €S ZEp;
t t t
- FPRoverall| + |FNRZ - FNRoverall|)'

4.2.3 Optimization Algorithm. We aim to learn an optimized action-
selection policy 7(s) that maximizes the cumulative rewards based
on Eq. 7-8. We consider the agent as a neural network with weights

0 (e.g., a trained recurrent neural network). We use an optimization
algorithm similar to [9] to force a biased toxicity detection model to
converge to a more equitable solution. We denote the two sequential
debiasing models as Jointg and Jointp, respectively. Algorithm 1
shows the high-level training process of the Joint model®. During
each episode, the environment selects a random session and returns
the first t comments in every step. Considering the observed com-
ments as state s;, the agent A selects an action according to 7 (s;).
To select the action according to the action-selection policy, we use
the multinomial distribution to sample from the action probabilities
7(st, ar). The performed action results in reward r;4 and state
sr+1- We use experiences M to calculate the cumulative reward G;.
Finally, we update the agent’s parameters using the following loss
function and its gradient:

L(0) = log(mg(st,ar) - Gr), ©)

AO = IrV o L(6). (10)

5 EXPERIMENTS

To test the proposed hypotheses for sequential bias mitigation in
toxicity detection, we run experiments on two benchmark datasets
to answer the following research questions:

RQ. 1. With multiple types of bias present in toxicity detection,
will different biases tend to be correlated with each other?

RQ. 2. If “Yes’ to RQ. 1, will a sequential and joint bias mitigation
strategy tailored to individual biases outperform conventional static
and generic debiasing approaches?

ROQ. 3. How do the size of the historical information and parameter
«a influence the performance of the sequential debiasing strategy?

5.1 Data

We use two publicly available datasets collected from two platforms:
Jigsaw and Instagram. They differ on data format, studied bias types,
sample size, and overall proportion of toxic samples. Particularly,
the Jigsaw dataset consists of comments, in which words are ob-
served over time; and the Instagram dataset consists of sessions, in
which comments come in a sequence; The data statistics are shown
in Table 1. Note that compared to Instagram data, each demographic
group in the Jigsaw data has a much smaller portion of positive
instances. We detail the two datasets below.

e Jigsaw. The Perspective API’s Jigsaw dataset* consists of com-
ments — extracted from the Civil Comment platform — with tox-
icity and identity annotations. We consider gender and race as
the sensitive attributes due to the relatively small number of
comments associated with other identities.

o Instagram [20]. Instagram is a top-ranked social networking site
with the highest percentage of users reporting experiences of cy-
berbullying [37]. Each Instagram sample is a social media session
comprised of a sequence of comments in temporal order. As this
dataset has no annotated identities (i.e., sensitive attributes), we
detail the process of identifying potential attributes regarding
swear words and dialect in the Experimental Setup subsection.

3The source code and data can be found at https://github.com/GitHubLuCheng/
DebiasTD_via_Sequential_Decisions.
“https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity- classification
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Table 1: Statistics of the Instagram and Jigsaw datasets: percentages of every sensitive attribute and the proportion of toxic

samples within each group.

Group Swear Words Dialect Overall
Instagram Type Present Not Present African-American Hispanic ~Asian =~ White
& % data 34.80% 65.19% 15.77% 15.50% 1.26% 67.44% 100% (2,218)
% toxicity 15.14% 13.79% 5.22% 4.59% 0% 19.11% | 28.94% (642)
Group Gender Race
: . . Overall
Jigsaw Type Female Male Other | Black White Asian  Latino  Other
% data 12.92% 83.06% 4.00% | 87.96% 5.87% 2.26% 1.13%  2.75% | 100% (60,766)
% toxicity | 1.87% 8.56% 0.86% | 9.16% 1.45% 0.21% 0.13% 0.33% | 11.30% (6,872)
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Figure 3: Instagram: The total biases (FPED + FNED) w.r.t. swear words and dialect. The x-axis denotes the number of comments
(t) the agent has observed. SOTA-D in (a) shows the total bias w.r.t. Swear Words in the Dialect-debiased SOTA.

0.25 | —« HAN Py s
SOTA-G P aang

wn
©0.20 SOTA-R N
o —— Jointg
3 0.15 | —»— Jointp
e 0 =1
@
To.10
(]
(]

0.05

0 20 40 60 80 100

(a)

0.7 | —* HAN RS
SOTA-G
006 SOTA-R
@5 | —— Joints /f'(
E —»— Jointp
e 04
B3
19}
©
©0.2
0.1

(b)

60

80 100

Figure 4: Jigsaw: The total biases (FPED + FNED) w.r.t. gender and race. The x-axis denotes the number of words () a model has
observed. SOTA-R in (a) shows the total bias w.r.t. Gender in the Race-debiased model.

5.2 Experimental Setup

o Biased Models. These are standard machine learning models com-

We consider two commonly studied types of bias with the Insta-
gram dataset: swear words bias and dialectal bias. For swear-words-
related bias, we used a set of predefined toxic keywords suggested
in the psychology literature [26, 36]. A comment containing these
terms is labeled as 1, otherwise as 0. To infer the dialect of a com-
ment, we employed a lexical detector of words associated with AAE

or WE [3], as used in previous work studying racial bias [13, 34].
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Baselines. As methods such as data augmentation are not
suitable for sessions with a sequence of comments and sensitive at-
tributes with multiple groups, we consider the following baselines:

monly used for toxicity classification. We consider the hierarchi-
cal attention network (HAN) [40] and the popular commercial
model Google Jigsaw’s Perspective APIL As Perspective only works
on a single comment, to assign the toxicity label for each Insta-
gram session, we first use Perspective to label every comment in
the session. The session label predicted by Perspective is then the
majority vote of the comments’ labels.

Debiasing with Fairness Constraints. The Constraint model [17]
is a debiased toxicity detection model that imposes fairness con-
straints of a single bias type on standard classifiers.

o Debiasing Models for Sequential Data. This is the state-of-the-

art sequential bias mitigation model (SOTA) for cyberbullying
detection [9]. SOTA is built upon an RL framework in which
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Figure 5: Jigsaw: The separate results for gender FPED and
FNED. This complements the gender total bias in Fig. 4(a).

the reward function considers both the predictive error and the
harmonic mean of bias amount measured by FPED and FNED.

For fair comparison, we further extend the BCM-based Con-
straint into PCM-based (denoted as Constraintp) and use HAN as
the backbone model of Constraint, Constraintp, SOTA, and joint.
Also, Constraint, Constraintp, and SOTA are individual debiasing
methods, therefore, they have several variants when considering
multiple biases. For instance, when both gender and racial biases
are present, there are SOTA-gender (SOTA-G, i.e., gender-debiased
SOTA) and SOTA-race (SOTA-R, i.e., race-debiased SOTA). Detailed
parameter settings of all approaches can be found in Appendix A.

5.2.2  Evaluation Metrics. Evaluations in bias mitigation for toxicity
detection typically focus on two aspects: prediction accuracy and
bias removal. We adopt standard metrics for binary classification,
including Precision (Prec.), Recall (Rec.), F1, and Accuracy (Acc.).
Following [14, 17], we use FPED, FNED, and total bias (FPED+FNED)
to assess debiasing effectiveness. An effective model should present
low bias and high prediction performance. For all compared mod-
els, we use pre-trained GloVe word embeddings [30] and 10-fold
cross validation with 80% data for training and the rest for testing.
We also perform McNemar’s test to examine the statistical signifi-
cance of the difference between models. Unless otherwise noted,
the differences between our model and the baselines are statistically
significant. We highlight all of the best results.

5.3 Results

5.3.1 Do different biases tend to be correlated? Essentially, we ask
how a toxicity classifier debiased for one bias influences the results
for other biases. We first show in Fig. 3-4 the total biases (i.e., FPED
+ FNED) of the two bias types in each dataset, respectively, at each

timestep. For clear comparisons, all of the selected baselines are
specifically designed for sequential data. Observe that for Instagram
data, mitigating an individual bias can also reduce the other bias.
For example, in Fig. 3(a), the total bias of swear words in SOTA-D
(i.e., SOTA debiased for Dialect) is reduced significantly compared
to that of the biased model, HAN. This finding appears less clear
for Jigsaw data as shown in Fig. 4, in part due to the extremely low
percentage of positive instances in each group in Jigsaw. However,
a deeper investigation of separate results for FPED and FNED in
Fig. 5 shows that SOTA-R presents lower FPED and larger FNED
w.r.t. gender than the biased model HAN. This indicates that an
individual debiasing method designed for race can help mitigate the
FPED of gender but increases its FNED. Therefore, we empirically
validate our first hypothesis that biases tend to correlate.

5.3.2  How does Joint fare against generic and static debiasing meth-
ods? First, we observe in Fig.3-4 that sequential and joint bias miti-
gation strategies with PCM (Jointp) consistently outperforms the
biased model HAN and the generic debiasing approaches regarding
all bias metrics over time. Further, Jointp appears to be more ef-
fective than Jointg. Here, we consider both bias and classification
measures of biased models (HAN and Perspective), generic and indi-
vidual debiasing models (Constraint, Constraintp, and SOTA), and
sequential and joint debiasing models (Jointg and Jointp). Results
for both Instagram and Jigsaw datasets are shown in Table 2-3.

We observe the following: First, it is challenging to reduce both
FPED and FNED within the same or across different sensitive at-
tributes due to the potential trade-off between the two bias metrics
and correlations among biases. Second, Jointp significantly reduces
total bias in both datasets. Regarding prediction, it achieves the
best recall and F1 and competitive accuracy performance (see the
last row in Table 2 as an example). By sacrificing precision, Jointp
focuses more on identifying positive instances (i.e., protecting the
victims), which is more desirable in toxicity detection [7]. Third,
for the baselines, we again observe correlations between biases,
supporting findings observed in RQ. 1. For example, in Table 2, the
dialect-debiased Constraint (i.e., Constaint-D) presents the lowest
swear word FNED while in Table 3, the race FNED of Constraint-G
is largely amplified. Lastly, PCM-based models are more effective
than BCM-based models w.r.t. both total bias mitigation and pre-
diction performance, as we also showed in RQ. 1.

For RQ. 2, we conclude that (1) our joint debiasing strategy out-
performs conventional approaches in terms of both bias mitigation
and detection performance, as also shown by previous studies us-
ing sequential debiasing strategy [9]. This suggests the potential
benefits of debiasing in a sequential manner; (2) PCM is a more ef-
fective measure than BCM regarding jointly mitigating potentially
correlated biases. Therefore, with correlated biases, it is important
to consider strategies tailored to individual biases.

5.3.3 Ablation Study. How does the size of historical information
influence the sequential bias mitigation performance? First, the re-
sults in Fig. 3 show that as the models observe more comments
in a social media session, the overall bias is progressively reduced.
For Jigsaw in Fig. 4-5, we see an overall increased bias with more
words observed. However, for Jointp and Jointg, the bias measures
become more stable and even decrease after the agent observes



Table 2: Instagram: Bias and classification performance of various models, “S”=swear words, “D”=dialect.

Bias Metrics (|) Classification Metrics (T)

FPED-S | FNED-S | FPED-D | FNED-D | Total ACC. Pre. Rec. F1
Biased HAN 0.0113 0.0664 0.2229 0.6441 0.9447 | 0.7800 | 0.6370 | 0.5576 | 0.5947
Models Perspective 0.0097 0.0654 0.2149 0.3865 0.6764 | 0.4829 | 0.3113 | 0.5708 | 0.4029
Constraint-S 0.0331 0.0524 0.1555 0.6675 0.8885 0.8532 0.7152 0.9089 | 0.8004
Constraint-D 0.0741 0.0316 0.1730 0.1170 0.3957 | 0.8578 | 0.7923 | 0.8994 | 0.8424
Debiased | Constraintp-S 0.0106 0.0638 0.1601 0.4203 0.6548 0.8465 0.7370 | 0.9315 0.8230
Models Constraintp-D | 0.0032 0.0748 0.1521 0.0797 0.3098 | 0.8741 | 0.7463 | 0.9217 | 0.8247
SOTA-S 0.0817 0.1075 0.1260 0.2214 0.5366 | 0.8747 | 0.7230 | 0.9190 | 0.8093
SOTA-D 0.0692 0.1336 0.0815 0.1869 0.4712 | 0.8981 | 0.9159 | 0.7737 | 0.8388
Jointg 0.0274 0.1265 0.1541 0.1527 0.4607 | 0.9017 | 0.7819 | 0.9159 | 0.8436
Jointp 0.0021 0.0654 0.1619 0.0756 | 0.3050 | 0.9008 | 0.7567 | 0.9688 | 0.8497

Table 3: Jigsaw: Bias and classification performance of various models, “G”=gender, “R”=race.

Bias Metrics () Classification Metrics (T)

FPED-G | FNED-G | FPED-R | FNED-R | Total ACC. Pre. Rec. F1
Biased HAN 0.1231 0.1204 0.2942 0.4064 0.9441 | 0.8811 0.4724 0.4411 | 0.4562
Models Perspective 0.0419 0.0319 0.2011 0.5649 0.8398 | 0.4820 | 0.5693 0.3105 | 0.4019
Constraint-G 0.0147 0.0465 0.1941 0.6920 0.9473 | 0.8893 0.5102 0.3790 | 0.4349
Constraint-R 0.0873 0.0991 0.1669 0.3722 0.6255 | 0.8712 0.4946 0.4513 | 0.4719
Debiased | Constraintp-G | 0.0135 0.0398 0.1863 0.4320 0.6716 | 0.8893 | 0.5378 | 0.3810 | 0.4460
Models | Constraintp-R | 0.0970 0.0879 0.1135 0.1843 | 0.4824 | 0.8945 | 0.5421 0.3417 | 0.4191
SOTA-G 0.0894 0.1153 0.2862 0.4173 0.9082 | 0.8828 | 0.4793 | 0.4184 | 0.4468
SOTA-R 0.1096 0.1468 0.1788 0.2432 0.6784 | 0.8851 0.4900 | 0.4003 | 0.4407
Jointg 0.0519 0.0761 0.1279 0.2674 0.5233 | 0.8937 0.4396 0.4540 | 0.4495
Jointp 0.0517 0.0772 0.1198 0.2110 0.4597 | 0.8921 0.4667 | 0.4880 | 0.4771

approximately 50 words. We believe this is partly because a com-
ment typically contains more semantically richer information than
aword and biases and semantics are inherently related. For a deeper
understanding, we vary the size of the observed historical informa-
tion at each timestep, i.e., “window size” AL. For example, AL =5
means that at ¢, the agent uses the comments observed from ¢ — 5
to t to take an action. In this experiment, we use both datasets to
examine the influence of window size on reduced total bias A(FPED
+ FNED) w.r.t. each bias type, compared to the biased model HAN.
The results are shown in Fig. 6-7.

We observe that the proposed Jointp model consistently outper-
forms the baselines when the window size increases. Moreover, as
window size increases, i.e., more historical comments are observed
at each timestep, most approaches tend to remove more bias, espe-
cially for models debiased for the same target sensitive attributes.
For example, in Fig. 7(a), where gender is the sensitive attribute,
we can see that the difference in gender bias between SOTA-G and
HAN increases. The same trend is observed in Jointp and Jointg.
This observation is less clear for the results of Instagram, as shown
in Fig. 6, e.g., the difference in swear word bias between HAN and
all the debiasing models is comparatively stable as the window
size grows. There are multiple potential reasons: (1) the number of
comments in a session is significantly smaller than the number of
words in a comment (see the x-axis range for the two datasets); (2)
the annotation of sensitive attributes for Instagram is noisier, as it

is automatically generated whilst that for Jigsaw is human-coded,;
and (3) words and comments provide different levels of semantic in-
formation, and the dependency among words is often stronger than
comments. Future experiments are needed to test these hypotheses.

How does a influence the performance of Joint? We examine the
impact of &, which controls the importance of individual biases in
PCM, as shown in Eq. 7. We use Instagram for illustration purposes.
Specifically, for every bias i € {Dialect, Swear Words}, we set ajx; =
0.5 while varying the a; parameter as a; € {0.0,0.25,0.50,0.75, 1.0}.
We show both the prediction and bias removal results in Fig. 8.
We can see a clear trade-off between the performance w.r.t. the
two biases: by increasing the weight «; of bias i, Jointp shows
an increase in bias j and a decrease in bias i. For example, when
as (ie., weight for Swear Word bias) increases from 0.75 to 1.0,
Jointp prioritizes the swear word bias, resulting in an increase in
the dialect bias. In this figure, we observe the overall robustness of
Joint to changes in «; as well as the trade-off between mitigating
multiple biases.

5.3.4 Case Studies. In addition to the above quantitative analyses,
we show some case studies performed on Instagram data in Fig.
9. Several observations further support the previous quantitative
results. In this non-bullying session, Jointp weighs less the impor-
tance of swear words as well as comments including these words,
therefore, making the correct prediction. In contrast, the biased
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Ground Truth: non-bullying | Prediction: bullying | Probability: 0.332

@XXXX How does one call herself a cunt ?

Rachet at its finest @XXXX tax @XXXX@XXXX@XXXX is goin places she is the bad [BiféHll cunt whatever she says
Lol @XXXX @XXXX@XXKX Sexy |5 !

I want you all to myself !

@XXXX Dam girl you man me feel so good @XXXX@XXXX vour dope !

(a) Biased model.

Ground Truth: non-bullying | Prediction: non-bullying | Probability: 0.911

@XXXX How does one call lherself a cunt ?

Rachet at its finest @XXXX tax @XXXX@XXXX@XXXX is goin places she is the bad bitch cunt whatever she says .
Lol @XXXX@XXXX@XXXX Sexy [Bifehl !

I want you all to myself !

@XXXX Dam girl you man me feel so good @XXXX@XKXXX your dope !
(b) Jointp with window size = 5.
Ground Truth: non-bullying | Prediction: non-bullying | Probability: 0.923

@XXXX How does one call [heselfl a cunt ?

Rachet at its finest @XXXX tax @XXXX@XXXX@XXXX is goin places she is the bad bitch cunt whatever she says
Lol @XXXX@XXXX@XXXX Sexy [Bieh |

I want you all to myself !

hotrod_29 Dam girl you man me feel so good @XXXK@XKXX your dope !

@XXXX Whats up w u though . how u doing @XXXX @XXXX @XXX lol that 's = | EEHINEEN '

Thank [ !

(c) Jointp with window size = 10.

Figure 9: Case studies on Instagram. “Probability” denotes
the model’s output probability of predicting the true label.
Darker color indicates larger attention weight.

model mistakenly predicts that this session is “bullying,” due to
the emphasis on the swear words. In addition, Jointp with a larger
window size, i.e., more historical information, makes the correct
prediction with higher confidence.

In summary, while most of the empirical findings in RQ. 1 and
ROQ. 3 suggest that the size of accessible historical information is
critical for bias mitigation, future research is warranted to obtain
more conclusive findings.

6 CONCLUSION

In contrast to the static and generic bias mitigation approaches in
the debiasing toxicity classifier literature, this paper studies the
novel problem of joint bias mitigation in the presence of potentially
correlated biases with sequential input. In particular, we first empir-
ically show that different biases tend to correlate. We then develop
an effective solution that leverages the strengths of the theories



in sequential MDP and the PCM-based bias measure to maximize
prediction accuracy and jointly minimize total bias. PCM forces the
model to focus on the differences between various biases. Empirical
evaluation with real-world datasets corroborates the effectiveness
of the sequential bias mitigation approach with sequential input.
Given our finding that word- and comment-level semantics impact
the performance differently, future research can incorporate such
hierarchical structure and mitigate biases in a hierarchical manner.
Our work could also be adapted to other applications/domains to
examine the generalizability of the approach and findings. Lastly,
the proposed approach could benefit from additional studies about
the ways semantic context influences sequential debiasing.
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A REPRODUCIBILITY

The compared approaches include two biased models (HAN and
Prospective), three debiased models (Constraint, Constraintp, and
SOTA), and the proposed joint debiasing models (Jointp and Jointg).
We detail the parameter settings for each of these approaches below.

HAN: We implemented the work of [40] with the parameter
settings in Table 4 to pre-train the model.

Perspective: We used Google’s Perspective API to gather the
toxicity probabilities for every comment in a social media session
in Instagram and in Jigsaw. We applied the Sigmoid function to
convert the predicted toxicity probabilities to binary labels, i.e.,
§ = Sigmoid(Pr(toxic|x)). For Instagram, we used the majority
vote to obtain the “toxic” label for every session,

Constraint: We used the implementation of [17] and set the
parameters of the regularization terms as 0.005.

Constraintp: We used the same implementation as Constraint,
with the constraints changed to PCM-based metrics.

SOTA: We used the implementation of [9]. The backbone model
is a HAN following the same parameter settings as in Table 4.
Parameters used in the RL framework can be found in Table 5.
We set f — the parameter that balances between the prediction
error and bias measures - to 1.

o Joint: We used the same backbone model (i.e., HAN) and param-

eter setting for training the RL framework as in SOTA. We set
the alpha values as 0.5 for all bias types in Jointg and Jointp.
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